

April 2009

H11F1M, H11F2M, H11F3M Photo FET Optocouplers

Features

As a remote variable resistor:

- $\blacksquare \le 100\Omega \text{ to} \ge 300M\Omega$
- ≤ 15pF shunt capacitance
- ≥ 100 G Ω I/O isolation resistance

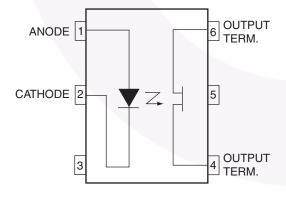
As an analog switch:

- Extremely low offset voltage
- 60 V_{pk-pk} signal capability
- No charge injection or latch-up
- t_{on} , $t_{off} \le 15 \mu S$
- UL recognized (File #E90700)

Applications

As a remote variable resistor:

- Isolated variable attenuator
- Automatic gain control
- Active filter fine tuning/band switching


As an analog switch:

- Isolated sample and hold circuit
- Multiplexed, optically isolated A/D conversion

General Description

The H11FXM series consists of a Gallium-Aluminum-Arsenide IRED emitting diode coupled to a symmetrical bilateral silicon photo-detector. The detector is electrically isolated from the input and performs like an ideal isolated FET designed for distortion-free control of low level AC and DC analog signals. The H11FXM series devices are mounted in dual in-line packages.

Schematic

Package Outlines

Absolute Maximum Ratings ($T_A = 25$ °C unless otherwise specified)

Stresses exceeding the absolute maximum ratings may damage the device. The device may not function or be operable above the recommended operating conditions and stressing the parts to these levels is not recommended. In addition, extended exposure to stresses above the recommended operating conditions may affect device reliability. The absolute maximum ratings are stress ratings only.

Symbol	Parameter	Device	Value	Units			
TOTAL DEVICE							
T _{STG}	Storage Temperature	All	-40 to +150	°C			
T _{OPR}	Operating Temperature	All	-40 to +100	°C			
T _{SOL}	Lead Solder Temperature	All	260 for 10 sec	°C			
EMITTER		•					
I _F	Continuous Forward Current	All	60	mA			
V _R	Reverse Voltage	All	5	V			
I _{F(pk)}	Forward Current – Peak (10µs pulse, 1% duty cycle)	All	1	А			
P _D	LED Power Dissipation 25°C Ambient	All	100	mW			
	Derate Linearly from 25°C		1.33	mW/°C			
DETECTOR							
P _D	Detector Power Dissipation @ 25°C	All	300	mW			
	Derate linearly from 25°C		4.0	mW/°C			
BV ₄₋₆	Breakdown Voltage (either polarity)	H11F1M, H11F2M	±30	V			
		H11F3M	±15	V			
I ₄₋₆	Continuous Detector Current (either polarity)	All	±100	mA			

Electrical Characteristics ($T_A = 25^{\circ}C$ unless otherwise specified.)

Individual Component Characteristics

Symbol	Parameter	Test Conditions		Device	Min.	Тур.*	Max.	Unit
EMITTER	EMITTER							
V _F	Input Forward Voltage	I _F = 16mA	All			1.3	1.75	V
I _R	Reverse Leakage Current	V _R = 5V	All				10	μA
CJ	Capacitance	V = 0 V, f = 1.0MHz		All		50		pF
OUTPUT	OUTPUT DETECTOR							
BV ₄₋₆	Breakdown Voltage	$I_{4-6} = 10\mu A, I_F = 0$	H	11F1M, H11F2M	30			V
	Either Polarity			H11F3M	15			
I ₄₋₆	Off-State Dark Current	V ₄₋₆ = 15 V, I _F = 0		All			50	nA
		V ₄₋₆ = 15 V, I _F = 0, T _A = 100°C		All			50	μA
R ₄₋₆	Off-State Resistance	V ₄₋₆ = 15 V, I _F = 0		All	300			ΜΩ
C ₄₋₆	Capacitance	V ₄₋₆ = 15 V, I _F = 0, f = 1MHz		All			15	pF

Transfer Characteristics

Symbol	Characteristics	Test Conditions	Device	Min	Тур*	Max	Units
DC CHAP	RACTERISTICS						•
R ₄₋₆	On-State Resistance	I _F = 16mA, I ₄₋₆ = 100μA	H11F1M			200	Ω
			H11F2M			330	
			H11F3M			470	
R ₆₋₄	R ₆₋₄ On-State Resistance	I _F = 16mA, I ₆₋₄ = 100μA	H11F1M			200	Ω
			H11F2M			330	
			H11F3M			470	
	Resistance, non-linearity and assymetry	I _F = 16mA, I ₄₋₆ = 25μA RMS, f = 1kHz	All		2		%
AC CHAF	RACTERISTICS						
t _{on}	Turn-On Time	$R_L = 50\Omega, I_F = 16\text{mA}, V_{4-6} = 5\text{V}$	All			25	μs
t _{off}	Turn-Off Time	$R_L = 50\Omega, I_F = 16\text{mA}, V_{4-6} = 5V$	All			25	μs

Isolation Characteristics

Symbol	Characteristic	Test Conditions	Device	Min.	Тур.*	Max.	Units
V _{ISO}	Isolation Voltage	f = 60Hz, t = 1 sec.	All	7500			V _{AC} PEAK
R _{ISO}	Isolation Resistance	V _{I-O} = 500 VDC	All	10 ¹¹			Ω
C _{ISO}	Isolation Capacitance	f = 1MHz	All		0.2		pF

^{*}All Typical values at $T_A = 25$ °C

Typical Performance Curves

Figure 1. Resistance vs. Input Current

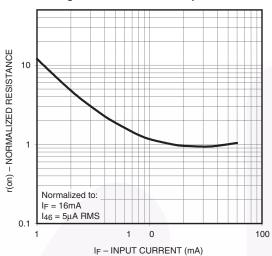


Figure 2. Output Characteristics

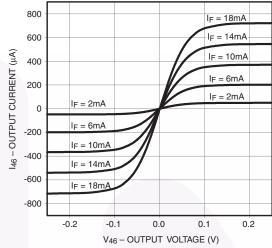


Figure 3. LED Forward Voltage vs. Forward Current

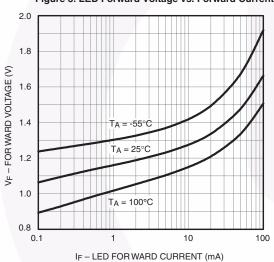
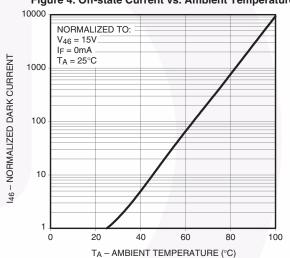
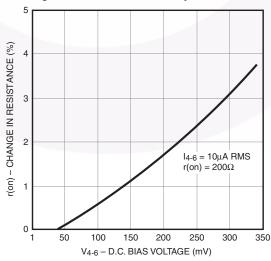
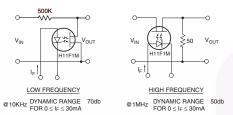
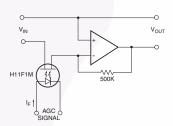


Figure 4. Off-state Current vs. Ambient Temperature

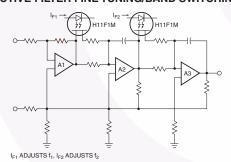




Figure 5. Resistive Non-Linearity vs. D.C. Bias

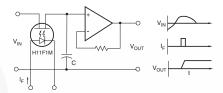
Typical Applications


As a Variable Resistor

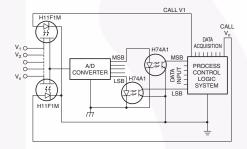
ISOLATED VARIABLE ATTENUATORS


Distortion free attenuation of low level A.C. signals is accomplished by varying the IRED current, $I_{\rm F}$ Note the wide dynamic range and absence of coupling capacitors; D.C. level shifting or parasitic feedback to the controlling function.

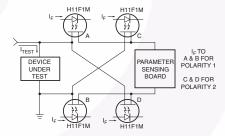
AUTOMATIC GAIN CONTROL


This simple circuit provides over 70db of stable gain control for an AGC signal range of from 0 to 30mA. This basic circuit can be used to provide programmable fade and attack for electronic music.

ACTIVE FILTER FINE TUNING/BAND SWITCHING

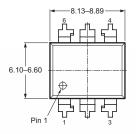

The linearity of resistance and the low offset voltage of the H11FXM allows the remote tuning or band-switching of active filters without switching glitches or distortion. This schematic illustrates the concept, with current to the H11F1M IRED's controlling the filter's transfer characteristic.

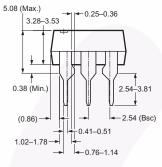
As an Analog Signal Switch ISOLATED SAMPLE AND HOLD CIRCUIT

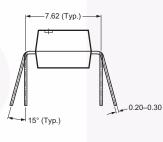

Accuracy and range are improved over conventional FET switches because the H11FXM has no charge injection from the control signal. The H11FXM also provides switching of either polarity input signal up to 30V magnitude.

MULTIPLEXED, OPTICALLY-ISOLATED A/D CONVERSION

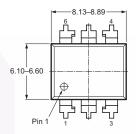
The optical isolation, linearity and low offset voltage of the H11FXM allows the remote multiplexing of low level analog signals from such transducers as thermocouplers, Hall effect devices, strain gauges, etc. to a single A/D converter.

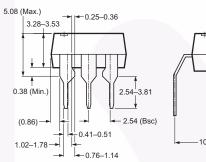

TEST EQUIPMENT - KELVIN CONTACT POLARITY

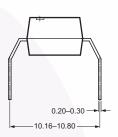


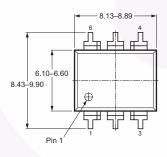

In many test equipment designs the auto polarity function uses reed relay contacts to switch the Kelvin Contact polarity. These reeds are normally one of the highest maintenance cost items due to sticking contacts and mechanical problems. The totally solid-State H11FXM eliminates these troubles while providing faster switching.

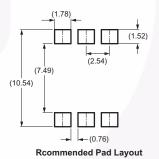
Package Dimensions

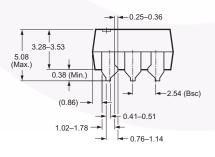

Through Hole

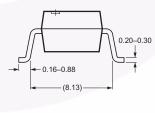




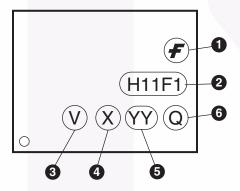

0.4" Lead Spacing





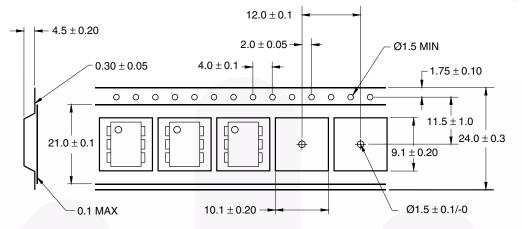


Surface Mount

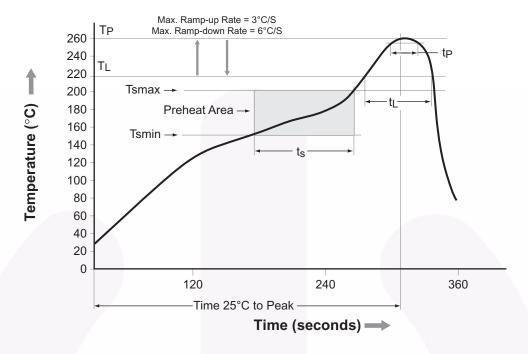


Note: All dimensions in mm.

Ordering Information


Option	Order Entry Identifier (Example)	Description
No option	No option H11F1M Standard Through Hole Device	
S H11F1SM Surface Mount Lea		Surface Mount Lead Bend
SR2	H11F1SR2M	Surface Mount; Tape and Reel
V	H11F1VM	IEC60747-5-2 approval
TV	H11F1TVM	IEC60747-5-2 approval, 0.4" Lead Spacing
SV	H11F1SVM	IEC60747-5-2 approval, Surface Mount
SR2V	H11F1SR2VM	IEC60747-5-2 approval, Surface Mount, Tape and Reel

Marking Information


Definitions				
1	Fairchild logo			
2	Device number			
3	VDE mark (Note: Only appears on parts ordered with VDE option – See order entry table)			
4	One digit year code, e.g., '7'			
5	Two digit work week ranging from '01' to '53'			
6	Assembly package code			

Carrier Tape Specification

User Direction of Feed —

Reflow Profile

Profile Freature	Pb-Free Assembly Profile
Temperature Min. (Tsmin)	150°C
Temperature Max. (Tsmax)	200°C
Time (t _S) from (Tsmin to Tsmax)	60-120 seconds
Ramp-up Rate (t _L to t _P)	3°C/second max.
Liquidous Temperature (T _L)	217°C
Time (t _L) Maintained Above (T _L)	60-150 seconds
Peak Body Package Temperature	260°C +0°C / -5°C
Time (t _P) within 5°C of 260°C	30 seconds
Ramp-down Rate (T _P to T _L)	6°C/second max.
Time 25°C to Peak Temperature	8 minutes max.

TRADEMARKS

The following includes registered and unregistered trademarks and service marks, owned by Fairchild Semiconductor and/or its global subsidiaries, and is not intended to be an exhaustive list of all such trademarks.

Auto-SPM™ Build it Now™ CorePLUS™

CorePOWER™ Green FPS™ CROSSVOLT™ CTL™

Current Transfer Logic™ EcoSPARK[®] EfficentMax™ EZSWITCH™*

Fairchild® Fairchild Semiconductor®

FACT Quiet Series™ FACT® FAST®

FastvCore™ FETBench™ FlashWriter® FPS™

F-PESTM FRFET®

Global Power Resource SM

Green FPS™ e-Series™ Gmax™ GTO™

IntelliMAX™ ISOPLANAR™ MegaBuck™ MICROCOUPLER™ MicroFET™

MicroPak™ MillerDrive™ MotionMax™ Motion-SPM™ OPTOLOGIC® OPTOPLANAR®

PDP SPM™ Power-SPM™ PowerTrench® PowerXS™

Programmable Active Droop™ **QFET**

QS™ Quiet Series™ RapidConfigure™

Saving our world, 1mW/W/kW at a time™

SmartMax™ SMART START™ SPM[®] STEALTH™ SuperFET™ . SuperSOT™-3 SuperSOT™-6 . SuperSOT™-8

SupreMOS™ SyncFET™ Sync-Lock™ SYSTEM The Power Franchise®

bwer franchise TinyBoost™ TinyBuck™ TinyLogic[®] TINYOPTO™ TinyPower™ TinyPWM™ TinyWire™ TriFault Detect™ TRUECURRENT™* սSerDes™

UHC Ultra FRFET™ UniFET™ VCX™ VisualMax™ XSTM

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

- 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.
- 2. A critical component in any component of a life support, device, or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

ANTI-COUNTERFEITING POLICY

Fairchild Semiconductor Corporation's Anti-Counterfeiting Policy. Fairchild's Anti-Counterfeiting Policy is also stated on our external website, www.fairchildsemi.com,

Counterfeiting of semiconductor parts is a growing problem in the industry. All manufacturers of semiconductor products are experiencing counterfeiting of their parts. Customers who inadvertently purchase counterfeit parts experience many problems such as loss of brand reputation, substandard performance, failed applications, and increased cost of production and manufacturing delays. Fairchild is taking strong measures to protect ourselves and our customers from the proliferation of counterfeit parts. Fairchild strongly encourages customers to purchase Fairchild parts either directly from Fairchild or from Authorized Fairchild Distributors who are listed by country on our web page cited above. Products customers buy either from Fairchild directly or from Authorized Fairchild Distributors are genuine parts, have full traceability, meet Fairchild's quality standards for handling and storage and provide access to Fairchild's full range of up-to-date technical and product information. Fairchild and our Authorized Distributors will stand behind all warranties and will appropriately address any warranty issues that may arise. Fairchild will not provide any warranty coverage or other assistance for parts bought from Unauthorized Sources. Fairchild is committed to combat this global problem and encourage our customers to do their part in stopping this practice by buying direct or from authorized distributors.

PRODUCT STATUS DEFINITIONS

Definition of Terms

Definition of Terms					
Datasheet Identification Product Status		Definition			
Advance Information	Formative / In Design	Datasheet contains the design specifications for product development. Specifications may change in any manner without notice.			
Preliminary	First Production	Datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.			
No Identification Needed	Full Production	Datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve the design.			
Obsolete	Not In Production	Datasheet contains specifications on a product that is discontinued by Fairchild Semiconductor. The datasheet is for reference information only.			

Rev. 140

^{*} Trademarks of System General Corporation, used under license by Fairchild Semiconductor.