

Sample &

Buv

TPS22968

SLVSCG3A-JANUARY 2014-REVISED JULY 2014

TPS22968 Dual Channel, Ultra-Low Resistance Load Switch

Features

- Integrated Dual Channel Load Switch
- Input Voltage Range: 0.8 V to 5.5 V
- VBIAS Voltage Range: 2.5 V to 5.5 V Ideal for 1S Battery Configuration
- Ultra low RON Resistance
 - R_{ON} = 27 m Ω at V_{IN} = 5 V (V_{BIAS} = 5 V)
 - R_{ON} = 25 m Ω at V_{IN} = 3.3 V (V_{BIAS} = 5 V)
 - R_{ON} = 25 m Ω at V_{IN} = 1.8 V (V_{BIAS} = 5 V)
- 4A Maximum Continuous Switch Current per Channel
- Low Quiescent Current
 - 55 µA at V_{BIAS} = 5 V (Both channels)
 - 55 µA at V_{BIAS} = 5 V (Single channel)
- Low Control Input Threshold Enables Use of 1.2 V/1.8 V/2.5 V/3.3 V Logic
- Configurable Rise Time⁽¹⁾
- Quick Output Discharge (QOD)⁽²⁾
- SON 14-pin Package with Thermal Pad
- ESD Performance Tested per JEDEC STD. – 2 KV HBM and 1 KV CDM
- Latch-Up Performance Exceeds 100 mA Per JESD 78, Class II
- **GPIO Enable Active High**
- (1) See Application Information section for CT value vs. rise time
- (2) This feature discharges output of the switch to GND through a 270Ω resistor, preventing the output from floating.

2 Applications

- Ultrabook™
- Notebooks/Netbooks

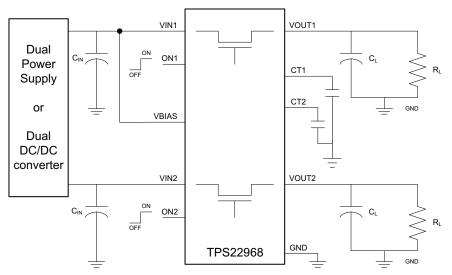
Tools &

Software

- Tablets
- Consumer electronics
- Set-top boxes
- Telecom systems

3 Description

The TPS22968 is a small, ultra-low R_{ON}, dual channel load switch with controlled turn on. The device contains two N-channel MOSFETs that can operate over an input voltage range of 0.8V to 5.5V and can support a maximum continuous current of 4A per channel. Each switch is independently controlled by an on/off input (ON1 and ON2), which is capable of interfacing directly with low-voltage control signals. In TPS22968, a 270 Ω on-chip load resistor is added for output quick discharge when switch is turned off.


The TPS22968 is available in a small, space-saving package (DPU) with integrated thermal pad allowing for high dissipation. power The device is characterized for operation over the free-air temperature range of -40 to 85 °C.

Device Information⁽¹⁾

PART NUMBER	PACKAGE	BODY SIZE (NOM)
TPS22968	WSON (14)	2.00 mm × 3.00 mm

(1) For all available packages, see the orderable addendum at the end of the datasheet.

Typical Application Schematic

Table of Contents

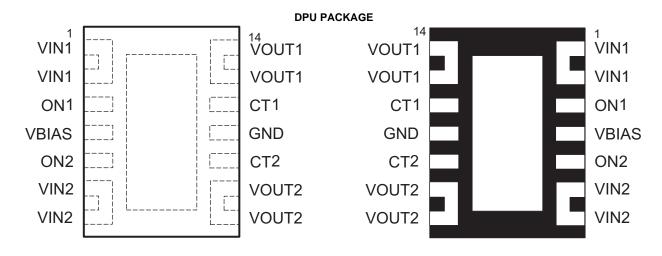
1	Feat	tures	1	
2	Арр	lications	1	
3	Des	cription	1	
4	Rev	ision History	2	2
5	Pin	Configuration and Functions	3	\$
6	Spe	cifications	4	ŀ
	6.1	Absolute Maximum Ratings	4	ł
	6.2	Handling Ratings	4	ł
	6.3	Recommended Operating Conditions	4	ł
	6.4	Thermal Information	5	;
	6.5	Electrical Characteristics (V _{BIAS} = 5.0 V)	5	,
	6.6	Electrical Characteristics (V _{BIAS} = 2.5 V)	6	;
	6.7	Switching Characteristics	7	•
	6.8	Typical Characteristics	8	5
	6.9	Typical AC Characteristics	11	
7	Para	ameter Measurement Information	13	;
8	Deta	ailed Description	14	ł

4 Revision History

Changes from Original (January 2014) to Revision A

	8.2	Functional Block Diagram	14
		Feature Description	
	8.4	Device Functional Modes	
9	App	lication and Implementation	17
	9.1	Application Information	17
		Typical Application	
10		ver Supply Recommendations	
11		out	
	-	Layout Guidelines	
		Layout Example	
12		ice and Documentation Support	
	12.1	Trademarks	23
	12.2	Electrostatic Discharge Caution	23
	12.3	Glossary	23
13	Med	hanical, Packaging, and Orderable	
-		rmation	23

8.1 Overview 14


Added Handling Rating table, Feature Description section, Device Functional Modes, Application and Implementation section, Power Supply Recommendations section, Layout section, Device and Documentation

www.ti.com

Page

5 Pin Configuration and Functions

Top View

Bottom View

TPS22968		1/O	DESCRIPTION					
DPU	PIN NAME	1/0	DESCRIPTION					
1, 2	VIN1	Ι	Switch #1 input. Bypass this input with a ceramic capacitor to GND.					
3	ON1	Ι	Active high switch #1 control input. Do not leave floating.					
4	VBIAS	I	Bias voltage. Power supply to the device. Recommended voltage range for this pin is 2.5V to 5.5V. See Application Information section.					
5	ON2	Ι	Active high switch #2 control input. Do not leave floating.					
6, 7	VIN2	Ι	Switch #2 input. Bypass this input with a ceramic capacitor to GND.					
8, 9	VOUT2	0	Switch #2 output.					
10	CT2	0	Switch #2 slew rate control. Can be left floating.					
11	GND	-	Ground					
12	CT1	0	Switch #1 slew rate control. Can be left floating.					
13, 14	VOUT1	0	Switch #2 output.					
15	Thermal Pad	-	Thermal pad (exposed center pad) to alleviate thermal stress. Tie to GND. See Application Information for layout guidelines.					

6 Specifications

6.1 Absolute Maximum Ratings

Over operating free-air temperature range (unless otherwise noted)⁽¹⁾

		MIN	MAX	UNIT ⁽²⁾
V _{IN1,2}	Input voltage range	-0.3	6	V
V _{BIAS}	Bias voltage range	-0.3	6	V
V _{OUT1,2}	Output voltage range	-0.3	6	V
V _{ON1,2}	ON voltage range	-0.3	6	V
I _{MAX}	Maximum continuous switch current per channel, T _A = 30 °C		4	А
I _{PLS}	Maximum pulsed switch current, pulse <300 µs, 2% duty cycle		6	А
T _A	Operating free-air temperature range ⁽³⁾	-40	85	°C
TJ	Maximum junction temperature		125	°C
T _{LEAD}	Maximum lead temperature (10-s soldering time)		300	°C

(1) Stresses beyond those listed under absolute maximum ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under recommended operating conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

(2) All voltage values are with respect to network ground terminal.

(3) In applications where high power dissipation and/or poor package thermal resistance is present, the maximum ambient temperature may have to be derated. Maximum ambient temperature $[T_{A(max)}]$ is dependent on the maximum operating junction temperature $[T_{J(max)}]$, the maximum power dissipation of the device in the application $[P_{D(max)}]$, and the junction-to-ambient thermal resistance of the part/package in the application (θ_{JA}) , as given by the following equation: $T_{A(max)} = T_{J(max)} - (\theta_{JA} \times P_{D(max)})$

6.2 Handling Ratings

			MIN	MAX	UNIT
T _{STG}	Storage temperature range		-65	150	°C
ESD	Electrostatic discharge protection	Human-Body Model (HBM), per ANSI/ESDA/JEDEC JS-001, all pins ⁽¹⁾	-2000	2000	Ň
		Charged-Device Model (CDM), per JEDEC specification JESD22-C101, all pins ⁽²⁾	-1000	1000	V

(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.

(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

6.3 Recommended Operating Conditions

			MIN	MAX	UNIT
V _{IN1,2}	Input voltage range		0.8	V_{BIAS}	V
V _{BIAS}	Bias voltage range		2.5	5.5	V
V _{ON1,2}	ON voltage range		0	5.5	V
V _{OUT1,2}	Output voltage range			V _{IN}	V
V _{IH, ON1,2}	High-level input voltage, ON1,2	$V_{BIAS} = 2.5 \text{ V} \text{ to } 5.5 \text{ V}$	1.2	5.5	V
V _{IL, ON1,2}	Low-level input voltage, ON1,2	$V_{BIAS} = 2.5 \text{ V} \text{ to } 5.5 \text{ V}$	0	0.5	V
C _{IN1,2}	Input Capacitor		1 ⁽¹⁾		μF

(1) Refer to the *Application Information* section.

6.4 Thermal Information

	THERMAL METRIC ⁽¹⁾ ⁽²⁾	TPS22968	UNIT
		DPU (14 PINS)	UNIT
θ_{JA}	Junction-to-ambient thermal resistance	62.5	
θ_{JCtop}	Junction-to-case (top) thermal resistance	70.2	
θ_{JB}	Junction-to-board thermal resistance	23.2	°C/W
Ψ_{JT}	Junction-to-top characterization parameter	2.5	°C/vv
Ψ_{JB}	Junction-to-board characterization parameter	23.2	
θ_{JCbot}	Junction-to-case (bottom) thermal resistance	9.0	

For more information about traditional and new thermal metrics, see the *IC Package Thermal Metrics* application report, SPRA953.
 For thermal estimates of this device based on PCB copper area, see the *TI PCB Thermal Calculator*.

6.5 Electrical Characteristics (V_{BIAS} = 5.0 V)

Unless otherwise noted, the specification in the following table applies over the operating ambient temperature $-40 \text{ °C} \le T_A \le 85 \text{ °C}$ (full) and $V_{\text{BIAS}} = 5.0 \text{ V}$. Typical values are for $T_A = 25 \text{ °C}$ (unless otherwise noted).

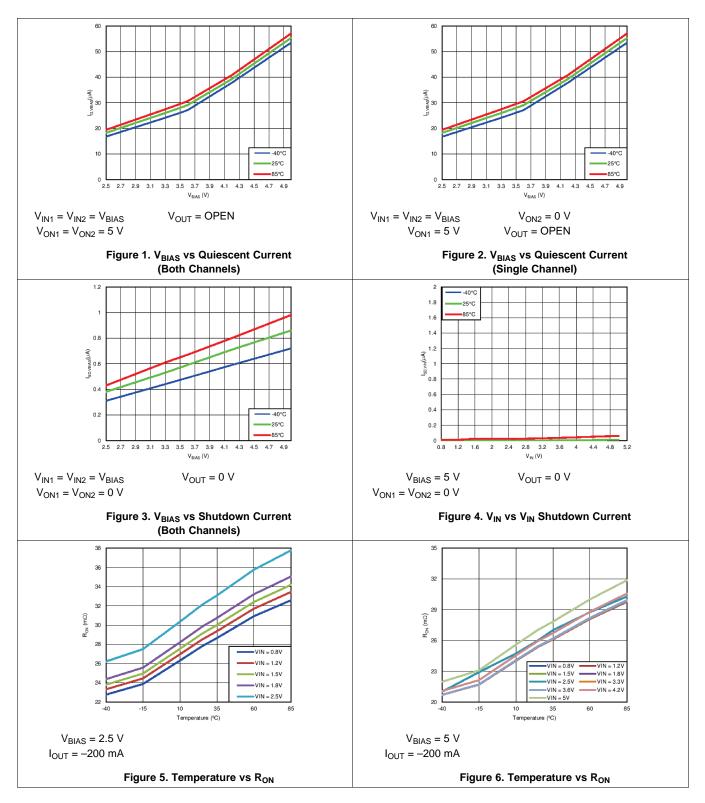
	PARAMETER	TEST CONDIT	IONS	T _A	MIN TYP	MAX	UNIT
POWER SU	UPPLIES AND CURRENTS						
	V _{BIAS} quiescent current (both channels)	$I_{OUT1} = I_{OUT2} = 0, V_{IN1,2} = V_{ON1,2} =$	$V_{BIAS} = 5.0 V$	Full	55	70	μA
I _{Q, VBIAS}	V _{BIAS} quiescent current (single channel)	$\begin{array}{c} I_{OUT1} = I_{OUT2} = 0, \ V_{ON2} = 0 \ V, \ V_{IN1} \\ V \end{array}$	$_{2} = V_{ON1} = V_{BIAS} = 5.0$	Full	55	68	μA
I _{SD, VBIAS}	V _{BIAS} shutdown current	V _{ON1,2} = 0 V, V _{OUT1,2} = 0 V		Full	1	2	μA
			V _{IN1,2} = 5.0 V		0.5	8	
			V _{IN1,2} = 3.3 V		0.1	3	
I _{SD, VIN1,2}	V _{IN1,2} shutdown current (per channel)	$V_{ON1,2} = 0 V, V_{OUT1,2} = 0 V$	V _{IN1,2} = 1.8 V	Full	0.07	2	μΑ
			$V_{IN1,2} = 1.2 V$		0.05	1	
			V _{IN1,2} = 0.8 V		0.04	1	
I _{ON1,2}	ON pin input leakage current	V _{ON} = 5.5V		Full		0.1	μΑ
RESISTAN	CE CHARACTERISTICS						
			V _{IN} = 5.0 V	25°C	27	36	mΩ mΩ
			V _{IN} = 3.0 V	Full		40	
			V _{IN} = 3.3 V	25°C	25	34	
			VIN = 3.5 V	Full		38	
			V _{IN} = 1.8 V	25°C	25	34	mΩ
R _{ON}	ON-state resistance	I _{OUT} = -200 mA, V _{BIAS} = 5.0 V	VIN = 1.0 V	Full		40 34 38 34 38	11152
NON	ON-State resistance	$v_{\text{BIAS}} = -200 \text{ mA}, v_{\text{BIAS}} = 3.0 \text{ v}$	V _{IN} = 1.5 V	25°C	25	34	mΩ
			V _{IN} = 1.5 V	Full		38	11152
			V _{IN} = 1.2 V	25°C	25	34	mΩ
			V _{IN} = 1.2 V	Full		38	11152
		V _{IN} = 0.8 V	V 0.8 V	25°C	25	34	mΩ
			Full		38	11152	
R _{PD}	Output pulldown resistance	$V_{IN} = 5.0 \text{ V}, V_{ON} = 0 \text{ V}, I_{OUT} = 10$	mA	Full	270	320	Ω

6.6 Electrical Characteristics (V_{BIAS} = 2.5 V)

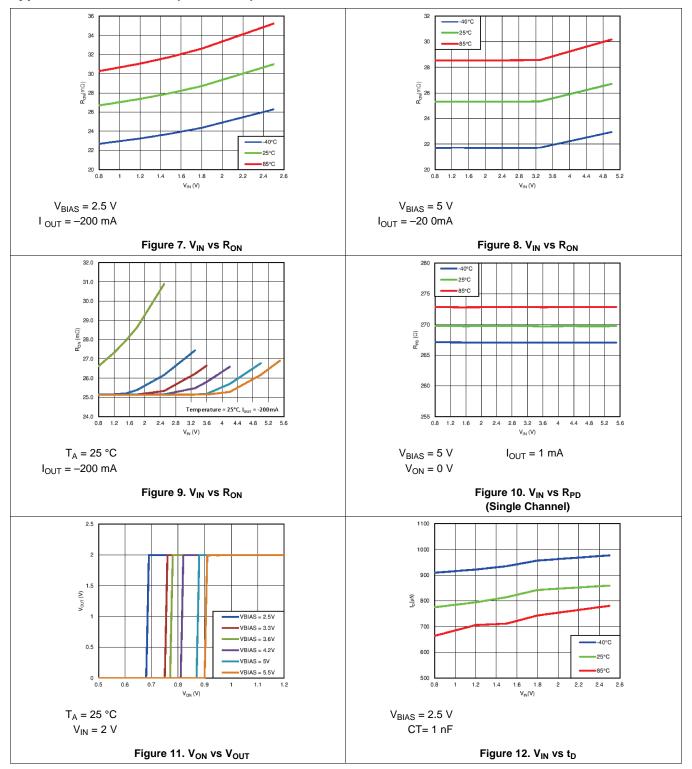
Unless otherwise noted, the specification in the following table applies over the operating ambient temperature $-40 \text{ °C} \le T_A \le 85 \text{ °C}$ (full) and $V_{BIAS} = 2.5 \text{ V}$. Typical values are for $T_A = 25 \text{ °C}$ (unless otherwise noted).

	PARAMETER	TEST CONDIT	IONS	TA	MIN TYP	MAX	UNIT
POWER SU	JPPLIES AND CURRENTS	1					
	V _{BIAS} quiescent current (both channels)	$I_{OUT1} = I_{OUT2} = 0, V_{IN1,2} = V_{ON1,2} =$	V _{BIAS} = 2.5 V	Full	18	27	μA
I _{Q, VBIAS}	V _{BIAS} quiescent current (single channel)	$\begin{vmatrix} I_{OUT1} = I_{OUT2} = 0, V_{ON2} = 0 V, V_{IN1} \\ V \end{vmatrix}$	$_{,2} = V_{ON1} = V_{BIAS} = 2.5$	Full	18	27 27 2 2 2 1 1 1 0.1 39 44 36 41 36 41 36 41 35 39	μA
I _{SD, VBIAS}	V _{BIAS} shutdown current	V _{ON1,2} = 0 V, V _{OUT1,2} = 0 V		Full	0.5	2	μA
			V _{IN1,2} = 2.5 V		0.1	2	
I _{SD. VIN1.2}	V _{IN1.2} shutdown current (per channel)	V _{ON1,2} = 0 V, V _{OUT1,2} = 0 V	V _{IN1,2} = 1.8 V	- Full -	0.07	2	μA
SD, VIN1,2	V _{IN1,2} shutdown current (per channel)		V _{IN1,2} = 1.2 V	Full	0.05	1	μΑ
			V _{IN1,2} = 0.8 V		0.04	1	
I _{ON1,2}	ON pin input leakage current	V _{ON} = 5.5 V		Full		0.1	μA
RESISTAN	CE CHARACTERISTICS						
			V _{IN} = 2.5 V	25°C	30	39	mΩ mΩ
			VIN - 2.5 V	Full		44	
			V _{IN} = 1.8 V	25°C	28	36	
			v _{IN} = 1.0 v	Full		41	11122
Р	ON-state resistance	1 200 mA V 2.5 V		25°C	28	36	mΩ
R _{ON}	ON-state resistance	$I_{OUT} = -200 \text{ mA}, V_{BIAS} = 2.5 \text{ V}$	V _{IN} = 1.5 V	Full		41	11175
			V - 1 2 V	25°C	27	36	6
			V _{IN} = 1.2 V	Full		41	mΩ
		V _{IN} = 0.8 V	V 0.8.V	25°C	26	35	_
			Full		39	mΩ	
R _{PD}	Output pulldown resistance	V _{IN} = 2.5 V, V _{ON} = 0 V, I _{OUT} = 10	mA	Full	270	320	Ω

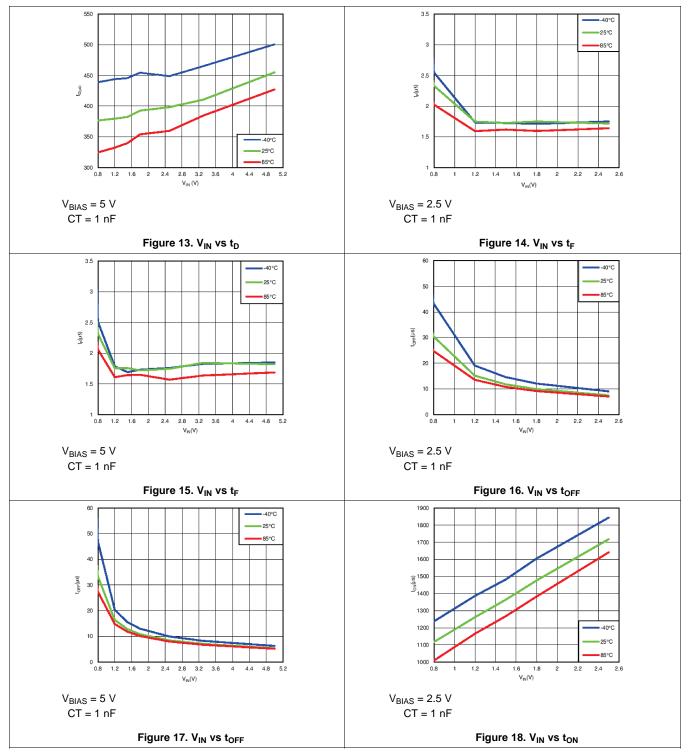
6.7 Switching Characteristics


	PARAMETER	TEST CONDITION	MIN TYP	MAX	UNIT
V _{IN} =	V _{ON} = V _{BIAS} = 5 V, T _A = 25 °C (unless o	therwise noted)			
t _{ON}	Turn-on time	$R_L = 10 \ \Omega, \ C_L = 0.1 \ \mu F, \ CT = 1000 \ pF$	1128		
t _{OFF}	Turn-off time	$R_L = 10 \ \Omega, \ C_L = 0.1 \ \mu F, \ CT = 1000 \ pF$	5		
t _R	V _{OUT} rise time	R_L = 10 Ω, C_L = 0.1 μF, CT = 1000 pF	1387		μs
t _F	V _{OUT} fall time	$R_L = 10 \ \Omega, \ C_L = 0.1 \ \mu F, \ CT = 1000 \ pF$	2		
t _D	ON delay time	$R_L = 10 \ \Omega, \ C_L = 0.1 \ \mu F, \ CT = 1000 \ pF$	455		
V _{IN} =	0.8 V, V _{ON} = V _{BIAS} = 5 V, T _A = 25 °C (ur	nless otherwise noted)			
t _{ON}	Turn-on time	$R_L = 10 \ \Omega, \ C_L = 0.1 \ \mu F, \ CT = 1000 \ pF$	508		
t _{OFF}	Turn-off time	$R_L = 10 \ \Omega, \ C_L = 0.1 \ \mu F, \ CT = 1000 \ pF$	33		
t _R	V _{OUT} rise time	$R_L = 10 \ \Omega, \ C_L = 0.1 \ \mu F, \ CT = 1000 \ pF$	273		μs
t _F	V _{OUT} fall time	$R_L = 10 \ \Omega, \ C_L = 0.1 \ \mu F, \ CT = 1000 \ pF$	2		
t _D	ON delay time	$R_L = 10 \ \Omega, \ C_L = 0.1 \ \mu F, \ CT = 1000 \ pF$	377		
V _{IN} =	$2.5 \text{ V}, \text{ V}_{ON} = 5 \text{ V}, \text{ V}_{BIAS} = 2.5 \text{ V}, \text{ T}_{A} = 25$	⁰C (unless otherwise noted)			
t _{ON}	Turn-on time	$R_L = 10 \ \Omega, \ C_L = 0.1 \ \mu F, \ CT = 1000 \ pF$	1718		
t _{OFF}	Turn-off time	$R_L = 10 \ \Omega, \ C_L = 0.1 \ \mu F, \ CT = 1000 \ pF$	7		
t _R	V _{OUT} rise time	$R_L = 10 \ \Omega, \ C_L = 0.1 \ \mu F, \ CT = 1000 \ pF$	1701		μs
t _F	V _{OUT} fall time	$R_L = 10 \ \Omega, \ C_L = 0.1 \ \mu F, \ CT = 1000 \ pF$	2		
t _D	ON delay time	$R_L = 10 \ \Omega, \ C_L = 0.1 \ \mu F, \ CT = 1000 \ pF$	859		
V _{IN} =	0.8 V, V _{ON} = 5 V, V _{BIAS} = 2.5 V, T _A = 25	°C (unless otherwise noted)			
t _{ON}	Turn-on time	$R_L = 10 \Omega, C_L = 0.1 \mu F, CT = 1000 pF$	1117		
t _{OFF}	Turn-off time	$R_L = 10 \Omega, C_L = 0.1 \mu F, CT = 1000 pF$	30		
t _R	V _{OUT} rise time	R_L = 10 Ω, C_L = 0.1 μF, CT = 1000 pF	651		μs
t _F	V _{OUT} fall time	$R_L = 10 \ \Omega, \ C_L = 0.1 \ \mu F, \ CT = 1000 \ pF$	2		
t _D	ON delay time	R_L = 10 Ω, C_L = 0.1 μF, CT = 1000 pF	775		

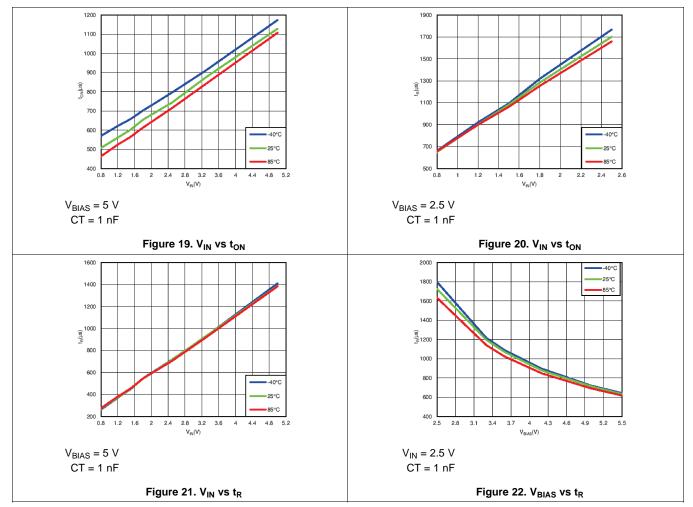
TPS22968 SLVSCG3A – JANUARY 2014–REVISED JULY 2014


www.ti.com

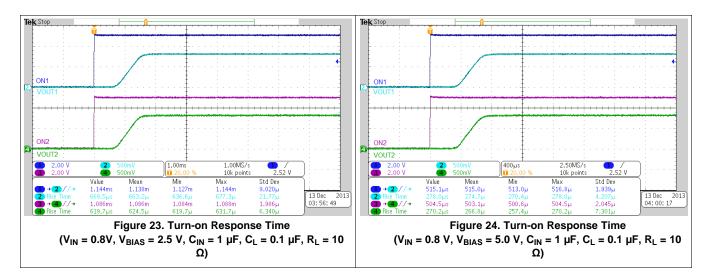
6.8 Typical Characteristics



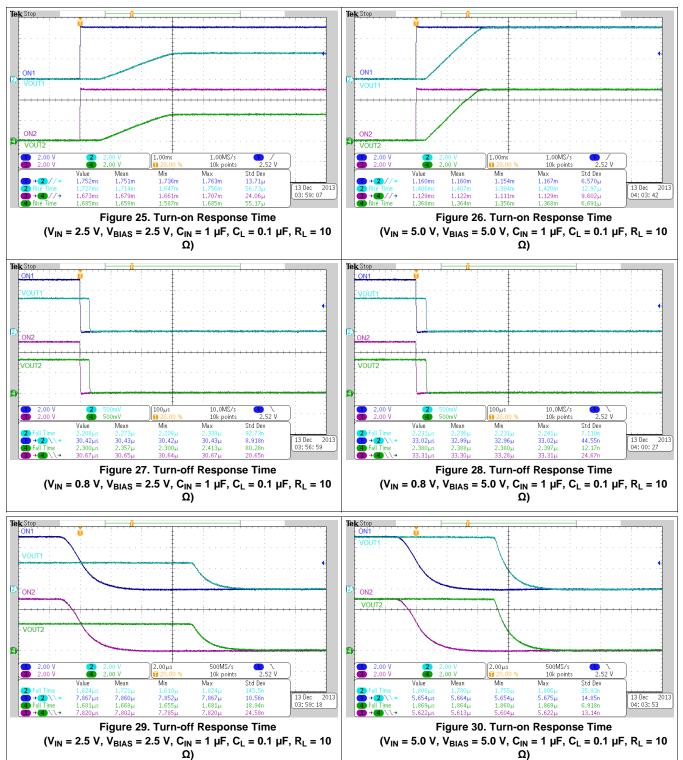
Typical Characteristics (continued)



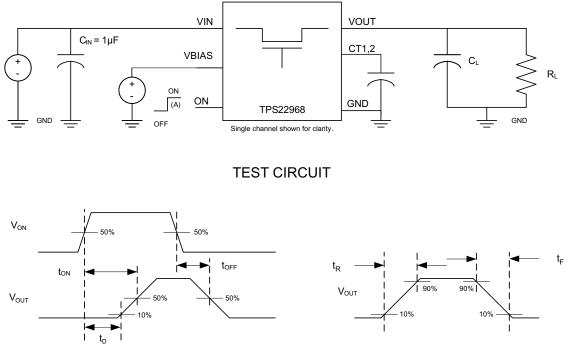
Typical Characteristics (continued)



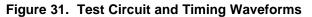
Typical Characteristics (continued)



6.9 Typical AC Characteristics



Typical AC Characteristics (continued)



7 Parameter Measurement Information

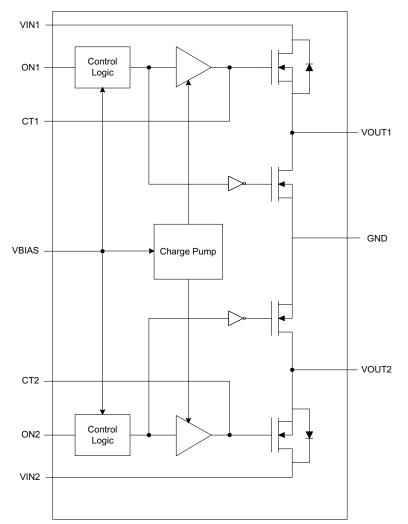
TIMING WAVEFORMS

(A) Rise and fall times of the control signal is 100ns.

TEXAS INSTRUMENTS

8 Detailed Description

8.1 Overview


The device is a 5.5-V, 4-A, dual channel ultra-low RON load switch with controlled turn on. The device contains two N-channel MOSFETs. Each channel can support a maximum continuous current of 4A. Each channel is controlled by an on/off GPIO compatible input. The ON pin must be connected and cannot be left floating. The device is designed to control the turn-on rate and therefore the inrush current. By controlling the inrush current, power supply sag can be reduced during turn-on. The slew rate for each channel is set by connecting a capacitor to GND on the CT pins.

The slew rate is proportional to the capacitor on the CT pin. Refer to the *Adjustable Rise Time* section to determine the correct CT value for a desired rise time.

The internal circuitry is powered by the VBIAS pin, which supports voltages from 2.5 V to 5.5 V. This circuitry includes the charge pump, quick output discharge (QOD), and control logic. For these internal blocks to function correctly, a voltage between 2.5V and 5.5V must be supplied to VBIAS.

When a voltage is supplied to VBIAS and the ON1, 2 pin goes low, the QOD turns on. This connects VOUT1, 2 to GND via an on-chip resistor. The typical pull-down resistance (R_{PD}) is 270 Ω .

8.2 Functional Block Diagram

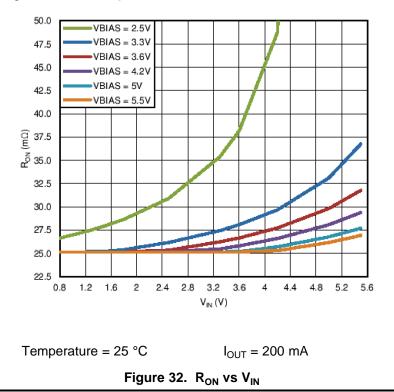
8.3 Feature Description

The ON pins control the state of the switch. Asserting ON high enables the switch. ON is active high and has a low threshold, making it capable of interfacing with low-voltage signals. The ON pin is compatible with standard GPIO logic threshold. It can be used with any microcontroller with 1.2-V or higher GPIO voltage. This pin cannot be left floating and must be tied either high or low for proper functionality.

8.3.2 Input Capacitor (Optional)

To limit the voltage drop on the input supply caused by transient in-rush currents when the switch turns on into a discharged load capacitor or short-circuit, a capacitor needs to be placed between VIN and GND. A 1- μ F ceramic capacitor, C_{IN}, placed close to the pins, is usually sufficient. Higher values of C_{IN} can be used to further reduce the voltage drop during high-current application. When switching heavy loads, it is recommended to have an input capacitor about 10 times higher than the output capacitor to avoid excessive voltage drop.

8.3.3 Output Capacitor (Optional)


Due to the integrated body diode in the NMOS switch, a C_{IN} greater than C_L is highly recommended. A C_L greater than C_{IN} can cause the voltage on VOUT to exceed VIN to exceed VIN when the system supply is removed. This could result in current flow through the body diode from VOUT to VIN. A C_{IN} to C_L ratio of 10 to 1 is recommended for minimizing V_{IN} dip caused by inrush currents during startup.

8.3.4 Quick Output Discharge

The TPS22968 includes a Quick Output Discharge (QOD) feature. When the switch is disabled, a discharge resistor is connected between VOUT and GND. This resistor has a typical value of $270-\Omega$ and prevents the output from floating while the switch is disabled.

8.3.5 VIN and VBIAS Voltage Range

For optimal R_{ON} performance, make sure $V_{IN} \le V_{BIAS}$. The device will still be functional if $V_{IN} > V_{BIAS}$ but it will exhibit R_{ON} greater than what is listed in the *Electrical Characteristics* ($V_{BIAS} = 5.0 V$) table. See Figure 32 for an example of a typical device. Notice the increasing R_{ON} as V_{IN} exceeds V_{BIAS} voltage. Be sure to never exceed the maximum voltage rating for V_{IN} and V_{BIAS} .

Feature Description (continued)

8.3.6 Adjustable Rise Time

A capacitor to GND on the CT pins sets the slew rate for each channel. The capacitor to GND on the CT pins should be rated for 25 V and above. An approximate formula for the relationship between CT and slew rate with $V_{BIAS} = 5$ V is:

SR = 0.32 × CT + 13.7

where

- SR = slew rate (in μ s/V)
- CT = the capacitance value on the CT pin (in pF)
- The units for the constant 13.7 is in μ s/V.

(1)

Rise time can be calculated by multiplying the input voltage by the slew rate. The table below contains rise time values measured on a typical device.

CTx (pF)	RISE TIME (μ s) 10% - 90%, C _L = 0.1 μ F, C _{IN} = 1 μ F, R _L = 10 Ω , V _{BIAS} = 5 V TYPICAL VALUES at 25°C with a 25V X7R 10% CERAMIC CAPACITOR on CT											
	VIN = 5 V	VIN = 3.3 V	VIN = 2.5 V	VIN = 1.8 V	VIN = 1.5 V	VIN = 1.2V	VIN = 0.8 V					
0	65	48	41	35	31	29	24					
220	378	253	197	152	131	111	83					
470	704	474	363	272	234	192	140					
1000	1387	931	717	544	449	372	273					
2200	3062	2021	1536	1173	991	825	595					
4700	7091	4643	3547	2643	2213	1828	1349					
10000	14781	9856	7330	5507	4600	3841	2805					

Table 1. Rise Time Table

8.4 Device Functional Modes

Table 2. Functional Table

ONx	VINx to VOUTx	VOUTx to GND
L	Off	On
Н	On	Off

9 Application and Implementation

9.1 Application Information

This section will highlight some of the design considerations when implementing this device in various applications. A PSPICE model for this device is also available in the product page of this device on www.ti.com for further aid.

9.1.1 Parallel Configuration

To increase the current capabilities and lower the RON by approximately 50%, both channels can be placed in parallel as shown in Figure 33 (Parallel Configuration). With this configuration, the CT1 and CT2 pins can be tied together to use one capacitor, CT, as shown in Figure 33. With a single CT capacitor, the rise time will be half of the typical rise-time value. Refer to the Adjustable Rise Time table for typical timing values.

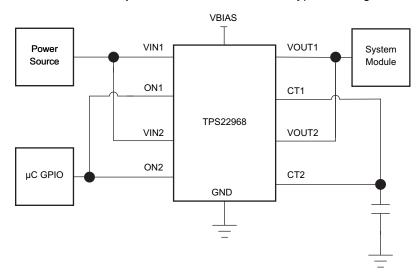


Figure 33. Parallel Configuration

9.1.2 Standby Power Reduction

Any end equipment that is being powered from the battery has a need to reduce current consumption in order to keep the battery charged for a longer time. TPS22968 helps to accomplish this by turning off the supply to the modules that are in standby state and hence significantly reduces the leakage current overhead of the standby modules.

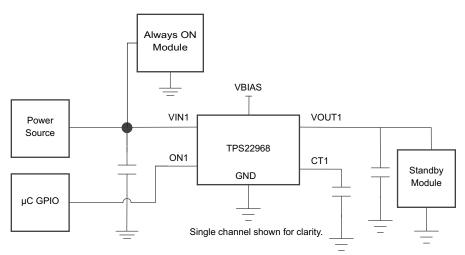


Figure 34. Standby Power Reduction

TEXAS INSTRUMENTS

www.ti.com

Application Information (continued)

9.1.3 Power Supply Sequencing Without a GPIO Input

In many end equipments, there is a need to power up various modules in a pre-determined manner. TPS22968 can solve the problem of power sequencing without adding any complexity to the overall system.

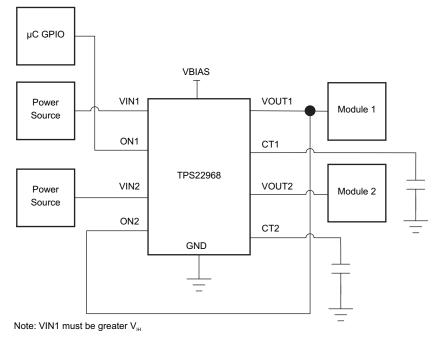


Figure 35. Power Sequencing without a GPIO Input

9.1.4 Reverse Current Blocking

In certain applications, it may be desirable to have reverse current blocking. Reverse current blocking prevents current from flowing from the output to the input of the load switch when the device is disabled. With the following configuration, the TPS22968 can be converted into a single channel switch with reverse current blocking. In this configuration, VIN1 or VIN2 can be used as the input and VIN2 or VIN1 will be the output.

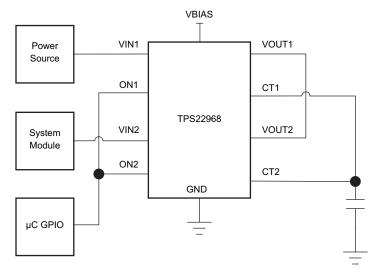


Figure 36. Reverse Current Blocking

9.2 Typical Application

This application demonstrates how the TPS22968 can be used to power downstream modules with large capacitances. The example below is powering a 100-µF capacitive output load.

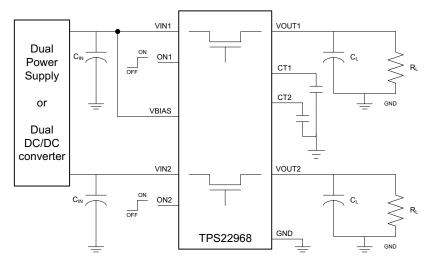


Figure 37. Typical Application Schematic for Powering a Downstream Module

9.2.1 Design Requirements

For this design example, use the following as the input parameters.

Table 5. Design Farancers								
DESIGN PARAMETER	EXAMPLE VALUE							
V _{IN}	3.3 V							
V _{BIAS}	5.0 V							
Load current	4 A							
Output capacitance (CL)	22 µF							
Allowable inrush current on VOUT	0.33 A							

Table 3. Design Parameters

9.2.2 Detailed Design Procedure

To begin the design process, the designer needs to know the following:

- V_{IN} voltage
- V_{BIAS} voltage
- Load current
- Allowable inrush current on VOUT due to C_L capacitor

9.2.2.1 VIN to VOUT Voltage Drop

The VIN to VOUT voltage drop in the device is determined by the R_{ON} of the device and the load current. The R_{ON} of the device depends upon the V_{IN} and V_{BIAS} conditions of the device. Refer to the R_{ON} specification of the device in the Electrical Characteristics table of this datasheet. Once the R_{ON} of the device is determined based upon the V_{IN} and V_{BIAS} conditions, use Equation 2 to calculate the VIN to VOUT voltage drop:

$$\Delta V = I_{LOAD} \times R_{ON}$$

(2)

- where
- ΔV = voltage drop from VIN to VOUT
- I_{LOAD} = load current
- R_{ON} = On-resistance of the device for a specific V_{IN} and V_{BIAS} combination

An appropriate I_{LOAD} must be chosen such that the I_{MAX} specification of the device is not violated.

9.2.2.2 Inrush Current

To determine how much inrush current will be caused by the C_{L} capacitor, use Equation 3:

 $I_{INRUSH} = C_L \times \frac{dV_{OUT}}{dt}$

where

- I_{INRUSH} = amount of inrush caused by C_L
- C_1 = capacitance on VOUT
- dt = time it takes for change in V_{OUT} during the ramp up of VOUT when the device is enabled
- dV_{OUT} = change in V_{OUT} during the ramp up of VOUT when the device is enabled

The device offers adjustable rise time for VOUT. This feature allows the user to control the inrush current during turn-on via the CTx pins. The appropriate rise time can be calculated using the design requirements and the inrush current equation from above.

$$330 \text{ mA} = 22 \ \mu\text{F} \times 3.3 \ \text{V} \ / \ \text{dt}$$
 (4)
 $\text{dt} = 220 \ \mu\text{s}$ (5)

To ensure an inrush current of less than 330 mA, choose a CT based on Table 1 or Equation 1 value that will yield a rise time of more than 220 µs. See the oscilloscope captures in the Application Curves section for an example of how the CT capacitor can be used to reduce inrush current. See Table 1 for correlation between rise times and CT values.

An appropriate C_L value should be placed on VOUT such that the I_{MAX} and I_{PLS} specificiations of the device are not violated.

9.2.2.3 Thermal Considerations

The maximum IC junction temperature should be restricted to 125 °C under normal operating conditions. To calculate the maximum allowable dissipation, P_{D(max)} for a given output current and ambient temperature, use Equation 6.

$$\mathsf{P}_{\mathsf{D}(\mathsf{MAX})} = \frac{\mathsf{T}_{\mathsf{J}(\mathsf{MAX})} - \mathsf{T}_{\mathsf{A}}}{\mathsf{\theta}_{\mathsf{J}\mathsf{A}}} \tag{6}$$

where

- $P_{D(max)}$ = maximum allowable power dissipation
- $T_{J(max)}$ = maximum allowable junction temperature (125°C for the TPS22962)
- T_A = ambient temperature of the device
- θ_{JA} = junction to air thermal impedance. See Thermal Information section. This parameter is highly dependent upon board layout.

Below are two examples to determine how to use this information correctly:

For V_{BIAS} = 5 V, V_{IN} = 5 V, the maximum ambient temperature with a 4A load through each channel can be determined by using the following calculation:

$$P_{D} = I^{2} \times R \times 2$$
 (multipled by 2 since there are two channels)

$$2 \times l^2 \times R = \frac{T_{J(MAX)} - T_A}{\theta_{JA}}$$
(8)

$$T_{A} = T_{J(MAX)} - \theta_{JA} \times 2 \times l^{2} \times R$$

$$T_{A} = 125^{\circ}C - 62.5 \frac{^{\circ}C}{W} \times 2 \times (4A)^{2} \times 27m\Omega = 71^{\circ}C$$

(3)

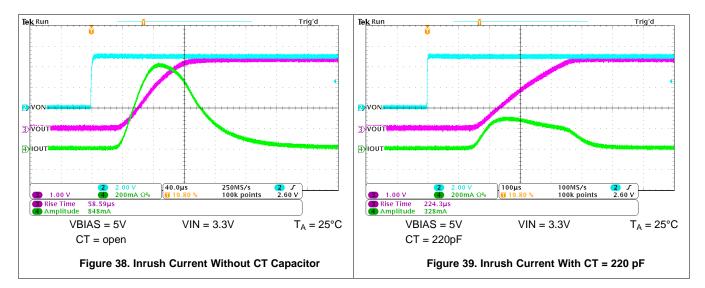
(7)

;)

(9)

(10)

For $V_{BIAS} = 5 \text{ V}$, $V_{IN} = 5 \text{ V}$, the maximum continuous current for an ambient temperature of 85°C with the same current flowing through each channel can be determined by using the following calculation:

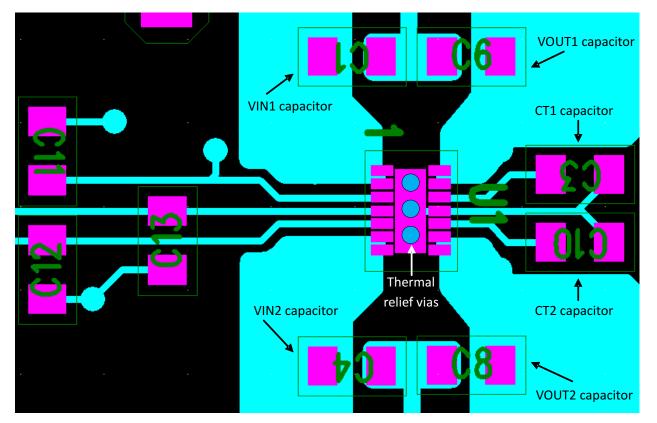

$$2 \times l^2 \times R = \frac{T_{J(MAX)} - T_A}{\theta_{JA}}$$
(11)

$$I = \sqrt{\frac{T_{J(MAX)} - T_A}{2 \times R \times \theta_{JA}}}$$
(12)

$$I = \sqrt{\frac{125^{\circ}C \quad 85^{\circ}C}{2 \times 27m\Omega \times 62.5 \frac{^{\circ}C}{W}}} = 3.44A \text{ per channel}$$
(13)

9.2.3 Application Curves

The twp scope captures below illustrate the usage of a CT capacitor in conjunction with the device. A higher CT value will result in a slower rise and a lower inrush current.


10 Power Supply Recommendations

The device is designed to operate from a V_{BIAS} range of 2.5 V to 5.5 V and V_{IN} range of 0.8 V to 5.5 V. This supply must be well regulated and placed as close to the device pin as possible with the recommended 1µF bypass capacitor. If the supply is located more than a few inches from the device pins, additional bulk capacitance may be required in addition to the ceramic bypass capacitors. If additional bulk capacitance is required, an electrolytic, tantalum, or ceramic capacitor of 10 µF may be sufficient.

11 Layout

11.1 Layout Guidelines

- VIN and VOUT traces should be as short and wide as possible to accommodate for high current.
- Use vias under the exposed thermal pad for thermal relief for high current operation.
- VINx pins should be bypassed to ground with low ESR ceramic bypass capacitors. The typical recommended bypass capacitance is 1-µF ceramic with X5R or X7R dielectric. This capacitor should be placed as close to the device pins as possible.
- VOUTx pins should be bypassed to ground with low ESR ceramic bypass capacitors. The typical
 recommended bypass capacitance is one-tenth of the VINx bypass capacitor of X5R or X7R dielectric rating.
 This capacitor should be placed as close to the device pins as possible.
- The VBIAS pin should be bypassed to ground with low ESR ceramic bypass capacitors. The typical recommended bypass capacitance is 0.1-μF ceramic with X5R or X7R dielectric.
- The CTx capacitors should be placed as close to the device pins as possible. The typical recommended CTx capacitance is a capacitor of X5R or X7R dielectric rating with a rating of 25V or higher.

11.2 Layout Example

12 Device and Documentation Support

12.1 Trademarks

Ultrabook is a trademark of Texas Instruments.

12.2 Electrostatic Discharge Caution

These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates.

12.3 Glossary

SLYZ022 — TI Glossary.

This glossary lists and explains terms, acronyms, and definitions.

13 Mechanical, Packaging, and Orderable Information

The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation.

1-Jul-2014

PACKAGING INFORMATION

Orderable Device	Status (1)	Package Type	Package Drawing	Pins	Package Qty	Eco Plan (2)	Lead/Ball Finish (6)	MSL Peak Temp	Op Temp (°C)	Device Marking (4/5)	Samples
TPS22968DPUR	ACTIVE	WSON	DPU	14	3000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR	-40 to 85	RB968	Samples
TPS22968DPUT	ACTIVE	WSON	DPU	14	250	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR	-40 to 85	RB968	Samples

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

TBD: The Pb-Free/Green conversion plan has not been defined.

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes. **Pb-Free (RoHS Exempt):** This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between

the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

⁽³⁾ MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

⁽⁴⁾ There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.

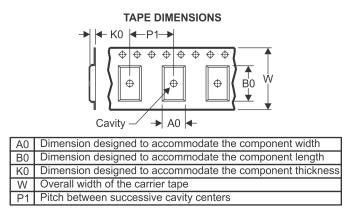
⁽⁵⁾ Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.

⁽⁶⁾ Lead/Ball Finish - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width.

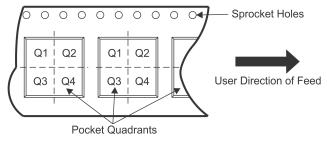
Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

1-Jul-2014

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

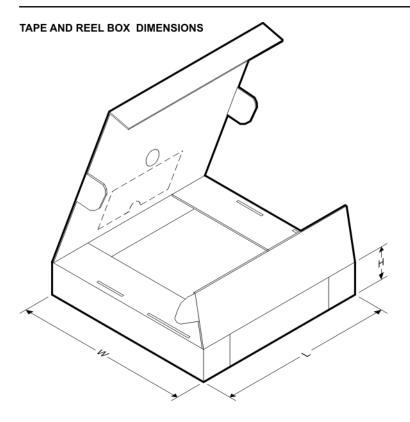

PACKAGE MATERIALS INFORMATION

www.ti.com


Texas Instruments

TAPE AND REEL INFORMATION

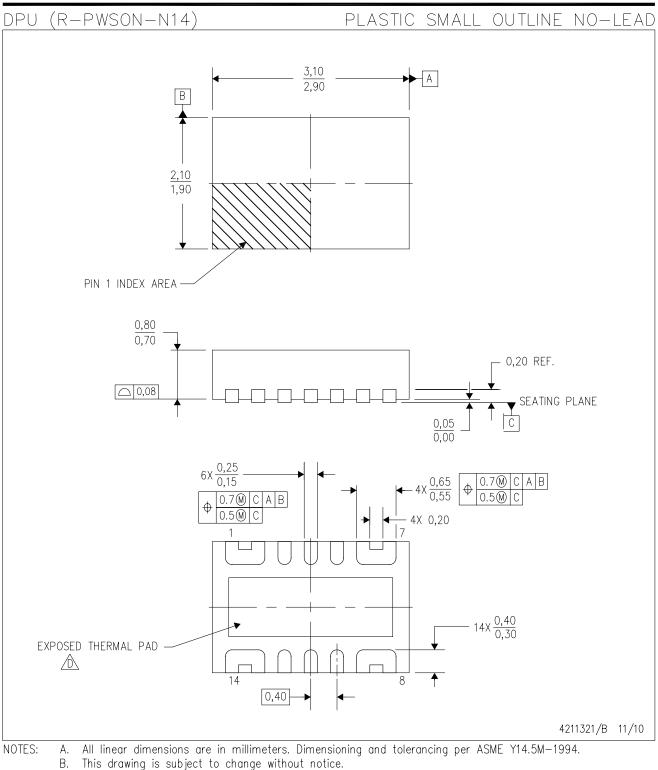
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE


*All dimensions are nominal												
Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
TPS22968DPUR	WSON	DPU	14	3000	180.0	8.4	2.25	3.25	1.05	4.0	8.0	Q1
TPS22968DPUT	WSON	DPU	14	250	180.0	8.4	2.25	3.25	1.05	4.0	8.0	Q1

TEXAS INSTRUMENTS

www.ti.com

PACKAGE MATERIALS INFORMATION


1-Jul-2014

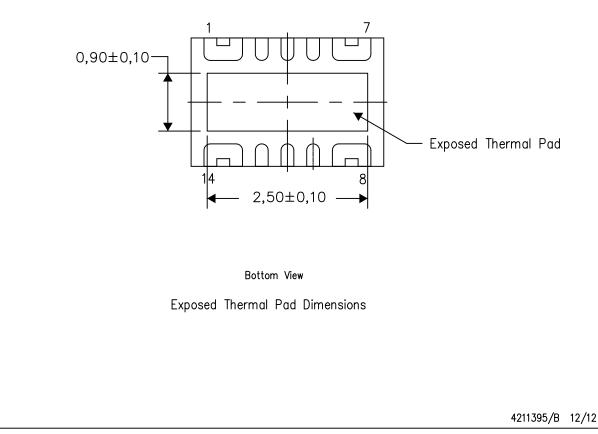
*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
TPS22968DPUR	WSON	DPU	14	3000	210.0	185.0	35.0
TPS22968DPUT	WSON	DPU	14	250	210.0	185.0	35.0

MECHANICAL DATA

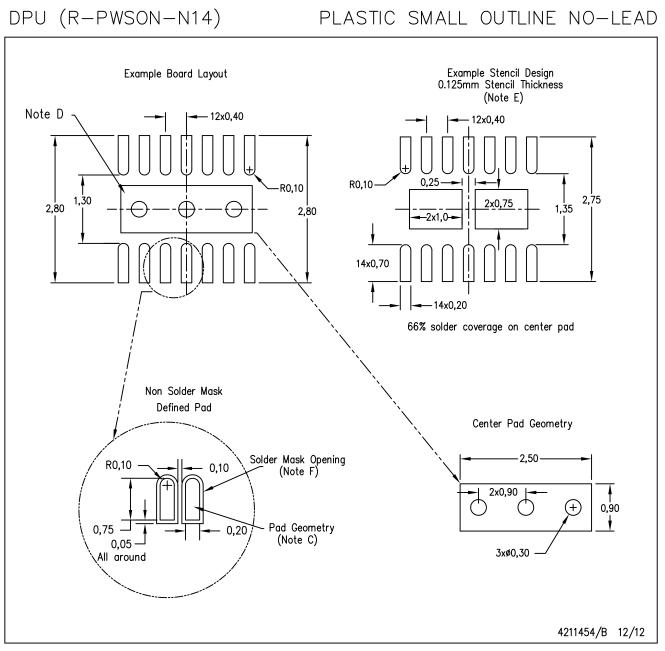
- Ç. Small Outline No-Lead (SON) package configuration.
- \triangle The package thermal pad must be soldered to the board for thermal and mechanical performance.
 - See the Product Data Sheet for details regarding the exposed thermal pad dimensions.
- E. This package is Pb-free.

DPU (R-PWSON-N14)


PLASTIC SMALL OUTLINE NO-LEAD

THERMAL INFORMATION

This package incorporates an exposed thermal pad that is designed to be attached directly to an external heatsink. The thermal pad must be soldered directly to the printed circuit board (PCB). After soldering, the PCB can be used as a heatsink. In addition, through the use of thermal vias, the thermal pad can be attached directly to the appropriate copper plane shown in the electrical schematic for the device, or alternatively, can be attached to a special heatsink structure designed into the PCB. This design optimizes the heat transfer from the integrated circuit (IC).


For information on the Quad Flatpack No-Lead (QFN) package and its advantages, refer to Application Report, QFN/SON PCB Attachment, Texas Instruments Literature No. SLUA271. This document is available at www.ti.com.

The exposed thermal pad dimensions for this package are shown in the following illustration.

NOTE: All linear dimensions are in millimeters

- NOTES: A. All linear dimensions are in millimeters.
 - B. This drawing is subject to change without notice.
 - C. Publication IPC-7351 is recommended for alternate designs.
 - D. This package is designed to be soldered to a thermal pad on the board. Refer to Application Note, QFN/SON PCB Attachment, Texas Instruments Literature No. SLUA271, and also the Product Data Sheets for specific thermal information, via requirements, and recommended board layout. These documents are available at www.ti.com <http://www.ti.com>.
 - E. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC 7525 for stencil design considerations.
 - F. Customers should contact their board fabrication site for minimum solder mask web tolerances between signal pads.

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as "components") are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI's terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers' products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers' products and applications, Buyers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI's goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use.

Only those TI components which TI has specifically designated as military grade or "enhanced plastic" are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have *not* been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

Products		Applications	
Audio	www.ti.com/audio	Automotive and Transportation	www.ti.com/automotive
Amplifiers	amplifier.ti.com	Communications and Telecom	www.ti.com/communications
Data Converters	dataconverter.ti.com	Computers and Peripherals	www.ti.com/computers
DLP® Products	www.dlp.com	Consumer Electronics	www.ti.com/consumer-apps
DSP	dsp.ti.com	Energy and Lighting	www.ti.com/energy
Clocks and Timers	www.ti.com/clocks	Industrial	www.ti.com/industrial
Interface	interface.ti.com	Medical	www.ti.com/medical
Logic	logic.ti.com	Security	www.ti.com/security
Power Mgmt	power.ti.com	Space, Avionics and Defense	www.ti.com/space-avionics-defense
Microcontrollers	microcontroller.ti.com	Video and Imaging	www.ti.com/video
RFID	www.ti-rfid.com		
OMAP Applications Processors	www.ti.com/omap	TI E2E Community	e2e.ti.com
Wireless Connectivity	www.ti.com/wirelessconne	ectivity	

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2014, Texas Instruments Incorporated