AFE4400 Integrated Analog Front-End for Heart Rate Monitors and Low-Cost Pulse Oximeters

1 Features

- Fully-Integrated Analog Front-End for Pulse Oximeter Applications:
- Flexible Pulse Sequencing and Timing Control
- Transmit:
- Integrated LED Driver (H-Bridge, Push, or Pull)
- Dynamic Range: 95 dB
- LED Current:
- Programmable to 50 mA with 8-Bit Current Resolution
- Low Power:
- $100 \mu \mathrm{~A}+$ Average LED Current
- Programmable LED On-Time
- Independent LED2 and LED1 Current Reference
- Receive Channel with High Dynamic Range:
- 13 Noise-Free Bits
- Low Power: < $670 \mu \mathrm{~A}$ at 3.3-V Supply
- Integrated Digital Ambient Estimation and Subtraction
- Flexible Receive Sample Time
- Flexible Transimpedance Amplifier with Programmable LED Settings
- Integrated Fault Diagnostics:
- Photodiode and LED Open and Short Detection
- Cable On and Off Detection
- Supplies:
- $R x=2.0 \mathrm{~V}$ to 3.6 V
- $\mathrm{Tx}=3.0 \mathrm{~V}$ to 5.25 V
- Package: Compact VQFN-40 ($6 \mathrm{~mm} \times 6 \mathrm{~mm}$)
- Specified Temperature Range: $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$

2 Applications

- Low-Cost Medical Pulse Oximeter Applications
- Optical HRM
- Industrial Photometry Applications

3 Description

The AFE4400 is a fully-integrated analog front-end (AFE) ideally suited for pulse oximeter applications. The device consists of a low-noise receiver channel with an integrated analog-to-digital converter (ADC), an LED transmit section, and diagnostics for sensor and LED fault detection. The device is a very configurable timing controller. This flexibility enables the user to have complete control of the device timing characteristics. To ease clocking requirements and provide a low-jitter clock to the AFE4400, an oscillator is also integrated that functions from an external crystal. The device communicates to an external microcontroller or host processor using an $\mathrm{SPI}^{\text {TM }}$ interface.
The device is a complete AFE solution packaged in a single, compact VQFN-40 package ($6 \mathrm{~mm} \times 6 \mathrm{~mm}$) and is specified over the operating temperature range of $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$.

Device Information ${ }^{(1)}$

PART NUMBER	PACKAGE	BODY SIZE (NOM)
AFE4400	VQFN (40)	$6.00 \mathrm{~mm} \times 6.00 \mathrm{~mm}$

(1) For all available packages, see the orderable addendum at the end of the datasheet.

Table of Contents

1 Features 1
2 Applications 1
3 Description 1
4 Revision History 2
5 Device Family Options 5
6 Pin Configuration and Functions 5
7 Specifications 7
7.1 Absolute Maximum Ratings 7
7.2 Handling Ratings 7
7.3 Recommended Operating Conditions 8
7.4 Thermal Information 8
7.5 Electrical Characteristics 9
7.6 Timing Requirements 13
7.7 Timing Requirements: Supply Ramp and Power- Down. 14
7.8 Typical Characteristics. 16
8 Detailed Description 21
8.1 Overview 21
8.2 Functional Block Diagram 21
8.3 Feature Description 22
8.4 Device Functional Modes 38
8.5 Programming. 44
8.6 Register Maps 49
9 Applications and Implementation 72
9.1 Application Information 72
9.2 Typical Application 72
10 Power Supply Recommendations 76
11 Layout 78
11.1 Layout Guidelines 78
11.2 Layout Example 78
12 Device and Documentation Support 79
12.1 Trademarks 79
12.2 Electrostatic Discharge Caution. 79
12.3 Glossary 79
13 Mechanical, Packaging, and Orderable Information 79

4 Revision History

NOTE: Page numbers for previous revisions may differ from page numbers in the current version.
Changes from Revision G (July 2014) to Revision H Page

- Changed HBM value from ± 4000 to ± 1000 in Handling Ratings table 7
- Changed CDM value from ± 1500 to ± 250 in Handling Ratings table 7
Changes from Revision F (October 2013) to Revision G Page
- Changed format to meet latest data sheet standards; added new sections, and moved existing sections 1
- Changed sub-bullet of Transmit Features bullet 1
- Changed second sub-bullet of Integrated Fault Diagnostics Features bullet 1
- Added AFE4403 row to Family and Ordering Information table 5
- Changed title of Device Family Options table 5
- Changed INM to INN in VCM description of Pin Descriptions table 6
- Changed Absolute Maximum Ratings table: changed first five rows and added TXP, TXN pins row 7
- Deleted Typical value (> 1.3) for Logic high input voltage 11
- Deleted Typical value (> -0.4) for Logic low input voltage 11
- Changed SPISTE, SPISIMO, and SPISOMI pin names in Figure 1 13
- Changed SPISTE and SPISIMO pin names in Figure 2 14
- Added second and third paragraphs to the Receiver Front-End section 22
- Changed seventh paragraph in Receiver Front-End section 23
- Changed title of Ambient Cancellation Scheme and Second Stage Gain Block section 24
- Changed descriptions of LED2, ambient, and LED1 convert phases in Receiver Control Signals section 26
- Changed description of Receiver Timing section 26
- Changed Example column values for rows $\mathrm{t}_{2}, \mathrm{t}_{4}, \mathrm{t}_{5}, \mathrm{t}_{11}, \mathrm{t}_{13}, \mathrm{t}_{15}, \mathrm{t}_{17}, \mathrm{t}_{19}, \mathrm{t}_{22}, \mathrm{t}_{24}, \mathrm{t}_{26}$, and t_{28} in Table 2 31
- Added footnote 2 to Table 2 31
- Added footnote 2 to Figure 42 32
- Added footnote 2 to Figure 43 33
- Changed the ADC Operation and Averaging Module section: grammatical edits and changed the second sentence of the second paragraph 38
- Changed INN pin name in Figure 53 41
- Changed INM to INN in Table 5 43
- Changed SPISTE, SPISIMO, SPISOMI, and SCLK pin names in Figure 58 47
- Added Application and Implementation section. 72
Changes from Revision E (October 2013) to Revision F Page
- Changed footnote 1 in Recommended Operating Conditions table 8
- Changed LED_DRV_SUP parameter in Recommended Operating Conditions table. 8
- Changed $T X M$ to $T X N$ in $V_{\text {LED }}$ footnote of Recommended Operating Conditions table 8
- Changed Transmitter, Voltage on TXP (or TXN) pin parameter in Electrical Characteristics table 10
- Changed Figure 54 (changed TXP and TXN pin names, deleted LED 1 and LED 2 pin names) 42
Changes from Revision D (May 2013) to Revision E Page
- Deleted chip graphic 1
- Changed 1st sub-bullet of 3rd Features bullet 1
- Changed last sub-bullet of Supplies Features bullet 1
- Updated front page graphic 1
- Changed Tx Power Supply column in Family and Ordering Information table 5
- Changed TX_REF description in Pin Descriptions table 6
- Changed TX_CTRL_SUP value in Recommended Operating Conditions table 8
- Changed conditions for Electrical Characteristics table 9
- Changed Performance, PRF parameter minimum specification in Electrical Characteristics table 9
- Deleted Performance, $I_{I N _S S}$ parameter from Electrical Characteristics table 9
- Changed Performance, CMRR parameter in Electrical Characteristics table 9
- Changed Performance (Full-Signal Chain), Total integrated noise current and $N_{F B}$ parameter test conditions in Electrical Characteristics table 9
- Changed Receiver Functional Block Level Specification, Total integrated noise current parameter test conditions in Electrical Characteristics table 9
- Changed Ambient Cancellation Stage, Gain parameter in Electrical Characteristics table 10
- Added Low-Pass Filter, Filter settling time parameter to Electrical Characteristics table 10
- Changed Diagnostics, Duration of diagnostics state machine parameter unit value in Electrical Characteristics table 10
- Changed External Clock, Maximum allowable external clock jitter parameter in Electrical Characteristics table 11
- Updated Figure 8 to Figure 10 16
- Updated Figure 11 to Figure 16 16
- Updated Figure 17 to Figure 19 17
- Updated Figure 31 and Figure 32 19
- Updated functional block diagram 21
- Updated Figure 34 22
- Changed second sentence in second paragraph of Receiver Front-End section 22
- Changed third paragraph of Receiver Front-End section 23
- Changed second paragraph of Ambient Cancellation Scheme section 25
- Added last paragraph and Table 1 to Ambient Cancellation Scheme section. 26
- Updated Figure 37 27
- Updated Figure 39 29
AFE4400
SBAS601H -DECEMBER 2012-REVISED JULY 2014 www.ti.com
- Added footnote 1 to Table 2 31
- Changed example column in Table 2 31
- Added last sentence to third column of row t_{13} in Table 2 31
- Deleted last sentence from third column of row t_{14} in Table 2 31
- Changed corresponding register address name in row t_{21} of Table 2. 31
- Updated Figure 42 32
- Updated Figure 43 33
- Updated Figure 44 34
- Changed entire Transmit Section 34
- Changed second paragraph of the ADC Operation and Averaging Module section 38
- Updated Figure 49 38
- Changed Operation section title and first sentence 39
- Changed last sentence of the Operation With Averaging section 39
- Updated Figure 52 40
- Changed last paragraph of Diagnostics Module section 44
- Added first and last sentence to Writing Data section 44
- Changed second to last sentence in Writing Data section 44
- Added first and last sentence to Reading Data section 46
- Changed second to last sentence in Reading Data section 46
- Added Multiple Data Reads and Writes section 47
- Added last sentence to the AFE SPI Interface Design Considerations section 48
- Added Register Control column to Table 6 49
- Changed name of ADCRSTSTCTO register (address 15h) in Table 6 49
- Changed bit D10 in CONTROL2 row of Table 6 50
- Changed CONTROLO paragraph description 52
- Added note to bit D2 description of CONTROLO register 52
- Corrected bit names in ADCRSTSTCTO register 59
- Changed PRPCOUNT[15:0] (bits D[15:0]) description of PRPCOUNT register 62
- Changed note within CLKALMPIN[2:0] (bits D[11:9]) description of CONTROL1 register 62
- Changed second and third columns of Table 7 62
- Changed 001 and 011 bit settings for the STG2GAIN[2:0] bits (bits D[10:8]) in the TIA_AMB_GAIN register 64
- Changed bit D10 of the CONTROL2 register 66

AFE4400
www.ti.com

5 Device Family Options

PRODUCT	PACKAGE-LEAD	LED DRIVE CONFIGURATION	LED DRIVE CURRENT (mA, max)	Tx POWER SUPPLY (V)	OPERATING TEMPERATURE RANGE
AFE4400	VQFN-40	Bridge, push-pull	50	3 to 5.25	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
AFE4490	VQFN-40	Bridge, push-pull	$50,75,100$, 150, and 200	3 to 5.25	$-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$
AFE4403	DSBGA-36	Bridge, push-pull	$25,50,75$, and 100	3 to 5.25	$-20^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$

6 Pin Configuration and Functions

(1) DNC = Do not connect.

Pin Functions

PIN		FUNCTION	DESCRIPTION
NAME	NO.		
ADC_RDY	28	Digital	Output signal that indicates ADC conversion completion. Can be connected to the interrupt input pin of an external microcontroller.
AFE_PDN	20	Digital	AFE-only power-down input; active low. Can be connected to the port pin of an external microcontroller.
BG	7	Reference	Decoupling capacitor for internal band-gap voltage to ground. (2.2- $\mu \mathrm{F}$ decoupling capacitor to ground)
CLKOUT	30	Digital	Buffered 4-MHz output clock output. Can be connected to the clock input pin of an external microcontroller.
DIAG_END	21	Digital	Output signal that indicates completion of diagnostics. Can be connected to the port pin of an external microcontroller.
DNC ${ }^{(1)}$	5, 6, 10, 34, 35	-	Do not connect these pins. Leave as open circuit.
INN	1	Analog	Receiver input pin. Connect to photodiode anode.
INP	2	Analog	Receiver input pin. Connect to photodiode cathode.
LED_DRV_GND	12, 13, 16	Supply	LED driver ground pin, H-bridge. Connect to common board ground.
LED_DRV_SUP	17, 18	Supply	LED driver supply pin, H-bridge. Connect to an external power supply capable of supplying the large LED current, which is drawn by this supply pin.
LED_ALM	22	Digital	Output signal that indicates an LED cable fault. Can be connected to the port pin of an external microcontroller.
PD_ALM	23	Digital	Output signal that indicates a PD sensor or cable fault. Can be connected to the port pin of an external microcontroller.
RESET	29	Digital	AFE-only reset input, active low. Can be connected to the port pin of an external microcontroller.
RX_ANA_GND	3, 36, 40	Supply	Rx analog ground pin. Connect to common board ground.
RX_ANA_SUP	33, 39	Supply	Rx analog supply pin; 0.1- $\mu \mathrm{F}$ decoupling capacitor to ground
RX_DIG_GND	19, 32	Supply	Rx digital ground pin. Connect to common board ground.
RX_DIG_SUP	31	Supply	Rx digital supply pin; 0.1- F decoupling capacitor to ground
SCLK	24	SPI	SPI clock pin
SPISIMO	26	SPI	SPI serial in master out
SPISOMI	25	SPI	SPI serial out master in
SPISTE	27	SPI	SPI serial interface enable
TX_CTRL_SUP	11	Supply	Transmit control supply pin (0.1- F decoupling capacitor to ground)
TX_REF	9	Reference	Transmitter reference voltage, 0.75 V default after reset. Connect a $2.2-\mu \mathrm{F}$ decoupling capacitor to ground.
TXN	14	Analog	LED driver out B, H-bridge output. Connect to LED.
TXP	15	Analog	LED driver out B, H-bridge output. Connect to LED.
VCM	4	Reference	Input common-mode voltage output. Connect a series resistor ($1 \mathrm{k} \Omega$) and a decoupling capacitor (10 nF) to ground. The voltage across the capacitor can be used to shield (guard) the INP, INN traces.
VSS	8	Supply	Substrate ground. Connect to common board ground.
XOUT	37	Digital	Crystal oscillator pins. Connect an external 8-MHz crystal between these pins with the correct load capacitor (as specified by vendor) to ground.
XIN	38	Digital	Crystal oscillator pins. Connect an external 8-MHz crystal between these pins with the correct load capacitor (as specified by vendor) to ground.

(1) Leave pins as open circuit. Do not connect.

7 Specifications

7.1 Absolute Maximum Ratings

over operating free-air temperature range (unless otherwise noted) ${ }^{(1)}$

		MIN	MAX	UNIT
RX_ANA_SUP, RX_DIG_SUP to RX_ANA_GND, RX_DIG_GND		-0.3	4	V
TX_CTRL_SUP, LED_DRV_SUP to LED_DRV_GND		-0.3	6	V
RX_ANA_GND, RX_DIG_GND to LED_DRV_GND		-0.3	0.3	V
Analog inputs		RX_ANA_GND - 0.3	RX_ANA_SUP + 0.3	V
Digital inputs		RX_DIG_GND - 0.3	RX_DIG_SUP + 0.3	V
TXP, TXN pins		-0.3	Minimum [6, (LED_DRV_SUP +0.3)]	V
Input current to any pin except supply pins ${ }^{(2)}$			± 7	mA
Input current	Momentary		± 50	mA
	Continuous		± 7	mA
Operating temperature range		0	70	${ }^{\circ} \mathrm{C}$
Maximum junction temperature, T_{J}			125	${ }^{\circ} \mathrm{C}$

(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
(2) Input terminals are diode-clamped to the power-supply rails. Input signals that can swing beyond the supply rails must be current-limited to 10 mA or less.

7.2 Handling Ratings

			MIN	MAX	UNIT
$\mathrm{T}_{\text {stg }}$	Storage temperature ran		-60	150	${ }^{\circ} \mathrm{C}$
		Human body model (HBM), per ANSI/ESDA/JEDEC JS-001, all pins ${ }^{(1)}$	-1000	1000	V
$V_{\text {(ESD) }}$	ostatic discharge	Charged device model (CDM), per JEDEC specification JESD22-C101, all pins ${ }^{(2)}$	-250	250	v

(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

AFE4400

SBAS601H -DECEMBER 2012-REVISED JULY 2014
www.ti.com

7.3 Recommended Operating Conditions

over operating free-air temperature range (unless otherwise noted)

PARAMETER			MIN	MAX	UNIT
SUPPLIES					
RX_ANA_SUP	AFE analog supply		2.0	3.6	V
RX_DIG_SUP	AFE digital supply		2.0	3.6	V
TX_CTRL_SUP	Transmit controller supply		3.0	5.25	V
LED_DRV_SUP	Transmit LED driver supply	H-bridge or common anode configuration	$\begin{array}{r} {\left[3.0 \text { or }\left(1.0+\mathrm{V}_{\mathrm{LED}}+\mathrm{V}_{\text {CABLE }}\right)^{(1)(2),}\right.} \\ \text { whichever is greater] }] \end{array}$	5.25	V
	Difference between LED_DRV_SUP and TX_CTRL_SUP		-0.3	0.3	V
TEMPERATURE					
	Specified temperature range		0	70	${ }^{\circ} \mathrm{C}$
	Storage temperature range		-60	150	${ }^{\circ} \mathrm{C}$

(1) $\mathrm{V}_{\text {LED }}$ refers to the maximum voltage drop across the external LED (at maximum LED current) connected between the TXP and TXN pins (in H-bridge mode) and from the TXP and TXN pins to LED_DRV_SUP (in the common anode configuration).
(2) $\mathrm{V}_{\text {CABLE }}$ refers to voltage drop across any cable, connector, or any other component in series with the LED.

7.4 Thermal Information

THERMAL METRIC ${ }^{(1)}$		AFE4400	UNIT
		RHA (VQFN)	
		40 PINS	
$\mathrm{R}_{\text {өJA }}$	Junction-to-ambient thermal resistance	35	${ }^{\circ} \mathrm{C} / \mathrm{W}$
$\mathrm{R}_{\text {өJC(top) }}$	Junction-to-case (top) thermal resistance	31	
$\mathrm{R}_{\text {өJB }}$	Junction-to-board thermal resistance	26	
$\Psi_{\text {JT }}$	Junction-to-top characterization parameter	0.1	
$\Psi_{J B}$	Junction-to-board characterization parameter	n/a	
$\mathrm{R}_{\text {өJC(bot) }}$	Junction-to-case (bottom) thermal resistance	n/a	

(1) For more information about traditional and new thermal metrics, see the IC Package Thermal Metrics application report, SPRA953.

AFE4400
www.ti.com

7.5 Electrical Characteristics

Minimum and maximum specifications are at $T_{A}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$, typical specifications are at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$. All specifications are at RX_ANA_SUP = RX_DIG_SUP = 3 V , TX_CTRL_SUP $=$ LED_DRV_SUP $=3.3 \mathrm{~V}$, stage 2 amplifier disabled, and $\mathrm{f}_{\text {CLK }}=8$ MHz , unless otherwise noted.

	PARAMETER	TEST CONDITIONS	MIN TYP MAX	UNIT
PERFORMANCE (Full-Signal Chain)				
$\mathrm{I}_{\text {IN_FS }}$	Full-scale input current	$\mathrm{R}_{\mathrm{F}}=10 \mathrm{k} \Omega$	50	$\mu \mathrm{A}$
		$\mathrm{R}_{\mathrm{F}}=25 \mathrm{k} \Omega$	20	$\mu \mathrm{A}$
		$\mathrm{R}_{\mathrm{F}}=50 \mathrm{k} \Omega$	10	$\mu \mathrm{A}$
		$\mathrm{R}_{\mathrm{F}}=100 \mathrm{k} \Omega$	5	$\mu \mathrm{A}$
		$\mathrm{R}_{\mathrm{F}}=250 \mathrm{k} \Omega$	2	$\mu \mathrm{A}$
		$\mathrm{R}_{\mathrm{F}}=500 \mathrm{k} \Omega$	1	$\mu \mathrm{A}$
		$\mathrm{R}_{\mathrm{F}}=1 \mathrm{M} \Omega$	0.5	$\mu \mathrm{A}$
PRF	Pulse repetition frequency		62.5	SPS
DC ${ }_{\text {PRF }}$	PRF duty cycle		25\%	
CMRR	Common-mode rejection ratio	$\mathrm{f}_{\mathrm{CM}}=50 \mathrm{~Hz}$ and 60 Hz , LED1 and LED2 with $R_{\text {SERIES }}=500 \mathrm{k} \Omega, R_{F}=500 \mathrm{k} \Omega$	75	dB
		$\mathrm{f}_{\mathrm{CM}}=50 \mathrm{~Hz}$ and 60 Hz , LED1-AMB and LED2-AMB with $\mathrm{R}_{\text {SERIES }}=500 \mathrm{k} \Omega$, $\mathrm{R}_{\mathrm{F}}=500 \mathrm{k} \Omega$	95	dB
PSRR	Power-supply rejection ratio	$\mathrm{f}_{\text {PS }}=50 \mathrm{~Hz}, 60 \mathrm{~Hz}$ at PRF $=200 \mathrm{~Hz}$	100	dB
		$\mathrm{f}_{\mathrm{PS}}=50 \mathrm{~Hz}, 60 \mathrm{~Hz}$ at PRF $=600 \mathrm{~Hz}$	106	dB
$\mathrm{PSRR}_{\text {Led }}$	PSRR, transmit LED driver	With respect to ripple on LED_DRV_SUP	75	dB
$\mathrm{PSRR}_{\text {T } \mathrm{x}}$	PSRR, transmit control	With respect to ripple on TX_CTRL_SUP	60	dB
$\mathrm{PSRR}_{\text {Rx }}$	PSRR, receiver	With respect to ripple on RX_ANA_SUP and RX_DIG_SUP	60	dB
	Total integrated noise current, input-referred (receiver with transmitter loop back, $0.1-\mathrm{Hz}$ to $5-\mathrm{Hz}$ bandwidth)	$\mathrm{R}_{\mathrm{F}}=100 \mathrm{k} \Omega, \mathrm{PRF}=600 \mathrm{~Hz}$, duty cycle $=5 \%$	36	$\mathrm{p} \mathrm{A}_{\text {RMS }}$
		$R_{F}=500 \mathrm{k} \Omega, \mathrm{PRF}=600 \mathrm{~Hz}$, duty cycle $=5 \%$	13	$\mathrm{pA}_{\text {RMS }}$
N_{FB}	Noise-free bits (receiver with transmitter loop back, $0.1-\mathrm{Hz}$ to $5-\mathrm{Hz}$ bandwidth)	$R_{F}=100 \mathrm{k} \Omega, \mathrm{PRF}=600 \mathrm{~Hz}$, duty cycle $=5 \%$	14.3	Bits
		$\mathrm{R}_{\mathrm{F}}=500 \mathrm{k} \Omega, \mathrm{PRF}=600 \mathrm{~Hz}$, duty cycle $=5 \%$	13.5	Bits
RECEIVER FUNCTIONAL BLOCK LEVEL SPECIFICATION				
	Total integrated noise current, input referred (receiver alone) over $0.1-\mathrm{Hz}$ to $5-\mathrm{Hz}$ bandwidth	$R_{F}=500 \mathrm{k} \Omega$, ambient cancellation enabled, stage 2 gain $=4, \mathrm{PRF}=1200 \mathrm{~Hz}$, LED duty cycle $=25 \%$	1.4	pA RMS
		$R_{F}=500 \mathrm{k} \Omega$, ambient cancellation enabled, stage 2 gain $=4, \mathrm{PRF}=1200 \mathrm{~Hz}$, LED duty cycle = 5%	5	pA RMS
I-V TRANSIMPEDANCE AMPLIFIER				
G	Gain	$\mathrm{R}_{\mathrm{F}}=10 \mathrm{k} \Omega$ to $1 \mathrm{M} \Omega$	See the Receiver Channel section for details	$\mathrm{V} / \mu \mathrm{A}$
	Gain accuracy		$\pm 7 \%$	
	Feedback resistance	R_{F}	$\begin{gathered} 10 \mathrm{k}, 25 \mathrm{k}, 50 \mathrm{k}, 100 \mathrm{k}, 250 \mathrm{k}, \\ 500 \mathrm{k}, \text { and } 1 \mathrm{M} \end{gathered}$	Ω
	Feedback resistor tolerance	R_{F}	$\pm 20 \%$	
	Feedback capacitance	C_{F}	5, 10, 25, 50, 100, and 250	pF
	Feedback capacitor tolerance	C_{F}	$\pm 20 \%$	
	Full-scale differential output voltage		1	V
	Common-mode voltage on input pins	Set internally	0.9	V
	External differential input capacitance	Includes equivalent capacitance of photodiode, cables, EMI filter, and so forth	101000	pF
	Shield output voltage, V_{CM}	With a $1-\mathrm{k} \Omega$ series resistor and a $10-\mathrm{nF}$ decoupling capacitor to ground	0.9	V

Electrical Characteristics (continued)

Minimum and maximum specifications are at $\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$, typical specifications are at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$. All specifications are at RX_ANA_SUP $=$ RX_DIG_SUP $=3 \mathrm{~V}$, TX_CTRL_SUP $=$ LED_DRV_SUP $=3.3 \mathrm{~V}$, stage 2 amplifier disabled, and $\mathrm{f}_{\mathrm{CLK}}=8$ MHz , unless otherwise noted.

PARAMETER	TEST CONDITIONS	MIN TYP MAX	UNIT
AMBIENT CANCELLATION STAGE			
Gain		$0,3.5,6,9.5$, and 12	dB
Current DAC range		$0 \quad 10$	$\mu \mathrm{A}$
Current DAC step size		1	$\mu \mathrm{A}$
LOW-PASS FILTER			
Low-pass corner frequency	3-dB attenuation	500	Hz
Pass-band attenuation, 2 Hz to 10 Hz	Duty cycle $=25 \%$	0.004	dB
	Duty cycle $=10 \%$	0.041	dB
Filter settling time	After diagnostics mode	28	ms
ANALOG-TO-DIGITAL CONVERTER			
Resolution		22	Bits
Sample rate	See the ADC Operation and Averaging Module section	$4 \times$ PRF	SPS
ADC full-scale voltage		± 1.2	V
ADC conversion time	See the ADC Operation and Averaging Module section	50 PRF / 4	$\mu \mathrm{s}$
ADC reset time		2	$\mathrm{t}_{\text {CLK }}$
TRANSMITTER			
Output current range		Selectable, 0 to 50 (see the LEDCNTRL: LED Control Register for details)	mA
LED current DAC error		$\pm 10 \%$	
Output current resolution		8	Bits
Transmitter noise dynamic range, over $0.1-\mathrm{Hz}$ to $5-\mathrm{Hz}$ bandwidth	At 5-mA output current	95	dB
	At 25-mA output current	95	dB
	At 50-mA output current	95	dB
Voltage on TXP (or TXN) pin when low-side switch connected to TXP (or TXN) turns on	At 50-mA output current	1.0 + (voltage drop across LED, cable, and so forth) to 5.25	V
Minimum sample time of LED1 and LED2 pulses		50	$\mu \mathrm{s}$
LED current DAC leakage current	LED_ON = 0	1	$\mu \mathrm{A}$
	LED_ON = 1	50	$\mu \mathrm{A}$
LED current DAC linearity	Percent of full-scale current	0.5\%	
Output current settling time (with resistive load)	From zero current to 50 mA	7	$\mu \mathrm{s}$
	From 50 mA to zero current	7	$\mu \mathrm{s}$
DIAGNOSTICS			
Duration of diagnostics state machine	Start of diagnostics after the DIAG_EN register bit is set. End of diagnostic is indicated by DIAG_END going high.	16	ms
Open fault resistance		>100	$\mathrm{k} \Omega$
Short fault resistance		< 10	$\mathrm{k} \Omega$
INTERNAL OSCILLATOR			
$\mathrm{f}_{\text {CLKout }}$ CLKOUT frequency	With an $8-\mathrm{MHz}$ crystal connected to the XIN, XOUT pins	4	MHz
CLKOUT duty cycle		50\%	
Crystal oscillator start-up time	With an $8-\mathrm{MHz}$ crystal connected to the XIN, XOUT pins	200	$\mu \mathrm{s}$

AFE4400
www.ti.com

Electrical Characteristics (continued)

Minimum and maximum specifications are at $T_{A}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$, typical specifications are at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$. All specifications are at RX_ANA_SUP $=$ RX_DIG_SUP $=3 \mathrm{~V}$, TX_CTRL_SUP $=$ LED_DRV_SUP $=3.3 \mathrm{~V}$, stage 2 amplifier disabled, and $\mathrm{f}_{\text {CLK }}=8$ MHz , unless otherwise noted.

	PARAMETER	TEST CONDITIONS	MIN TYP MAX	UNIT
EXTERNAL CLOCK				
Maximum allowable external clock jitter		For SPO2 applications	50	ps
		For optical heart rate only	1000	ps
	External clock input frequency	$\pm 10 \%$	8	MHz
External clock input voltage		Voltage input high (V_{HH})	$0.75 \times$ RX_DIG_SUP	V
		Voltage input low (V_{IL})	$0.25 \times$ RX_DIG_SUP	V
TIMING				
	Wake-up time from complete power-down		1000	ms
	Wake-up time from Rx power-down		100	$\mu \mathrm{s}$
	Wake-up time from Tx power-down		1000	ms
treSET	Active low RESET pulse duration		1	ms
$\mathrm{t}_{\text {DIAGEND }}$	DIAG_END pulse duration at the completion of diagnostics		4	CLKOUT cycles
$\mathrm{t}_{\text {ADCRDY }}$	ADC_RDY pulse duration		1	CLKOUT cycle
DIGITAL SIGNAL CHARACTERISTICS				
V_{IH}	Logic high input voltage	AFE_PDN, SCLK, SPISIMO, SPISTE, RESET	0.8 DVDD DVDD + 0.1	V
$\mathrm{V}_{\text {IL }}$	Logic low input voltage	AFE_ $\overline{\text { PDN }}$, SCLK, SPISIMO, SPISTE, RESET	-0.1 0.2 DVDD	V
I_{IN}	Logic input current	0 V < $\mathrm{V}_{\text {Digitallnput }}$ < DVDD	-10 10	$\mu \mathrm{A}$
V_{OH}	Logic high output voltage	DIAG_END, LED_ALM, PD_ALM, SPISOMI, ADC_RDY, CLKOUT	$\text { 0.9 DVDD } \quad>\text { (RX_DIG_SUP - } 0.2 \mathrm{~V})$	V
$\mathrm{V}_{\text {OL }}$	Logic low output voltage	DIAG_END, LED_ALM, PD_ALM, SPISOMI, ADC_RDY, CLKOUT	<0.4 0.1 DVDD	V
SUPPLY CURRENT				
Receiver analog supply current		RX_ANA_SUP = 3.0 V, with 8-MHz clock running, Rx stage 2 disabled	0.6	mA
		RX_ANA_SUP $=3.0 \mathrm{~V}$, with $8-\mathrm{MHz}$ clock running, Rx stage 2 enabled	0.7	mA
	Receiver digital supply current	RX_DIG_SUP $=3.0 \mathrm{~V}$	0.27	mA
$\begin{aligned} & \text { LED_DRV } \\ & \text { SUP } \\ & \hline \end{aligned}$	LED driver supply current	With zero LED current setting	55	$\mu \mathrm{A}$
$\begin{array}{\|l} \hline \text { TX_CTRL } \\ \text { _SUP } \\ \hline \end{array}$	Transmitter control supply current		15	$\mu \mathrm{A}$
Complete power-down (using AFE_PDN pin)		Receiver current only (RX_ANA_SUP)	3	$\mu \mathrm{A}$
		Receiver current only (RX_DIG_SUP)	3	$\mu \mathrm{A}$
		Transmitter current only (LED_DRV_SUP)	1	$\mu \mathrm{A}$
		Transmitter current only (TX_CTRL_SUP)	1	$\mu \mathrm{A}$
Power-down Rx alone		Receiver current only (RX_ANA_SUP)	220	$\mu \mathrm{A}$
		Receiver current only (RX_DIG_SUP)	220	$\mu \mathrm{A}$
Power-down Tx alone		Transmitter current only (LED_DRV_SUP)	2	$\mu \mathrm{A}$
		Transmitter current only (TX_CTRL_SUP)	2	$\mu \mathrm{A}$

AFE4400

SBAS601H -DECEMBER 2012-REVISED JULY 2014
www.ti.com

Electrical Characteristics (continued)

Minimum and maximum specifications are at $\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$, typical specifications are at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$. All specifications are at RX_ANA_SUP = RX_DIG_SUP = 3 V , TX_CTRL_SUP $=$ LED_DRV_SUP $=3.3 \mathrm{~V}$, stage 2 amplifier disabled, and $\mathrm{f}_{\mathrm{CLK}}=8$ MHz , unless otherwise noted.

PARAMETER		TEST CONDITIONS	MIN TYP	MAX	UNIT
POWER DISSIPATION					
Quiescent power dissipation		Normal operation (excluding LEDs)	2.84		mW
		Power-down	0.1		mW
Power-down with the AFE_PDN pin	LED_DRV_SUP	LED_DRV_SUP current value. Does not include LED current.	1		$\mu \mathrm{A}$
	TX_CTRL_SUP		1		$\mu \mathrm{A}$
	RX_ANA_SUP		5		$\mu \mathrm{A}$
	RX_DIG_SUP		0.1		$\mu \mathrm{A}$
Power-down with the PDNAFE register bit	LED_DRV_SUP	LED_DRV_SUP current value. Does not include LED current.	1		$\mu \mathrm{A}$
	TX_CTRL_SUP		1		$\mu \mathrm{A}$
	RX_ANA_SUP		15		$\mu \mathrm{A}$
	RX_DIG_SUP		20		$\mu \mathrm{A}$
Power-down Rx	LED_DRV_SUP	LED_DRV_SUP current value. Does not include LED current.	50		$\mu \mathrm{A}$
	TX_CTRL_SUP		15		$\mu \mathrm{A}$
	RX_ANA_SUP		220		$\mu \mathrm{A}$
	RX_DIG_SUP		220		$\mu \mathrm{A}$
Power-down Tx	LED_DRV_SUP	LED_DRV_SUP current value. Does not include LED current.	2		$\mu \mathrm{A}$
	TX_CTRL_SUP		2		$\mu \mathrm{A}$
	RX_ANA_SUP		600		$\mu \mathrm{A}$
	RX_DIG_SUP		230		$\mu \mathrm{A}$
After reset, with $8-\mathrm{MHz}$ clock running	LED_DRV_SUP	LED_DRV_SUP current value. Does not include LED current.	55		$\mu \mathrm{A}$
	TX_CTRL_SUP		15		$\mu \mathrm{A}$
	RX_ANA_SUP		600		$\mu \mathrm{A}$
	RX_DIG_SUP		230		$\mu \mathrm{A}$
With stage 2 mode enabled and $8-\mathrm{MHz}$ clock running	LED_DRV_SUP	LED_DRV_SUP current value. Does not include LED current.	55		$\mu \mathrm{A}$
	TX_CTRL_SUP		15		$\mu \mathrm{A}$
	RX_ANA_SUP		700		$\mu \mathrm{A}$
	RX_DIG_SUP		270		$\mu \mathrm{A}$

AFE4400
www.ti.com
SBAS601H -DECEMBER 2012-REVISED JULY 2014

7.6 Timing Requirements

	PARAMETER	MIN	TYP	MAX	UNIT
$\mathrm{t}_{\text {CLK }}$	Clock frequency on the XIN pin		8		MHz
$\mathrm{t}_{\text {SCLK }}$	Serial shift clock period	62.5			ns
$\mathrm{t}_{\text {STECLK }}$	STE low to SCLK rising edge, setup time	10			ns
t ${ }_{\text {CLKSTEH,L }}$	SCLK transition to SPI STE high or low	10			ns
tsimosu	SIMO data to SCLK rising edge, setup time	10			ns
$\mathrm{t}_{\text {SIMOHD }}$	Valid SIMO data after SCLK rising edge, hold time	10			ns
$\mathrm{t}_{\text {SOMIPD }}$	SCLK falling edge to valid SOMI, setup time	17			ns
$\mathrm{t}_{\text {SOMIHD }}$	SCLK rising edge to invalid data, hold time	0.5			$\mathrm{t}_{\text {SCLK }}$

Don't care, can be high or low
(1) The SPI_READ register bit must be enabled before attempting a register read.
(2) Specify the register address whose contents must be read back on $\mathrm{A}[7: 0]$.
(3) The AFE outputs the contents of the specified register on the SPISOMI pin.

Figure 1. Serial Interface Timing Diagram, Read Operation ${ }^{(1)(2)(3)}$

Figure 2. Serial Interface Timing Diagram, Write Operation

7.7 Timing Requirements: Supply Ramp and Power-Down

	PARAMETER	VALUE
t_{1}	Time between Rx and Tx supplies ramping up	Keep as small as possible (for example, $\pm 10 \mathrm{~ms}$)
t_{2}	Time between both supplies stabilizing and high-going $\overline{\text { RESET edge }}$	$>100 \mathrm{~ms}$
t_{3}	RESET pulse duration	$>0.5 \mathrm{~ms}$
t_{4}	Time between $\overline{\text { RESET }}$ and SPI commands	$>1 \mu \mathrm{~s}$
t_{5}	Time between SPI commands and the ADC_(_) to valid data	$>3 \mathrm{~ms}$ of cumulative sampling time in each phase ${ }^{(1)(2)(3)}$
t_{6}	Time between $\overline{\text { RESET }}$ pulse and high-accuracy data coming out of the signal chain	$>1 \mathrm{~s}^{(3)}$
t_{7}	Time from AFE_ $\overline{\text { PDN }}$ high-going edge and $\overline{\text { RESET }}$ pulse ${ }^{(4)}$	$>100 \mathrm{~ms}$
t_{8}	Time from AFE_PDN high-going edge (or PDN_AFE bit reset) to highaccuracy data coming out of the signal chain	$>1 \mathrm{~s}^{(3)}$

(1) This time is required for each of the four switched RC filters to fully settle to the new settings. The same time is applicable whenever there is a change to any of the signal chain controls (for example, LED current setting, TIA gain, and so forth).
(2) If the SPI commands involve a change in the TX_REF value from its default, then there is additional wait time of approximately 1 s (for a $2.2-\mu \mathrm{F}$ decoupling capacitor on the TX_REF pin).
(3) Dependent on the value of the capacitors on the BG and TX_REF pins. The 1-s wait time is necessary when the capacitors are $2.2 \mu \mathrm{~F}$ and scale down proportionate to the capacitor value. A very low capacitor (for example, $0.1 \mu \mathrm{~F}$) on these pins causes the transmitter dynamic range to reduce to approximately 100 dB .
(4) After an active power-down from AFE_ $\overline{P D N}$, the device should be reset using a low-going $\overline{R E S E T}$ pulse.

Figure 3. Supply Ramp and Hardware Power-Down Timing

Figure 4. Supply Ramp and Software Power-Down Timing

7.8 Typical Characteristics

Minimum and maximum specifications are at $T_{A}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$. Typical specifications are at $T_{A}=25^{\circ} \mathrm{C}$, RX_ANA_SUP $=$ RX_DIG_SUP $=3.0 \mathrm{~V}$, TX_CTRL_SUP $=$ LED_DRV_SUP $=3.3 \mathrm{~V}$, and $\mathrm{f}_{\mathrm{CLK}}=8 \mathrm{MHz}$, unless otherwise noted.

Figure 5. Total Rx Current vs Rx Supply Voltage

Figure 7. LED_DRV_SUP Current vs LED_DRV_SUP Voltage

Figure 9. Input-Referred Noise Current vs Pleth Current (PRF = $\mathbf{3 0 0} \mathrm{Hz}$)

Figure 6. TX_CTRL_SUP Current vs TX_CTRL_SUP Voltage

Figure 8. Input-Referred Noise Current vs Pleth Current (PRF = 100 Hz)

Figure 10. Input-Referred Noise Current vs Pleth Current (PRF = 600 Hz)

AFE4400
www.ti.com

Typical Characteristics (continued)

Minimum and maximum specifications are at $T_{A}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$. Typical specifications are at $T_{A}=25^{\circ} \mathrm{C}$, RX_ANA_SUP $=$ RX_DIG_SUP $=3.0 \mathrm{~V}$, TX_CTRL_SUP $=$ LED_DRV_SUP $=3.3 \mathrm{~V}$, and $\mathrm{f}_{\mathrm{CLK}}=8 \mathrm{MHz}$, unless otherwise noted.

Figure 11. Input-Referred Noise Current vs Pleth Current (PRF = 1200 Hz)

Figure 13. Input-Referred Noise Current vs Pleth Current (PRF = 5000 Hz)

Figure 15. Noise-Free Bits vs Pleth Current (PRF = 300 Hz)

Figure 12. Input-Referred Noise Current vs Pleth Current (PRF = 2500 Hz)

Figure 14. Noise-Free Bits vs Pleth Current (PRF = 100 Hz)

Figure 16. Noise-Free Bits vs Pleth Current (PRF = 600 Hz)

Typical Characteristics (continued)

Minimum and maximum specifications are at $T_{A}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$. Typical specifications are at $T_{A}=25^{\circ} \mathrm{C}$, RX_ANA_SUP $=$ RX_DIG_SUP $=3.0 \mathrm{~V}$, TX_CTRL_SUP $=$ LED_DRV_SUP $=3.3 \mathrm{~V}$, and $\mathrm{f}_{\text {CLK }}=8 \mathrm{MHz}$, unless otherwise noted.

Figure 17. Noise-Free Bits vs Pleth Current (PRF = 1200 Hz)

Figure 19. Noise-Free Bits vs Pleth Current (PRF = 5000 Hz)

Figure 21. Transmitter DAC Current Step Error ($50 \mathrm{~mA}, \mathrm{Max}$)

Figure 18. Noise-Free Bits vs Pleth Current (PRF = 2500 Hz)

Figure 20. Transmitter Dynamic Range (5-Hz BW)

Figure 22. Transmitter Current Linearity ($50-\mathrm{mA}$ Range)

InSTRUMENTS
AFE4400
www.ti.com

Typical Characteristics (continued)

Minimum and maximum specifications are at $T_{A}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$. Typical specifications are at $T_{A}=25^{\circ} \mathrm{C}$, RX_ANA_SUP $=$ RX_DIG_SUP $=3.0 \mathrm{~V}$, TX_CTRL_SUP $=$ LED_DRV_SUP $=3.3 \mathrm{~V}$, and $\mathrm{f}_{\text {CLK }}=8 \mathrm{MHz}$, unless otherwise noted.

Figure 23. LED Current with Tx DAC Setting = 10
(2 mA)

LED Current (mA)

Figure 25. LED Current with Tx DAC Setting = 51
(10 mA)

Figure 27. LED Current with Tx DAC Setting = 255
(50 mA)

LED Current (mA)

Figure 24. LED Current with Tx DAC Setting = 25 (5 mA)

Figure 26. LED Current with Tx DAC Setting = 102
(20 mA)

Figure 28. Receiver Supplies vs PRF

Typical Characteristics (continued)

Minimum and maximum specifications are at $T_{A}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$. Typical specifications are at $T_{A}=25^{\circ} \mathrm{C}$, RX_ANA_SUP $=$ RX_DIG_SUP $=3.0 \mathrm{~V}$, TX_CTRL_SUP = LED_DRV_SUP $=3.3 \mathrm{~V}$, and $\mathrm{f}_{\mathrm{CLK}}=8 \mathrm{MHz}$, unless otherwise noted.

Figure 29. Transmitter Supplies vs TX_REF

Figure 31. Input-Referred Noise vs Temperature

Figure 30. Power Supplies vs Temperature

Figure 32. Noise-Free Bits vs Temperature

Figure 33. Filter Response vs Duty Cycle

AFE4400
www.ti.com

8 Detailed Description

8.1 Overview

The AFE4400 is a complete analog front-end (AFE) solution targeted for pulse oximeter applications. The device consists of a low-noise receiver channel, an LED transmit section, and diagnostics for sensor and LED fault detection. To ease clocking requirements and provide the low-jitter clock to the AFE, an oscillator is also integrated that functions from an external crystal. The device communicates to an external microcontroller or host processor using an SPI interface. The Functional Block Diagram section provides a detailed block diagram for the AFE4400. The blocks are described in more detail in the following sections.

8.2 Functional Block Diagram

8.3 Feature Description

8.3.1 Receiver Channel

This section describes the functionality of the receiver channel.

8.3.1.1 Receiver Front-End

The receiver consists of a differential current-to-voltage ($\mathrm{I}-\mathrm{V}$) transimpedance amplifier (TIA) that converts the input photodiode current into an appropriate voltage, as shown in Figure 34. The feedback resistor of the amplifier (R_{F}) is programmable to support a wide range of photodiode currents. Available R_{F} values include: $1 \mathrm{M} \Omega, 500 \mathrm{k} \Omega, 250 \mathrm{k} \Omega, 100 \mathrm{k} \Omega, 50 \mathrm{k} \Omega, 25 \mathrm{k} \Omega$, and $10 \mathrm{k} \Omega$.
The device is ideally suited as a front-end for a PPG (photoplethysmography) application. In such an application, the light from the LED is reflected (or transmitted) from (or through) the various components inside the body (such as blood, tissue, and so forth) and are received by the photodiode. The signal received by the photodiode has three distinct components:

1. A pulsatile or ac component that arises as a result of the changes in blood volume through the arteries.
2. A constant dc signal that is reflected or transmitted from the time invariant components in the path of light. This constant dc component is referred to as the pleth signal.
3. Ambient light entering the photodiode.

The ac component is usually a small fraction of the pleth component, with the ratio referred to as the perfusion index (PI). Thus, the allowed signal chain gain is usually determined by the amplitude of the dc component.

Figure 34. Receiver Front-End
The R_{F} amplifier and the feedback capacitor $\left(C_{F}\right)$ form a low-pass filter for the input signal current. Always ensure that the low-pass filter RC time constant has sufficiently high bandwidth (as shown by Equation 1) because the input current consists of pulses. For this reason, the feedback capacitor is also programmable. Available C_{F} values include: $5 \mathrm{pF}, 10 \mathrm{pF}, 25 \mathrm{pF}, 50 \mathrm{pF}, 100 \mathrm{pF}$, and 250 pF . Any combination of these capacitors can also be used.
$R_{F} \times C_{F} \leq \frac{R \times \text { Sample Time }}{10}$

Feature Description (continued)

The output voltage of the I-V amplifier includes the pleth component (the desired signal) and a component resulting from the ambient light leakage. The I-V amplifier is followed by the second stage, which consists of a current digital-to-analog converter (DAC) that sources the cancellation current and an amplifier that gains up the pleth component alone. The amplifier has five programmable gain settings: $0 \mathrm{~dB}, 3.5 \mathrm{~dB}, 6 \mathrm{~dB}, 9.5 \mathrm{~dB}$, and 12 dB . The gained-up pleth signal is then low-pass filtered ($500-\mathrm{Hz}$ bandwidth) and buffered before driving a $22-$ bit ADC. The current DAC has a cancellation current range of $10 \mu \mathrm{~A}$ with 10 steps ($1 \mu \mathrm{~A}$ each). The DAC value can be digitally specified with the SPI interface. Using ambient compensation with the ambient DAC allows the dc-biased signal to be centered to near mid-point of the amplifier ($\pm 0.9 \mathrm{~V}$). Using the gain of the second stage allows for more of the available ADC dynamic range to be used.
The output of the ambient cancellation amplifier is separated into LED2 and LED1 channels. When LED2 is on, the amplifier output is filtered and sampled on capacitor ClED2 . Similarly, the LED1 signal is sampled on the $\mathrm{C}_{\text {LED1 }}$ capacitor when LED1 is on. In between the LED2 and LED1 pulses, the idle amplifier output is sampled to estimate the ambient signal on capacitors $\mathrm{C}_{\text {LED2_amb }}$ and $\mathrm{C}_{\text {LED1_amb }}$.
The sampling duration is termed the $R x$ sample time and is programmable for each signal, independently. The sampling can start after the I-V amplifier output is stable (to account for LED and cable settling times). The Rx sample time is used for all dynamic range calculations; the minimum time recommended is $50 \mu \mathrm{~s}$. While the AFE4400 can support pulse widths lower than 50 us, having too low a pulse width could result in a degraded signal and noise from the photodiode.
A single, 22-bit ADC converts the sampled LED2, LED1, and ambient signals sequentially. Each conversion provides a single digital code at the ADC output. As discussed in the Receiver Timing section, the conversions are meant to be staggered so that the LED2 conversion starts after the end of the LED2 sample phase, and so on.
Note that four data streams are available at the ADC output (LED2, LED1, ambient LED2, and ambient LED1) at the same rate as the pulse repetition frequency. The ADC is followed by a digital ambient subtraction block that additionally outputs the (LED2 - ambient LED2) and (LED1 - ambient LED1) data values.

Feature Description (continued)

8.3.1.2 Ambient Cancellation Scheme and Second Stage Gain Block

The receiver provides digital samples corresponding to ambient duration. The host processor (external to the AFE) can use these ambient values to estimate the amount of ambient light leakage. The processor must then set the value of the ambient cancellation DAC using the SPI, as shown in Figure 35.

Figure 35. Ambient Cancellation Loop (Closed by the Host Processor)

AFE4400
www.ti.com

Feature Description (continued)

Using the set value, the ambient cancellation stage subtracts the ambient component and gains up only the pleth component of the received signal; see Figure 36. The amplifier gain is programmable to $0 \mathrm{~dB}, 3.5 \mathrm{~dB}, 6 \mathrm{~dB}$, 9.5 dB , and 12 dB .

Figure 36. Front-End (I-V Amplifier and Cancellation Stage)

Feature Description (continued)

The differential output of the second stage is $\mathrm{V}_{\text {DIFF }}$, as given by Equation 2:
$V_{\text {DIFF }}=2 \times\left[I_{\text {PLETH }} \times \frac{R_{F}}{R_{I}}+I_{\text {AMB }} \times \frac{R_{F}}{R_{I}}-I_{\text {CANCEL }}\right) \times R_{G}$
where:

- $R_{1}=100 \mathrm{k} \Omega$,
- $I_{\text {PLeth }}=$ photodiode current pleth component,
- $I_{\text {AMB }}=$ photodiode current ambient component, and
- $\mathrm{I}_{\text {CANCEL }}$ = the cancellation current DAC value (as estimated by the host processor).
R_{G} values with various gain settings are listed in Table 1.
Table 1. \mathbf{R}_{G} Values

GAIN	$\mathbf{R}_{\mathbf{G}}(\mathbf{k} \mathbf{\Omega})$
$0(x 1)$	100
$3.5(x 1.5)$	150
$6(x 2)$	200
$9.5(x 3)$	300
$12(x 4)$	400

8.3.1.3 Receiver Control Signals

LED2 sample phase ($\mathbf{S}_{\text {LED2 }}$ or \mathbf{S}_{R}): When this signal is high, the amplifier output corresponds to the LED2 ontime. The amplifier output is filtered and sampled into capacitor $\mathrm{C}_{\text {LED2 }}$. To avoid settling effects resulting from the LED or cable, program $\mathrm{S}_{\text {LED2 } 2}$ to start after the LED turns on. This setting delay is programmable.
Ambient sample phase ($\mathbf{S}_{\text {LED2 amb }}$ or $\mathbf{S}_{\mathbf{R}^{2} \text { amb }}$): When this signal is high, the amplifier output corresponds to the LED2 off-time and can be used to estimàte the ambient signal (for the LED2 phase). The amplifier output is filtered and sampled into capacitor $\mathrm{C}_{\text {LED2_amb }}$.
LED1 sample phase ($\mathbf{S}_{\text {LED1 }}$ or \mathbf{S}_{IR}): When this signal is high, the amplifier output corresponds to the LED1 ontime. The amplifier output is filtered and sampled into capacitor $\mathrm{C}_{\text {LED1 }}$. To avoid settling effects resulting from the LED or cable, program $\mathrm{S}_{\mathrm{LED} 1}$ to start after the LED turns on. This settling delay is programmable.
Ambient sample phase ($\mathbf{S}_{\text {LED1_amb }}$ or $\mathbf{S}_{\mathbf{I R} \text { amb }}$): When this signal is high, the amplifier output corresponds to the LED1 off-time and can be used to estimāte the ambient signal (for the LED1 phase). The amplifier output is filtered and sampled into capacitor $\mathrm{C}_{\text {LED1_amb }}$.
LED2 convert phase (CONV LED2 or CONV ${ }_{\mathrm{R}}$): When this signal is high, the voltage sampled on $\mathrm{C}_{\text {LED2 }}$ is buffered and applied to the ADC for conversion. At the end of the conversion, the ADC provides a single digital code corresponding to the LED2 sample.
Ambient convert phases (CONV ${ }_{\text {LED2_amb }}$ or $\operatorname{CONV}_{\text {R_amb }}$, CONV $_{\text {LED1_ambor }}$ CONV $_{\text {IR_amb }}$): When this signal is high, the voltage sampled on $C_{\text {LED2_amb }}$ (or $\mathrm{C}_{\text {LED1_amb }}$) is buffered and applied to the ADC for conversion. At the end of the conversion, the ADC provides a single digital code corresponding to the ambient sample.
LED1 convert phase (CONV ${ }_{\text {LED } 1}$ or $\operatorname{CONV}_{I R}$): When this signal is high, the voltage sampled on $\mathrm{C}_{\text {LED1 }}$ is buffered and applied to the ADC for conversion. At the end of the conversion, the ADC provides a single digital code corresponding to the LED1 sample.

8.3.1.4 Receiver Timing

See Figure 37 for a timing diagram detailing the control signals related to the LED on-time, Rx sample time, and the ADC conversion times for each channel. Figure 37 shows the timing for a case where each phase occupies 25% of the pulse repetition period. However, this percentage is not a requirement. In cases where the device is operated with low pulse repetition frequency (PRF) or low LED pulse durations, the active portion of the pulse repetition period can be reduced. Using the dynamic power-down feature, the overall power consumption can be significantly reduced.

NOTE: Relationship to the AFE4400 EVM is: LED1 = IR and LED2 $=$ RED.
Figure 37. Rx Timing Diagram

8.3.2 Clocking and Timing Signal Generation

The crystal oscillator generates a master clock signal using an external crystal. In the default mode, a divide-by-2 block converts the $8-\mathrm{MHz}$ clock to 4 MHz , which is used by the AFE to operate the timer modules, ADC, and diagnostics. The $4-\mathrm{MHz}$ clock is buffered and output from the AFE in order to clock an external microcontroller. The clocking functionality is shown in Figure 38.

Figure 38. AFE Clocking

8.3.3 Timer Module

See Figure 39 for a timing diagram detailing the various timing edges that are programmable using the timer module. The rising and falling edge positions of 11 signals can be controlled. The module uses a single 16 -bit counter (running off of the $4-\mathrm{MHz}$ clock) to set the time-base.
All timing signals are set with reference to the pulse repetition period (PRP). Therefore, a dedicated compare register compares the 16 -bit counter value with the reference value specified in the PRF register. Every time that the 16 -bit counter value is equal to the reference value in the PRF register, the counter is reset to 0 .

AFE4400
www.ti.com

NOTE: Programmable edges are shown in blue and red.
Figure 39. AFE Control Signals

For the timing signals in Figure 37, the start and stop edge positions are programmable with respect to the PRF period. Each signal uses a separate timer compare module that compares the counter value with preprogrammed reference values for the start and stop edges. All reference values can be set using the SPI interface.

After the counter value has exceeded the stop reference value, the output signal is set. When the counter value equals the stop reference value, the output signal is reset. Figure 40 shows a diagram of the timer compare register. With a $4-\mathrm{MHz}$ clock, the edge placement resolution is $0.25 \mu \mathrm{~s}$.

Figure 40. Compare Register
The ADC conversion signal requires four pulses in each PRF clock period. Timer compare register 11 uses four sets of start and stop registers to control the ADC conversion signal, as shown in Figure 41.

Figure 41. Timer Module

8.3.3.1 Using the Timer Module

The timer module registers can be used to program the start and end instants in units of $4-\mathrm{MHz}$ clock cycles. These timing instants and the corresponding registers are listed in Table 2.
Note that the device does not restrict the values in these registers; thus, the start and end edges can be positioned anywhere within the pulse repetition period. Care must be taken by the user to program suitable values in these registers to avoid overlapping the signals and to make sure none of the edges exceed the value programmed in the PRP register. Writing the same value in the start and end registers results in a pulse duration of one clock cycle. The following steps describe the timer sequencing configuration:

1. With respect to the start of the PRP period (indicated by timing instant t_{0} in Figure 42), the following sequence of conversions must be followed in order: convert LED2 \rightarrow LED2 ambient \rightarrow LED1 \rightarrow LED1 ambient.
2. Also, starting from t_{0}, the sequence of sampling instants must be staggered with respect to the respective conversions as follows: sample LED2 ambient \rightarrow LED1 \rightarrow LED1 ambient \rightarrow LED2.
3. Finally, align the edges for the two LED pulses with the respective sampling instants.

Table 2. Clock Edge Mapping to SPI Registers

TIME INSTANT (See Figure 42 and Figure 43)	DESCRIPTION	CORRESPONDING REGISTER ADDRESS AND REGISTER BITS	$\begin{aligned} & \text { EXAMPLE }^{(1)} \\ & \text { (Decimal) } \end{aligned}$
t_{0}	Start of pulse repetition period	No register control	-
t_{1}	Start of sample LED2 pulse	LED2STC[15:0], register 01h	6050
t_{2}	End of sample LED2 pulse	LED2ENDC[15:0], register 02h	7998
t_{3}	Start of LED2 pulse	LED2LEDSTC[15:0], register 03h	6000
t_{4}	End of LED2 pulse	LED2LEDENDC[15:0], register 04h	7999
t_{5}	Start of sample LED2 ambient pulse	ALED2STC[15:0], register 05h	50
t_{6}	End of sample LED2 ambient pulse	ALED2ENDC[15:0], register 06h	1998
t_{7}	Start of sample LED1 pulse	LED1STC[15:0], register 07h	2050
t_{8}	End of sample LED1 pulse	LED1ENDC[15:0], register 08h	3998
t_{9}	Start of LED1 pulse	LED1LEDSTC[15:0], register 09h	2000
t_{10}	End of LED1 pulse	LED1LEDENDC[15:0], register 0Ah	3999
t_{11}	Start of sample LED1 ambient pulse	ALED1STC[15:0], register 0Bh	4050
t_{12}	End of sample LED1 ambient pulse	ALED1ENDC[15:0], register 0Ch	5998
t_{13}	Start of convert LED2 pulse	LED2CONVST[15:0], register 0Dh Must start one AFE clock cycle after the ADC reset pulse ends.	4
t_{14}	End of convert LED2 pulse	LED2CONVEND[15:0], register 0Eh	1999
t_{15}	Start of convert LED2 ambient pulse	ALED2CONVST[15:0], register 0Fh Must start one AFE clock cycle after the ADC reset pulse ends.	2004
t_{16}	End of convert LED2 ambient pulse	ALED2CONVEND[15:0], register 10h	3999
t_{17}	Start of convert LED1 pulse	LED1CONVST[15:0], register 11h Must start one AFE clock cycle after the ADC reset pulse ends.	4004
t_{18}	End of convert LED1 pulse	LED1CONVEND[15:0], register 12h	5999
t_{19}	Start of convert LED1 ambient pulse	ALED1CONVST[15:0], register 13h Must start one AFE clock cycle after the ADC reset pulse ends.	6004
t_{20}	End of convert LED1 ambient pulse	ALED1CONVEND[15:0], register 14h	7999
t_{21}	Start of first ADC conversion reset pulse	ADCRSTSTCTO[15:0], register 15h	0
t_{22}	End of first ADC conversion reset pulse ${ }^{(2)}$	ADCRSTENDCTO[15:0], register 16h	3
t_{23}	Start of second ADC conversion reset pulse	ADCRSTSTCT1[15:0], register 17h	2000
t_{24}	End of second ADC conversion reset pulse ${ }^{(2)}$	ADCRSTENDCT1[15:0], register 18h	2003
t_{25}	Start of third ADC conversion reset pulse	ADCRSTSTCT2[15:0], register 19h	4000
t_{26}	End of third ADC conversion reset pulse ${ }^{(2)}$	ADCRSTENDCT2[15:0], register 1Ah	4003
t_{27}	Start of fourth ADC conversion reset pulse	ADCRSTSTCT3[15:0], register 1Bh	6000
t_{28}	End of fourth ADC conversion reset pulse ${ }^{(2)}$	ADCRSTENDCT3[15:0], register 1Ch	6003
t_{29}	End of pulse repetition period	PRPCOUNT[15:0], register 1Dh	7999

(1) Values are based off of a pulse repetition frequency $(P R F)=500 \mathrm{~Hz}$ and duty cycle $=25 \%$.
(2) See Figure 43, note 2 for the effect of the ADC reset time crosstalk.

(1) $R E D=L E D 2, I R=L E D 1$.
(2) A low ADC reset time can result in a small component of the LED signal leaking into the ambient phase. With an ADC reset of two clock cycles, a $-60-\mathrm{dB}$ leakage is expected. In many cases, this leakage does not affect system performance. However, if this crosstalk must be completely eliminated, a longer ADC reset time of approximately six clock cycles is recommended for t_{22}, t_{24}, t_{26}, and t_{28}.

Figure 42. Programmable Clock Edges ${ }^{(1)(2)}$

(1) RED = LED2, IR = LED1.
(2) A low ADC reset time can result in a small component of the LED signal leaking into the ambient phase. With an ADC reset of two clock cycles, a $-60-\mathrm{dB}$ leakage is expected. In many cases, this leakage does not affect system performance. However, if this crosstalk must be completely eliminated, a longer ADC reset time of approximately six clock cycles is recommended for t_{22}, t_{24}, t_{26}, and t_{28}.

Figure 43. Relationship Between the ADC Reset and ADC Conversion Signals ${ }^{(1)(2)}$

8.3.4 Receiver Subsystem Power Path

The block diagram in Figure 44 shows the AFE4400 Rx subsystem power routing. Internal LDOs running off RX_ANA_SUP and RX_DIG_SUP generate the $1.8-\mathrm{V}$ supplies required to drive the internal blocks. The two receive supplies could be shorted to a single supply on the board.

Figure 44. Receive Subsystem Power Routing

8.3.5 Transmit Section

The transmit section integrates the LED driver and the LED current control section with 8 -bit resolution. This integration is designed to meet a dynamic range of better than 105 dB (based on a 1 -sigma LED current noise).
The RED and IR LED reference currents can be independently set. The current source ($\mathrm{l}_{\text {LED }}$) locally regulates and ensures that the actual LED current tracks the specified reference. The transmitter section uses an internal $0.5-\mathrm{V}$ reference voltage for operation. This reference voltage is available on the REF_TX pin and must be decoupled to ground with a $2.2-\mu \mathrm{F}$ capacitor. The TX_REF voltage is derived from the TX_CTRL_SUP. The maximum LED current setting supports up to 50 -mA LED current.
Note that reducing the value of the band-gap reference capacitor on pin 7 reduces the time required for the device to wake-up and settle. However, this reduction in time is a trade-off between wake-up time and noise performance.
The minimum LED_DRV_SUP voltage required for operation depends on:

- Voltage drop across the LED (V LED),
- Voltage drop across the external cable, connector, and any other component in series with the LED ($\mathrm{V}_{\text {CABLE }}$), and
- Transmitter reference voltage.

Using the internal $0.5-\mathrm{V}$ reference voltage, the minimum LED_DRV_SUP voltage can be as low as 3.0 V , provided that [3.0 $\mathrm{V}-(\mathrm{VLED}+\mathrm{VCABLE})>1.4 \mathrm{~V}]$ is met.

See the Recommended Operating Conditions table for further details.
Two LED driver schemes are supported:

- An H-bridge drive for a two-terminal back-to-back LED package; see Figure 45.
- A push-pull drive for a three-terminal LED package; see Figure 46.

Figure 45. Transmit: H-Bridge Drive

Figure 46. Transmit: Push-Pull LED Drive for Common Anode LED Configuration

8.3.5.1 Transmitter Power Path

The block diagram in Figure 47 shows the AFE4400 Tx subsystem power routing.

Figure 47. Transmit Subsystem Power Routing

8.3.5.2 LED Power Reduction During Periods of Inactivity

The diagram in Figure 48 shows how LED bias current passes $50 \mu \mathrm{~A}$ whenever LED_ON occurs. In order to minimize power consumption in periods of inactivity, the LED_ON control must be turned off. Furthermore, the TIMEREN bit in the CONTROL1 register should be disabled by setting the value to 0 .
Note that depending on the LEDs used, the LED may sometimes appear dimly lit even when the LED current is set to 0 mA . This appearance is because of the switching leakage currents (as shown in Figure 48) inherent to the timer function. The dimmed appearance does not effect the ambient light level measurement because during the ambient cycle, LED_ON is turned off for the duration of the ambient measurement.

Figure 48. LED Bias Current

8.4 Device Functional Modes

8.4.1 ADC Operation and Averaging Module

After the falling edge of the ADC reset signal, the ADC conversion phase starts (refer to Figure 43). Each ADC conversion takes $50 \mu \mathrm{~s}$.
The ADC operates with averaging. The averaging module averages multiple ADC samples and reduces noise to improve dynamic range. Figure 49 shows a diagram of the averaging module. The ADC output format is in 22 -bit twos complement, as shown in Figure 50. The two MSB bits of the 24-bit data can be ignored.

Figure 49. Averaging Module
Figure 50. 22-Bit Word

23	22	21	20	19	18	17	16	15	14	13	12
Ignore		22-Bit ADC Code, MSB to LSB									
11	10	9	8	7	6	5	4	3	2	1	0
22-Bit ADC Code, MSB to LSB											

Table 3 shows the mapping of the input voltage to the ADC to its output code.
Table 3. ADC Input Voltage Mapping

DIFFERENTIAL INPUT VOLTAGE AT ADC INPUT	22-BIT ADC OUTPUT CODE
-1.2 V	1000000000000000000000
$\left(-1.2 / 2^{21}\right) \mathrm{V}$	1111111111111111111111
0	0000000000000000000000
$\left(1.2 / 2^{21}\right) \mathrm{V}$	0000000000000000000001
1.2 V	0111111111111111111111

The data format is binary twos complement format, MSB-first. Because the TIA has a full-scale range of $\pm 1 \mathrm{~V}, \mathrm{TI}$ recommends that the input to the ADC does not exceed $\pm 1 \mathrm{~V}$, which is approximately 80% of its full-scale.
In cases where having the processor read the data as a 24 -bit word instead of a 22 -bit word is more convenient, the entire register can be mapped to the input level as shown in Figure 51.

Figure 51. 24-Bit Word

23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	
										t AD	Co	,	to											

AFE4400
www.ti.com
SBAS601H -DECEMBER 2012-REVISED JULY 2014
Table 4 shows the mapping of the input voltage to the ADC to its output code when the entire 24 -bit word is considered.

Table 4. Input Voltage Mapping

DIFFERENTIAL INPUT VOLTAGE AT ADC INPUT	24-BIT ADC OUTPUT CODE
-1.2 V	111000000000000000000000
$\left(-1.2 / 2^{21}\right) \mathrm{V}$	11111111111111111111111111
0	000000000000000000000000
$\left(1.2 / 2^{21}\right) \mathrm{V}$	000000000000000000000001
1.2 V	000111111111111111111111

Now the data can be considered as a 24 -bit data in binary twos complement format, MSB-first. The advantage of using the entire 24 -bit word is that the ADC output is correct, even when the input is over the normal operating range.

8.4.1.1 Operation

The ADC digital samples are accumulated and averaged after every $50 \mu \mathrm{~s}$. Then, at the next rising edge of the ADC reset signal, the average value (22-bit) is written into the output registers sequentially as follows (see Figure 52):

- At the 25% reset signal, the averaged 22 -bit word is written to register 2Ah.
- At the 50% reset signal, the averaged 22 -bit word is written to register 2Bh.
- At the 75% reset signal, the averaged 22 -bit word is written to register 2Ch.
- At the next 0% reset signal, the averaged 22 -bit word is written to register 2Dh. The contents of registers 2Ah and 2Bh are written to register 2Eh and the contents of registers 2Ch and 2Dh are written to register 2Fh.
At the rising edge of the ADC_RDY signal, the contents of all six result registers can be read out.
The number of samples to be used per conversion phase is preset to 2 .

NOTE: This example shows three data averages.
Figure 52. ADC Data with Averaging

8.4.2 Diagnostics

The device includes diagnostics to detect open or short conditions of the LED and photosensor, LED current profile feedback, and cable on or off detection.

8.4.2.1 Photodiode-Side Fault Detection

Figure 53 shows the diagnostic for the photodiode-side fault detection.

Figure 53. Photodiode Diagnostic

AFE4400
SBAS601H -DECEMBER 2012-REVISED JULY 2014
www.ti.com

8.4.2.2 Transmitter-Side Fault Detection

Figure 54 shows the diagnostic for the transmitter-side fault detection.

Figure 54. Transmitter Diagnostic

8.4.2.3 Diagnostics Module

The diagnostics module, when enabled, checks for nine types of faults sequentially. The results of all faults are latched in 11 separate flags.
At the end of the sequence, the state of the 11 flags are combined to generate two interrupt signals: PD_ALM for photodiode-related faults and LED_ALM for transmit-related faults.

The status of all flags can also be read using the SPI interface. Table 5 details each fault and flag used. Note that the diagnostics module requires all AFE blocks to be enabled in order to function reliably.

Table 5. Fault and Flag Diagnostics ${ }^{(1)}$

MODULE	SEQ.	FAULT	FLAG1	FLAG2	FLAG3	FLAG4	FLAG5	FLAG6	FLAG7	FLAG8	FLAG9	FLAG10	FLAG11
-	-	No fault	0	0	0	0	0	0	0	0	0	0	0
PD	1	Rx INP cable shorted to LED cable	1										
	2	Rx INN cable shorted to LED cable		1									
	3	Rx INP cable shorted to GND cable			1								
	4	Rx INN cable shorted to GND cable				1							
	5	PD open or shorted					1	1					
LED	6	Tx OUTM line shorted to GND cable							1				
	7	Tx OUTP line shorted to GND cable								1			
	8	LED open or shorted									1	1	
	9	LED open or shorted											1

(1) Resistances below $10 \mathrm{k} \Omega$ are considered to be shorted.

Figure 55 shows the timing for the diagnostic function.

Figure 55. Diagnostic Timing Diagram
By default, the diagnostic function takes $\mathrm{t}_{\mathrm{DIAG}}=16 \mathrm{~ms}$ to complete. After the diagnostics function completes, the AFE4400 filter must be allowed time to settle. See the Electrical Characteristics for the filter settling time.

8.5 Programming

8.5.1 Serial Programming Interface

The SPI-compatible serial interface consists of four signals: SCLK (serial clock), SPISOMI (serial interface data output), SPISIMO (serial interface data input), and SPISTE (serial interface enable).
The serial clock (SCLK) is the serial peripheral interface (SPI) serial clock. SCLK shifts in commands and shifts out data from the device. SCLK features a Schmitt-triggered input and clocks data out on the SPISOMI. Data are clocked in on the SPISIMO pin. Even though the input has hysteresis, TI recommends keeping SCLK as clean as possible to prevent glitches from accidentally shifting the data. When the serial interface is idle, hold SCLK low.

The SPI serial out master in (SPISOMI) pin is used with SCLK to clock out the AFE4400 data. The SPI serial in master out (SPISIMO) pin is used with SCLK to clock in data to the AFE4400. The SPI serial interface enable (SPISTE) pin enables the serial interface to clock data on the SPISIMO pin in to the device.

8.5.2 Reading and Writing Data

The device has a set of internal registers that can be accessed by the serial programming interface formed by the SPISTE, SCLK, SPISIMO, and SPISOMI pins.

8.5.2.1 Writing Data

The SPI_READ register bit must be first set to 0 before writing to a register. When SPISTE is low:

- Serially shifting bits into the device is enabled.
- Serial data (on the SPISIMO pin) are latched at every SCLK rising edge.
- The serial data are loaded into the register at every 32nd SCLK rising edge.

Programming (continued)

In case the word length exceeds a multiple of 32 bits, the excess bits are ignored. Data can be loaded in multiples of 32 -bit words within a single active SPISTE pulse. The first eight bits form the register address and the remaining 24 bits form the register data. Figure 56 shows an SPI timing diagram for a single write operation. For multiple read and write cycles, refer to the Multiple Data Reads and Writes section.

Figure 56. AFE SPI Write Timing Diagram

AFE4400

Programming (continued)

8.5.2.2 Reading Data

The SPI_READ register bit must be first set to 1 before reading from a register. The AFE 4400 includes a mode where the contents of the internal registers can be read back on the SPISOMI pin. This mode may be useful as a diagnostic check to verify the serial interface communication between the external controller and the AFE. To enable this mode, first set the SPI_READ register bit using the SPI write command, as described in the Writing Data section. In the next command, specify the SPI register address with the desired content to be read. Within the same SPI command sequence, the AFE outputs the contents of the specified register on the SPISOMI pin. Figure 57 shows an SPI timing diagram for a single read operation. For multiple read and write cycles, refer to the Multiple Data Reads and Writes section.

Figure 57. AFE SPI Read Timing Diagram

8.5.2.3 Multiple Data Reads and Writes

The device includes functionality where multiple read and write operations can be performed during a single SPISTE event. To enable this functionality, the first eight bits determine the register address to be written and the remaining 24 bits determine the register data. Perform two writes with the SPI read bit enabled during the second write operation in order to prepare for the read operation, as described in the Writing Data section. In the next command, specify the SPI register address with the desired content to be read. Within the same SPI command sequence, the AFE outputs the contents of the specified register on the SPISOMI pin. This functionality is described in the Writing Data and Reading Data sections. Figure 58 shows a timing diagram for the SPI multiple read and write operations.

(1) The SPI read register bit must be enabled before attempting a serial readout from the AFE.
(2) The second write operation must be configured for register 0 with data 000001 h .
(3) Specify the register address whose contents must be read back on $\mathrm{A}[7: 0]$.
(4) The AFE outputs the contents of the specified register on the SPISOMI pin.

Figure 58. Serial Multiple Read and Write Operations

AFE4400

8.5.2.4 Register Initialization

After power-up, the internal registers must be initialized to the default values. This initialization can be done in one of two ways:

- Through a hardware reset by applying a low-going pulse on the RESET pin, or
- By applying a software reset. Using the serial interface, set SW_RESET (bit D3 in register 00h) high. This setting initializes the internal registers to the default values and then self-resets to 0 . In this case, the RESET pin is kept high (inactive).

8.5.2.5 AFE SPI Interface Design Considerations

Note that when the AFE4400 is deselected, the SPISOMI, CLKOUT, ADC_RDY, PD_ALM, LED_ALM, and DIAG_END digital output pins do not enter a 3 -state mode. This condition, therefore, must be taken into account when connecting multiple devices to the SPI port and for power-management considerations. In order to avoid loading the SPI bus when multiple devices are connected, the DIGOUT_TRISTATE register bit must be to 1 whenever the AFE SPI is inactive.

8.6 Register Maps

8.6.1 AFE Register Map

The AFE consists of a set of registers that can be used to configure it, such as receiver timings, I-V amplifier settings, transmit LED currents, and so forth. The registers and their contents are listed in Table 6. These registers can be accessed using the AFE SPI interface.

Table 6. AFE Register Map

NAME	REGISTER CONTROL ${ }^{(1)}$	ADDRESS		REGISTER DATA																							
		Hex	Dec	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
CONTROLO	w	00	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	$\begin{aligned} & \text { 匕 } \\ & \\ & z_{\infty} \end{aligned}$			$\stackrel{\stackrel{\rightharpoonup}{4}}{\substack{\text { ¢ }}}$
LED2STC	R/W	01	1	0	0	0	0	0	0	0	0	LED2STC[15:0]															
LED2ENDC	R/W	02	2	0	0	0	0	0	0	0	0	LED2ENDC[15:0]															
LED2LEDSTC	R/W	03	3	0	0	0	0	0	0	0	0	LED2LEDSTC[15:0]															
LED2LEDENDC	R/W	04	4	0	0	0	0	0	0	0	0	LED2LEDENDC[15:0]															
ALED2STC	R/W	05	5	0	0	0	0	0	0	0	0	ALED2STC[15:0]															
ALED2ENDC	R/W	06	6	0	0	0	0	0	0	0	0	ALED2ENDC[15:0]															
LED1STC	R/W	07	7	0	0	0	0	0	0	0	0	LED1STC[15:0]															
LED1ENDC	R/W	08	8	0	0	0	0	0	0	0	0	LED1ENDC[15:0]															
LED1LEDSTC	R/W	09	9	0	0	0	0	0	0	0	0	LED1LEDSTC[15:0]															
LED1LEDENDC	R/W	0A	10	0	0	0	0	0	0	0	0	LED1LEDENDC[15:0]															
ALED1STC	R/W	OB	11	0	0	0	0	0	0	0	0	ALED1STC[15:0]															
ALED1ENDC	R/W	0 C	12	0	0	0	0	0	0	0	0	ALED1ENDC[15:0]															
LED2CONVST	R/W	0D	13	0	0	0	0	0	0	0	0	LED2CONVST[15:0]															
LED2CONVEND	R/W	OE	14	0	0	0	0	0	0	0	0	LED2CONVEND[15:0]															
ALED2CONVST	R/W	OF	15	0	0	0	0	0	0	0	0	ALED2CONVST[15:0]															
ALED2CONVEND	R/W	10	16	0	0	0	0	0	0	0	0	ALED2CONVEND[15:0]															
LED1CONVST	R/W	11	17	0	0	0	0	0	0	0	0	LED1CONVST[15:0]															
LED1CONVEND	R/W	12	18	0	0	0	0	0	0	0	0	LED1CONVEND[15:0]															
ALED1CONVST	R/W	13	19	0	0	0	0	0	0	0	0	ALED1CONVST[15:0]															
ALED1CONVEND	R/W	14	20	0	0	0	0	0	0	0	0	ALED1CONVEND[15:0]															
ADCRSTSTCTO	R/W	15	21	0	0	0	0	0	0	0	0	ADCRSTCTO[15:0]															
ADCRSTENDCT0	R/W	16	22	0	0	0	0	0	0	0	0	ADCRENDCTO[15:0]															
ADCRSTSTCT1	R/W	17	23	0	0	0	0	0	0	0	0	ADCRSTCT1[15:0]															
ADCRSTENDCT1	R/W	18	24	0	0	0	0	0	0	0	0	ADCRENDCT1[15:0]															
ADCRSTSTCT2	R/W	19	25	0	0	0	0	0	0	0	0	ADCRSTCT2[15:0]															
ADCRSTENDCT2	R/W	1A	26	0	0	0	0	0	0	0	0	ADCRENDCT2[15:0]															

(1) $R=$ read only, $R / W=$ read or write, $N / A=$ not available, and $W=$ write only.

Table 6. AFE Register Map (continued)

NAME	REGISTER CONTROL ${ }^{(1)}$	ADDRESS		REGISTER DATA																							
		Hex	Dec	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
ADCRSTSTCT3	R/W	1B	27	0	0	0	0	0	0	0	0	ADCRSTCT3[15:0]															
ADCRSTENDCT3	R/W	1 C	28	0	0	0	0	0	0	0	0	ADCRENDCT3[15:0]															
PRPCOUNT	R/W	1D	29	0	0	0	0	0	0	0	0	PRPCT[15:0]															
CONTROL1	R/W	1E	30	0	0	0	0	0	0	0	0	0	0	0	0	CLKALMPIN[2:0]			$\begin{aligned} & \underset{\sim}{\underset{\sim}{x}} \\ & \sum_{i}^{\underset{1}{\mid}} \end{aligned}$	0	0	0	0	0	0	1	0
SPARE1	N/A	1F	31	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TIAGAIN	R/W	20	32	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TIA_AMB_GAIN	R/W	21	33	0	0	0	0	AMBDAC[3:0]				0	$\begin{aligned} & \text { z } \\ & \text { ü } \\ & \text { Ü } \\ & \text { K } \end{aligned}$	0	0	0	STG2GAIN[2:0]			CF_LED[4:0]					RF_LED[2:0]		
LEDCNTRL	R/W	22	34	0	0	0	0	0	0	$\begin{aligned} & \hline \text { u } \\ & \stackrel{1}{0} \\ & \underline{Y} \\ & 0 \\ & 0 \\ & \hline \end{aligned}$	1	LED1[7:0]								LED2[7:0]							
CONTROL2	R/W	23	35	0	0	0	0	0	0	1	0	0	0	0	0	$\begin{aligned} & \text { O} \\ & \sum_{0}^{O} \\ & \stackrel{Y}{0} \\ & \underset{x}{1} \end{aligned}$		$\begin{aligned} & \frac{\infty}{\bar{\rightharpoonup}} \\ & \stackrel{\rightharpoonup}{\stackrel{1}{x}} \end{aligned}$	1	0	0	0	0	0	$\stackrel{\times}{y}$	$\begin{aligned} & \times \times \\ & \stackrel{x}{\mathrm{a}} \\ & \stackrel{a}{n} \end{aligned}$	
SPARE2	N/A	24	36	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
SPARE3	N/A	25	37	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
SPARE4	N/A	26	38	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
RESERVED1	N/A	27	39	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
RESERVED2	N/A	28	40	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ALARM	R/W	29	41	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		0	0	0	0	0	0	0
LED2VAL	R	2A	42	LED2VAL[23:0]																							
ALED2VAL	R	2B	43	ALED2VAL[23:0]																							
LED1VAL	R	2C	44	LED1VAL[23:0]																							
ALED1VAL	R	2D	45	ALED1VAL[23:0]																							
LED2-ALED2VAL	R	2E	46	LED2-ALED2VAL[23:0]																							
LED1-ALED1VAL	R	2 F	47	LED1-ALED1VAL[23:0]																							

Table 6. AFE Register Map (continued)

NAME	REGISTER CONTROL ${ }^{(1)}$	ADDRESS		REGISTER DATA																							
		Hex	Dec	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
DIAG	R	30	48	0	0	0	0	0	0	0	0	0	0	0	$\begin{aligned} & \sum_{\mathbb{K}}^{K} \\ & 0 \end{aligned}$		$\begin{aligned} & \text { z } \\ & \text { 01 } \\ & \text { 을 } \\ & \ddot{3} \end{aligned}$	$\begin{aligned} & \text { z } \\ & 00 \\ & 0 \\ & \tilde{\sim} \\ & \text { un } \end{aligned}$	$\begin{aligned} & \text { U } \\ & \text { Bu } \end{aligned}$	$\begin{aligned} & \text { Q } \\ & \text { ㅇ } \\ & \frac{1}{0} \\ & 0 \\ & \vdots \\ & 0 \end{aligned}$	0 2 0 0 0 5 0	$\begin{aligned} & 0 \\ & \mathrm{O} \\ & \mathrm{a} \end{aligned}$	$\begin{aligned} & \text { U } \\ & \text { a } \end{aligned}$	$\begin{aligned} & \text { Z} \\ & \text { U} \\ & 0 \\ & Z \\ & \underline{Z} \end{aligned}$	$\begin{aligned} & \text { Q } \\ & \text { U } \\ & \text { N } \\ & \underline{n} \\ & \underline{Z} \end{aligned}$	$\begin{aligned} & \text { 岃 } \\ & \text { On } \\ & \underline{Z} \end{aligned}$	$\begin{aligned} & \text { ün } \\ & 0 \\ & 0 \\ & \underline{\underline{z}} \end{aligned}$

8.6.2 AFE Register Description

Figure 59. CONTROLO: Control Register 0 (Address $=\mathbf{0 0 h}$, Reset Value $=\mathbf{0 0 0 0 h}$)

23	22	21	20	19	18	17	16	15	14	13	12
0	0	0	0	0	0	0	0	0	0	0	0
11	10	9	8	7	6	5	4	3	2	1	0
0	0	0	0	0	0	0	0	SW_RST	DIAG_EN	COUNT RST	$\stackrel{\text { SPI }}{\text { READ }}$

This register is write-only. CONTROLO is used for AFE software and count timer reset, diagnostics enable, and SPI read functions.

Bits 23:4 Must be 0
 Bit 3 SW_RST: Software reset

$0=$ No action (default after reset)
1 = Software reset applied; resets all internal registers to the default values and self-clears to 0
Bit 2 DIAG_EN: Diagnostic enable
$0=$ No action (default after reset)
1 = Diagnostic mode is enabled and the diagnostics sequence starts when this bit is set.
At the end of the sequence, all fault status are stored in the DIAG: Diagnostics Flag
Register. Afterwards, the DIAG_EN register bit self-clears to 0 .
Note that the diagnostics enable bit is automatically reset after the diagnostics completes (16 ms). During the diagnostics mode, ADC data are invalid because of the toggling diagnostics switches.

Bit 1

TIM_CNT_RST: Timer counter reset
$0=$ Disables timer counter reset, required for normal timer operation (default after reset)
1 = Timer counters are in reset state
Bit $0 \quad$ SPI READ: SPI read
$0=$ SPI read is disabled (default after reset)
$1=$ SPI read is enabled
Figure 60. LED2STC: Sample LED2 Start Count Register (Address $=01 \mathrm{~h}$, Reset Value $=0000 \mathrm{~h}$)

23	22	21	20	19	18	17	15	14	13	12
0	0	0	0	0	0	0	0		LED2STC[15:0]	
11	10	9	8	7	6	5	4	3	2	1
LED2STC[15:0]									0	

This register sets the start timing value for the LED2 signal sample.

Bits 23:16 Must be 0

Bits 15:0

LED2STC[15:0]: Sample LED2 start count

The contents of this register can be used to position the start of the sample LED2 signal with respect to the pulse repetition period (PRP), as specified in the PRPCOUNT register. The count is specified as the number of
$4-\mathrm{MHz}$ clock cycles. Refer to the Using the Timer Module section for details.

Figure 61. LED2ENDC: Sample LED2 End Count Register (Address = 02h, Reset Value =0000h)

23	22	21	20	19	18	16	15	14	13	12
0	0	0	0	0	0	0	0	LED2ENDC[15:0]		
11	10	9	8	7	6	5	4	3	2	1

This register sets the end timing value for the LED2 signal sample.
Bits 23:16

Must be 0

Bits 15:0

LED2ENDC[15:0]: Sample LED2 end count

The contents of this register can be used to position the end of the sample LED2 signal with respect to the PRP, as specified in the PRPCOUNT register. The count is specified as the number of $4-\mathrm{MHz}$ clock cycles. Refer to the Using the Timer Module section for details.

Figure 62. LED2LEDSTC: LED2 LED Start Count Register (Address $=\mathbf{0 3 h}$, Reset Value $=\mathbf{0 0 0 0 h}$)

23	22	21	20	19	18	16	15	14	13	12
0	0	0	0	0	0	0	0		LED2LEDSTC[15:0]	
11	10	9	8	7	6	5	4	3	2	1
LED2LEDSTC[15:0]										

This register sets the start timing value for when the LED2 signal turns on.

Bits 23:16 Must be 0

Bits 15:0 LED2LEDSTC[15:0]: LED2 start count
The contents of this register can be used to position the start of the LED2 with respect to the PRP, as specified in the PRPCOUNT register. The count is specified as the number of 4MHz clock cycles. Refer to the Using the Timer Module section for details.

Figure 63. LED2LEDENDC: LED2 LED End Count Register (Address = 04h, Reset Value $=\mathbf{0 0 0 0 h}$)

23	22	21	20	19	18	17	16	14	13	12	
0	0	0	0	0	0	0	0	LED2LEDENDC[15:0]			
11	10	9	8	7	6	5	4	3	2	1	0
LED2LEDENDC[15:0]											

This register sets the end timing value for when the LED2 signal turns off.

Bits 23:16

Must be 0

Bits 15:0

LED2LEDENDC[15:0]: LED2 end count

The contents of this register can be used to position the end of the LED2 signal with respect to the PRP, as specified in the PRPCOUNT register. The count is specified as the number of $4-\mathrm{MHz}$ clock cycles. Refer to the Using the Timer Module section for details.

Figure 64. ALED2STC: Sample Ambient LED2 Start Count Register (Address $=\mathbf{0 5 h}$, Reset Value $=\mathbf{0 0 0 0 h}$)

23	22	21	20	19	18	16	15	14	13	12	
0	0	0	0	0	0	0	0	ALED2STC[15:0]			
11	10	9	8	7	6	5	4	3	2	1	0
ALED2STC[15:0]											

This register sets the start timing value for the ambient LED2 signal sample.
Bits 23:16 Must be 0
Bits 15:0
ALED2STC[15:0]: Sample ambient LED2 start count
The contents of this register can be used to position the start of the sample ambient LED2 signal with respect to the PRP, as specified in the PRPCOUNT register. The count is specified as the number of $4-\mathrm{MHz}$ clock cycles. Refer to the Using the Timer Module section for details.

Figure 65. ALED2ENDC: Sample Ambient LED2 End Count Register
(Address $=06 \mathrm{~h}$, Reset Value $=0000 \mathrm{~h}$)

| 23 | 22 | 21 | 20 | 19 | 18 | 16 | 15 | 14 | 13 | 12 | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | ALED2ENDC[15:0] | | |
| 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
| ALED2ENDC[15:0] | | | | | | | | | | | |

This register sets the end timing value for the ambient LED2 signal sample.

Bits 23:16 Must be 0

ALED2ENDC[15:0]: Sample ambient LED2 end count

The contents of this register can be used to position the end of the sample ambient LED2 signal with respect to the PRP, as specified in the PRPCOUNT register. The count is specified as the number of $4-\mathrm{MHz}$ clock cycles. Refer to the Using the Timer Module section for details.

Figure 66. LED1STC: Sample LED1 Start Count Register (Address $\boldsymbol{=} \mathbf{0 7 h}$, Reset Value $=0000 \mathrm{~h}$)

23	22	21	20	19	18	16	15	14	13	12	
0	0	0	0	0	0	0	0		LED1STC[15:0]		
11	10	9	8	7	6	5	4	3	2	1	0
LED1STC[15:0]											

This register sets the start timing value for the LED1 signal sample.

Bits 23:17 Must be 0

Bits 16:0 LED1STC[15:0]: Sample LED1 start count

The contents of this register can be used to position the start of the sample LED1 signal with respect to the PRP, as specified in the PRPCOUNT register. The count is specified as the number of
$4-\mathrm{MHz}$ clock cycles. Refer to the Using the Timer Module section for details.

AFE4400
www.ti.com
Figure 67. LED1ENDC: Sample LED1 End Count (Address = 08h, Reset Value = 0000h)

23	22	21	20	19	18	16	15	14	13		
0	0	0	0	0	0	0	0	LED1ENDC[15:0]			
11	10	9	8	7	6	5	4	3	2	1	0
LED1ENDC[15:0]											

This register sets the end timing value for the LED1 signal sample.

Bits 23:17 Must be 0

Bits 16:0 LED1ENDC[15:0]: Sample LED1 end count
The contents of this register can be used to position the end of the sample LED1 signal with respect to the PRP, as specified in the PRPCOUNT register. The count is specified as the number of $4-\mathrm{MHz}$ clock cycles. Refer to the Using the Timer Module section for details.

Figure 68. LED1LEDSTC: LED1 LED Start Count Register (Address $=09 \mathrm{~h}$, Reset Value $=\mathbf{0 0 0 0 h}$)

23	22	21	20	19	18	17	16	14	13	12	
0	0	0	0	0	0	0	0		LED1LEDSTC[15:0]		
11	10	9	8	7	6	5	4	3	2	1	0
LED1LEDSTC[15:0]											

This register sets the start timing value for when the LED1 signal turns on.
Bits 23:16 Must be 0
Bits 15:0 LED1LEDSTC[15:0]: LED1 start count
The contents of this register can be used to position the start of the LED1 signal with respect to the PRP, as specified in the PRPCOUNT register. The count is specified as the number of $4-\mathrm{MHz}$ clock cycles. Refer to the Using the Timer Module section for details.

Figure 69. LED1LEDENDC: LED1 LED End Count Register (Address = 0Ah, Reset Value = 0000h)

23	22	21	20	19	18	16	15	14	13	12	
0	0	0	0	0	0	0	0	LED1LEDENDC[15:0]			
11	10	9	8	7	6	5	4	3	2	1	0
LED1LEDENDC[15:0]											

This register sets the end timing value for when the LED1 signal turns off.
Bits 23:16 Must be 0
Bits 15:0 LED1LEDENDC[15:0]: LED1 end count
The contents of this register can be used to position the end of the LED1 signal with respect to the PRP, as specified in the PRPCOUNT register. The count is specified as the number of $4-\mathrm{MHz}$ clock cycles. Refer to the Using the Timer Module section for details.

Figure 70. ALED1STC: Sample Ambient LED1 Start Count Register (Address $=\mathbf{0 B h}$, Reset Value $=0000 \mathrm{~h}$)

23	22	21	20	19	18	16	15	14	13	12	
0	0	0	0	0	0	0	0		ALED1STC[15:0]		
11	10	9	8	7	6	5	4	3	2	1	0
ALED1STC[15:0]											

This register sets the start timing value for the ambient LED1 signal sample.
Bits 23:16 Must be 0
Bits 15:0
ALED1STC[15:0]: Sample ambient LED1 start count
The contents of this register can be used to position the start of the sample ambient LED1 signal with respect to the PRP, as specified in the PRPCOUNT register. The count is specified as the number of $4-\mathrm{MHz}$ clock cycles. Refer to the Using the Timer Module section for details.

Figure 71. ALED1ENDC: Sample Ambient LED1 End Count Register
(Address $=0 \mathrm{Ch}$, Reset Value $=0000 \mathrm{~h}$)

23	22	21	20	19	18	16	15	14	13	12	
0	0	0	0	0	0	0	0		ALED1ENDC[15:0]		
11	10	9	8	7	6	5	4	3	2	1	0
ALED1ENDC[15:0]											

This register sets the end timing value for the ambient LED1 signal sample.

Bits 23:16 Must be 0

Bits 15:0

ALED1ENDC[15:0]: Sample ambient LED1 end count

The contents of this register can be used to position the end of the sample ambient LED1 signal with respect to the PRP, as specified in the PRPCOUNT register. The count is specified as the number of $4-\mathrm{MHz}$ clock cycles. Refer to the Using the Timer Module section for details.

Figure 72. LED2CONVST: LED2 Convert Start Count Register (Address $=0 \mathrm{Dh}$, Reset Value $\mathbf{=} \mathbf{0 0 0 0 h}$)

23	22	21	20	19	18	16	15	14	13	12
0	0	0	0	0	0	0	0		LED2CONVST[15:0]	
11	10	9	8	7	6	5	4	3	2	1

This register sets the start timing value for the LED2 conversion.

Bits 23:16 Must be 0

Bits 15:0 LED2CONVST[15:0]: LED2 convert start count

The contents of this register can be used to position the start of the LED2 conversion signal with respect to the PRP, as specified in the PRPCOUNT register. The count is specified as the number of $4-\mathrm{MHz}$ clock cycles. Refer to the Using the Timer Module section for details.

AFE4400
www.ti.com
Figure 73. LED2CONVEND: LED2 Convert End Count Register (Address = 0Eh, Reset Value = 0000h)

This register sets the end timing value for the LED2 conversion.

Bits 23:16 Must be 0

Bits 15:0 LED2CONVEND[15:0]: LED2 convert end count
The contents of this register can be used to position the end of the LED2 conversion signal with respect to the PRP, as specified in the PRPCOUNT register. The count is specified as the number of $4-\mathrm{MHz}$ clock cycles. Refer to the Using the Timer Module section for details.

Figure 74. ALED2CONVST: LED2 Ambient Convert Start Count Register (Address $=\mathbf{0 F h}$, Reset Value $=\mathbf{0 0 0 0 h}$)

23	22	21	20	19	18	16	15	14	
0	0	0	0	0	0	0	0	12	
11	10	9	8	7	6	5	4	3	2

This register sets the start timing value for the ambient LED2 conversion.

Bits 23:16 Must be 0

Bits 15:0

ALED2CONVST[15:0]: LED2 ambient convert start count

The contents of this register can be used to position the start of the LED2 ambient conversion signal with respect to the PRP, as specified in the PRPCOUNT register. The count is specified as the number of $4-\mathrm{MHz}$ clock cycles. Refer to the Using the Timer Module section for details.

Figure 75. ALED2CONVEND: LED2 Ambient Convert End Count Register (Address $=10 \mathrm{~h}$, Reset Value $=\mathbf{0 0 0 0}$)

23	22	21	20	19	18	16	15	14	13	12	
0	0	0	0	0	0	0	0		ALED2CONVEND[15:0]		
11	10	9	8	7	6	5	4	3	2	1	0

This register sets the end timing value for the ambient LED2 conversion.

Bits 23:16 Must be 0
 Bits 15:0
 ALED2CONVEND[15:0]: LED2 ambient convert end count

The contents of this register can be used to position the end of the LED2 ambient conversion signal with respect to the PRP. The count is specified as the number of $4-\mathrm{MHz}$ clock cycles. Refer to the Using the Timer Module section for details.

Figure 76. LED1CONVST: LED1 Convert Start Count Register (Address $\mathbf{= 1 1 h}$, Reset Value $=\mathbf{0 0 0 0 h}$)

23	22	21	20	19	18	16	15	14	13	12	
0	0	0	0	0	0	0	0		LED1CONVST[15:0]		
11	10	9	8	7	6	5	4	3	2	1	0
LED1CONVST[15:0]											

This register sets the start timing value for the LED1 conversion.
Bits 23:16 Must be 0
Bits 15:0 LED1CONVST[15:0]: LED1 convert start count
The contents of this register can be used to position the start of the LED1 conversion signal with respect to the PRP, as specified in the PRPCOUNT register. The count is specified as the number of $4-\mathrm{MHz}$ clock cycles. Refer to the Using the Timer Module section for details.

Figure 77. LED1CONVEND: LED1 Convert End Count Register (Address = 12h, Reset Value =0000h)

23	22	21	20	19	18	16	15	14	13	12
0	0	0	0	0	0	0	0		LED1CONVEND[15:0]	
11	10	9	8	7	6	5	4	3	2	1
LED1CONVEND[15:0]										

This register sets the end timing value for the LED1 conversion.
Bits 23:16 Must be 0
Bits 15:0 LED1CONVEND[15:0]: LED1 convert end count
The contents of this register can be used to position the end of the LED1 conversion signal with respect to the PRP. The count is specified as the number of $4-\mathrm{MHz}$ clock cycles. Refer to the Using the Timer Module section for details.

Figure 78. ALED1CONVST: LED1 Ambient Convert Start Count Register (Address $=13 \mathrm{~h}$, Reset Value $=\mathbf{0 0 0 0 h}$)

23	22	21	20	19	18	16	15	14	13	12	
0	0	0	0	0	0	0	0		ALED1CONVST[15:0]		
11	10	9	8	7	6	5	4	3	2	1	0
ALED1CONVST[15:0]											

This register sets the start timing value for the ambient LED1 conversion.

Bits 23:16 Must be 0

Bits 15:0

ALED1CONVST[15:0]: LED1 ambient convert start count

The contents of this register can be used to position the start of the LED1 ambient conversion signal with respect to the PRP, as specified in the PRPCOUNT register. The count is specified as the number of $4-\mathrm{MHz}$ clock cycles. Refer to the Using the Timer Module section for details.

AFE4400

Figure 79. ALED1CONVEND: LED1 Ambient Convert End Count Register (Address $=\mathbf{1 4 h}$, Reset Value $=\mathbf{0 0 0 0}$)

23	22	21	20	19	18	16	15	14	13	12	
0	0	0	0	0	0	0	0		ALED1CONVEND[15:0]		
11	10	9	8	7	6	5	4	3	2	1	0
ALED1CONVEND[15:0]											

This register sets the end timing value for the ambient LED1 conversion.

Bits 23:16 Must be 0

Bits 15:0

ALED1CONVEND[15:0]: LED1 ambient convert end count

The contents of this register can be used to position the end of the LED1 ambient conversion signal with respect to the PRP. The count is specified as the number of $4-\mathrm{MHz}$ clock cycles. Refer to the Using the Timer Module section for details.

Figure 80. ADCRSTSTCTO: ADC Reset 0 Start Count Register (Address $\boldsymbol{= 1 5 h}$, Reset Value $=\mathbf{0 0 0 0 h}$)

23	22	21	20	19	18	17	16	14	13	12	
0	0	0	0	0	0	0	0		ADCRSTSTCTO[15:0]		
11	10	9	8	7	6	5	4	3	2	1	0
ADCRSTSTCTO[15:0]											

This register sets the start position of the ADC0 reset conversion signal.

Bits 23:16 Must be 0

Bits 15:0 ADCRSTSTCTO[15:0]: ADC RESET 0 start count

The contents of this register can be used to position the start of the ADC reset conversion signal (default value after reset is 0000 h). Refer to the Using the Timer Module section for details.

Figure 81. ADCRSTENDCTO: ADC Reset 0 End Count Register (Address $=\mathbf{1 6 h}$, Reset Value $=\mathbf{0 0 0 0}$)

23	22	21	20	19	18	16	15	14	13	12	
0	0	0	0	0	0	0	0		ADCRSTENDCTO[15:0]		
11	10	9	8	7	6	5	4	3	2	1	0
ADCRSTENDCTO[15:0]											

This register sets the end position of the ADCO reset conversion signal.

Bits 23:16 Must be 0

Bits 15:0

ADCRSTENDCTO[15:0]: ADC RESET 0 end count

The contents of this register can be used to position the end of the ADC reset conversion signal (default value after reset is 0000 h). Refer to the Using the Timer Module section for details.

Figure 82. ADCRSTSTCT1: ADC Reset 1 Start Count Register (Address $=\mathbf{1 7 h}$, Reset Value $=\mathbf{0 0 0 0 h}$)

23	22	21	20	19	18	16	15	14	13	12
0	0	0	0	0	0	0	0		ADCRSTSTCT1[15:0]	
11	10	9	8	7	6	5	4	3	2	1
ADCRSTSTCT1[15:0]									0	

This register sets the start position of the ADC1 reset conversion signal.
Bits 23:16 Must be 0
Bits 15:0 ADCRSTSTCT1[15:0]: ADC RESET 1 start count
The contents of this register can be used to position the start of the ADC reset conversion. Refer to the Using the Timer Module section for details.

Figure 83. ADCRSTENDCT1: ADC Reset 1 End Count Register (Address = 18h, Reset Value =0000h)

23	22	21	20	19	18	17	16	15	14	13	12
0	0	0	0	0	0	0	0	ADCRSTENDCT1[15:0]			
11	10	9	8	7	6	5	4	3	2	1	0
ADCRSTENDCT1[15:0]											

This register sets the end position of the ADC1 reset conversion signal.
Bits 23:16 Must be 0
Bits 15:0

ADCRSTENDCT1[15:0]: ADC RESET 1 end count

The contents of this register can be used to position the end of the ADC reset conversion.
Refer to the Using the Timer Module section for details.
Figure 84. ADCRSTSTCT2: ADC Reset 2 Start Count Register (Address $=\mathbf{1 9 h}$, Reset Value $=\mathbf{0 0 0 0 h}$)

23	22	21	20	19	18	16	15	14	13	12	
0	0	0	0	0	0	0	0		ADCRSTSTCT2[15:0]		
11	10	9	8	7	6	5	4	3	2	1	0
ADCRSTSTCT2[15:0]											

This register sets the start position of the ADC2 reset conversion signal.
Bits 23:16 Must be 0
Bits 15:0
ADCRSTSTCT2[15:0]: ADC RESET 2 start count
The contents of this register can be used to position the start of the ADC reset conversion.
Refer to the Using the Timer Module section for details.

AFE4400
www.ti.com
Figure 85. ADCRSTENDCT2: ADC Reset 2 End Count Register (Address = 1Ah, Reset Value = 0000h)

23	22	21	20	19	18	16	15	14	13	12	
0	0	0	0	0	0	0	0		ADCRSTENDCT2[15:0]		
11	10	9	8	7	6	5	4	3	2	1	0
ADCRSTENDCT2[15:0]											

This register sets the end position of the ADC2 reset conversion signal.

Bits 23:16 Must be 0
 Bits 15:0
 ADCRSTENDCT2[15:0]: ADC RESET 2 end count

The contents of this register can be used to position the end of the ADC reset conversion. Refer to the Using the Timer Module section for details.

Figure 86. ADCRSTSTCT3: ADC Reset 3 Start Count Register (Address $\mathbf{= 1 B h}$, Reset Value $=\mathbf{0 0 0 0 h}$)

23	22	21	20	19	18	16	15	14	13	12	
0	0	0	0	0	0	0	0		ADCRSTSTCT3[15:0]		
11	10	9	8	7	6	5	4	3	2	1	0
ADCRSTSTCT3[15:0]											

This register sets the start position of the ADC3 reset conversion signal.

Bits 23:16 Must be 0

Bits 15:0

ADCRSTSTCT3[15:0]: ADC RESET 3 start count

The contents of this register can be used to position the start of the ADC reset conversion. Refer to the Using the Timer Module section for details.

Figure 87. ADCRSTENDCT3: ADC Reset 3 End Count Register (Address = 1Ch, Reset Value =0000h)

23	22	21	20	19	18	16	15	14	13	12
0	0	0	0	0	0	0	0		ADCRSTENDCT3[15:0]	
11	10	9	8	7	6	5	4	3	2	1
ADCRSTENDCT3[15:0]										

This register sets the end position of the ADC3 reset conversion signal.

Bits 23:16	Must be 0
Bits 15:0	ADCRSTENDCT3[15:0]: ADC RESET 3 end count

The contents of this register can be used to position the end of the ADC reset conversion signal (default value after reset is 0000 h). Refer to the Using the Timer Module section for details.

Figure 88. PRPCOUNT: Pulse Repetition Period Count Register (Address $=1 \mathrm{Dh}$, Reset Value $\mathbf{= 0 0 0 0 \mathrm { h } \text {) }) ~ (1) ~}$

23	22	21	20	19	18	17	16	14	13	12
0	0	0	0	0	0	0	0		PRPCOUNT[15:0]	
11	10	9	8	7	6	5	4	3	2	1
PRPCOUNT[15:0]										

This register sets the device pulse repetition period count.
Bits 23:16 Must be 0
Bits 15:0 PRPCOUNT[15:0]: Pulse repetition period count
The contents of this register can be used to set the pulse repetition period (in number of clock cycles of the $4-\mathrm{MHz}$ clock). The PRPCOUNT value must be set in the range of 800 to 64000. Values below 800 do not allow sufficient sample time for the four samples; see the Electrical Characteristics table.

Figure 89. CONTROL1: Control Register 1 (Address $=1 \mathrm{Eh}$, Reset Value $=\mathbf{0 0 0 0 h}$)

This register configures the clock alarm pin and timer.
Bits 23:12
Bits 11:9

Must be 0

CLKALMPIN[2:0]: Clocks on ALM pins
Internal clocks can be brought to the PD_ALM and LED_ALM pins for monitoring. Note that the ALMPINCLKEN register bit must be set before using this register bit. Table 7 defines the settings for the two alarm pins.
Bit 8 TIMEREN: Timer enable
$0=$ Timer module is disabled and all internal clocks are off (default after reset) 1 = Timer module is enabled
Bits 7:2 Must be 0
Bit 1 Must be 1
Bit $0 \quad$ Must be 0
Table 7. PD_ALM and LED_ALM Pin Settings

CLKALMPIN[2:0]	PD_ALM PIN SIGNAL	LED_ALM PIN SIGNAL
000	Sample LED2 pulse	Sample LED1 pulse
001	LED2 LED pulse	LED1 LED pulse
010	Sample LED2 ambient pulse	Sample LED1 ambient pulse
011	LED2 convert	LED1 convert
100	LED2 ambient convert	LED1 ambient convert
101	No output	No output
110	No output	No output
111	No output	No output

AFE4400
www.ti.com

Figure 90. SPARE1: SPARE1 Register For Future Use (Address = 1Fh, Reset Value $=\mathbf{0 0 0 0 h}$)

23	22	21	20	19	18	17	16	15	14	13	12
0	0	0	0	0	0	0	0	0	0	0	0
11	10	9	8	7	6	5	4	3	2	1	0
0	0	0	0	0	0	0	0	0	0	0	0

This register is a spare register and is reserved for future use.

Bits 23:0 Must be 0

Figure 91. TIAGAIN: Transimpedance Amplifier Gain Setting Register (Address $=\mathbf{2 0 h}$, Reset Value $=\mathbf{0 0 0 0}$)

23	22	21	20	19	18	17	16	15	14	13	12
0	0	0	0	0	0	0	0	0	0	0	0
11	10	9	8	7	6	5	4	3	2	1	0
0	0	0	0	0	0	0	0	0	0	0	0

This register is reserved for factory use.

Bits 23:0 Must be 0

Figure 92. TIA_AMB_GAIN: Transimpedance Amplifier and Ambient Cancellation Stage Gain Register (Address $=\mathbf{2 1 h}$, Reset Value $=\mathbf{0 0 0 0}$)

23	22	21	20	19	18	17	16	15	14	13	2
0	0	0	0			:0]		0	STAGE2 EN	0	0
11	10	9	8	7	6	5	4	3	2	1	0
0	STG2GAIN[2:0]			CF_LED2[4:0]					RF_LED2[2:0]		

This register configures the ambient light cancellation amplifier gain, cancellation current, and filter corner frequency.

Bits 23:20 Must be 0
Bits 19:16 AMBDAC[3:0]: Ambient DAC value
These bits set the value of the cancellation current.

$0000=0 \mu \mathrm{~A}$ (default after reset)	$1000=8 \mu \mathrm{~A}$
$0001=1 \mu \mathrm{~A}$	$1001=9 \mu \mathrm{~A}$
$0010=2 \mu \mathrm{~A}$	$1010=10 \mu \mathrm{~A}$
$0011=3 \mu \mathrm{~A}$	$1011=$ Do not use
$0100=4 \mu \mathrm{~A}$	$1100=$ Do not use
$0101=5 \mu \mathrm{~A}$	$1101=$ Do not use
$0110=6 \mu \mathrm{~A}$	$1110=$ Do not use
$0111=7 \mu \mathrm{~A}$	$1111=$ Do not use

Bit 15
Must be 0
Bit 14 STAGE2EN: Stage 2 enable for LED 2
$0=$ Stage 2 is bypassed (default after reset)
$1=$ Stage 2 is enabled with the gain value specified by the STG2GAIN[2:0] bits
Bits 13:11 Must be 0
Bits 10:8 STG2GAIN[2:0]: Stage 2 gain setting
$000=0 \mathrm{~dB}$, or linear gain of 1 (default after reset)
$001=3.5 \mathrm{~dB}$, or linear gain of 1.5
$010=6 \mathrm{~dB}$, or linear gain of 2
$011=9.5 \mathrm{~dB}$, or linear gain of 3
$100=12 \mathrm{~dB}$, or linear gain of 4
$101=$ Do not use
$110=$ Do not use
111 = Do not use
Bits 7:3 CF_LED[4:0]: Program C_{F} for LEDs

$00000=5 \mathrm{pF}$ (default after reset)	$00100=25 \mathrm{pF}+5 \mathrm{pF}$
$00001=5 \mathrm{pF}+5 \mathrm{pF}$	$01000=50 \mathrm{pF}+5 \mathrm{pF}$
$00010=15 \mathrm{pF}+5 \mathrm{pF}$	$10000=150 \mathrm{pF}+5 \mathrm{pF}$

Note that any combination of these C_{F} settings is also supported by setting multiple bits to 1 .
For example, to obtain $\mathrm{C}_{\mathrm{F}}=100 \mathrm{pF}$, set $\mathrm{D}[7: 3]=01111$.
Bits 2:0
RF_LED[2:0]: Program R $_{\text {F }}$ for LEDs

$000=500 \mathrm{k} \Omega$	$100=25 \mathrm{k} \Omega$
$001=250 \mathrm{k} \Omega$	$101=10 \mathrm{k} \Omega$
$010=100 \mathrm{k} \Omega$	$110=1 \mathrm{M} \Omega$
$011=50 \mathrm{k} \Omega$	$111=$ None

Figure 93. LEDCNTRL: LED Control Register (Address $\boldsymbol{=} \mathbf{2 2 h}$, Reset Value $=\mathbf{0 0 0 0 h}$)

This register sets the LED current range and the LED1 and LED2 drive current.

Bits 23:18	Must be 0
Bit 17	LEDCUROFF: Turns the LED current source on or off
	$0=$ On $(50 \mathrm{~mA})$
	$1=$ Off

Bit 16

Bits 15:8

Must be 1

LED1[7:0]: Program LED current for LED1 signal
Use these register bits to specify the LED current setting for LED1 (default after reset is 00h).
The nominal value of the LED current is given by Equation 3, where the full-scale LED current is 50 mA .
Bits 7:0

LED2[7:0]: Program LED current for LED2 signal

Use these register bits to specify the LED current setting for LED2 (default after reset is $00 h$).
The nominal value of LED current is given by Equation 4, where the full-scale LED current is 50 mA .
$\frac{\text { LED1[7:0] }}{256} \times$ Full-Scale Current
$\frac{\text { LED2[7:0] }}{256} \times$ Full-Scale Current

Figure 94. CONTROL2: Control Register 2 (Address $=\mathbf{2 3 h}$, Reset Value $=\mathbf{0 0 0 0 h}$)

23	22	21	20	19	18	17	16	15	14	13	12
0	0	0	0	0	0	1	0	0	0	0	0
11	10	9	8	7	6	5	4	3	2	1	0
TXBRG MOD	$\begin{gathered} \text { DIGOUT_- }_{\text {TRI }} \\ \text { STATE } \end{gathered}$	$\begin{gathered} \text { XTAL } \\ \text { DIS } \end{gathered}$	1	0	0	0	0	0	PDNTX	PDNRX	PDNAFE

This register controls the LED transmitter, crystal, and the AFE, transmitter, and receiver power modes.

Bits 23:18	Must be 0
Bit 17	Must be 1
Bits 16:12	Must be 0
Bit 11	TXBRGMOD: Tx bridge mode
	$0=$ LED driver is configured as an H-bridge (default after reset)
	$1=$ LED driver is configured as a push-pull

Bit 10
 DIGOUT_TRISTATE: Digital output 3-state mode

This bit determines the state of the device digital output pins, including the clock output pin and SPI output pins. In order to avoid loading the SPI bus when multiple devices are connected, this bit must be set to 1 (3 -state mode) whenever the device SPI is inactive.
$0=$ Normal operation (default)
1 = 3 -state mode

Bit $9 \quad$ XTALDIS: Crystal disable mode

$0=$ The crystal module is enabled; the $8-\mathrm{MHz}$ crystal must be connected to the XIN and XOUT pins
1 = The crystal module is disabled; an external $8-\mathrm{MHz}$ clock must be applied to the XIN pin
Bit $8 \quad$ Must be 1

Bits 7:3 Must be 0
Bit 2 PDN_TX: Tx power-down
$0=$ The $T x$ is powered up (default after reset)
1 = Only the Tx module is powered down
Bit 1
PDN_RX: Rx power-down
$0=$ The $R x$ is powered up (default after reset)
1 = Only the Rx module is powered down
Bit $0 \quad$ PDN_AFE: AFE power-down
$0=$ The AFE is powered up (default after reset)
$1=$ The entire AFE is powered down (including the Tx, Rx, and diagnostics blocks)
Figure 95. SPARE2: SPARE2 Register For Future Use (Address $\mathbf{=} \mathbf{2 4 h}$, Reset Value $=\mathbf{0 0 0 0 h}$)

23	22	21	20	19	18	17	16	15	14	13	12
0	0	0	0	0	0	0	0	0	0	0	0
11	10	9	8	7	6	5	4	3	2	1	0
0	0	0	0	0	0	0	0	0	0	0	0

This register is a spare register and is reserved for future use.

Bits 23:0 Must be 0

AFE4400
www.ti.com

Figure 96. SPARE3: SPARE3 Register For Future Use (Address $\mathbf{=} \mathbf{2 5}$, Reset Value $\mathbf{=} \mathbf{0 0 0 0 h}$)

23	22	21	20	19	18	17	16	15	14	13	12
0	0	0	0	0	0	0	0	0	0	0	0
11	10	9	8	7	6	5	4	3	2	1	0
0	0	0	0	0	0	0	0	0	0	0	0

This register is a spare register and is reserved for future use.

Bits 23:0 Must be 0

Figure 97. SPARE4: SPARE4 Register For Future Use (Address $=\mathbf{2 6 h}$, Reset Value $\mathbf{=} \mathbf{0 0 0 0 h}$)

23	22	21	20	19	18	17	16	15	14	13	12
0	0	0	0	0	0	0	0	0	0	0	0
11	10	9	8	7	6	5	4	3	2	1	0
0	0	0	0	0	0	0	0	0	0	0	0

This register is a spare register and is reserved for future use.

Bits 23:0 Must be 0

Figure 98. RESERVED1: RESERVED1 Register For Factory Use Only (Address $=27 \mathrm{~h}$, Reset Value $=$ XXXXh)

| 22 | 20 | 19 | 18 | 16 | 16 | 14 | 13 | 12 | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{X}^{(1)}$ | X | X | X | X | X | X | X | X | X | X | X |
| 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
| X | X | X | X | X | X | X | X | X | X | X | X |

(1) $\mathrm{X}=$ don't care.

This register is reserved for factory use. Readback values vary between devices.
Figure 99. RESERVED2: RESERVED2 Register For Factory Use Only (Address = 28h, Reset Value = XXXXh)

| 23 | | 22 | 20 | 19 | 18 | 16 | 14 | 12 | 12 | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{X}^{(1)}$ | X | X | X | X | X | X | X | X | X | X | X |
| 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
| X | X | X | X | X | X | X | X | X | X | X | X |

(1) $X=$ don't care.

This register is reserved for factory use. Readback values vary between devices.

Figure 100. ALARM: Alarm Register (Address $=\mathbf{2 9 h}$, Reset Value $=\mathbf{0 0 0 0 h}$)

| 23 | 22 | 21 | 19 | 18 | 16 | 15 | 14 | 12 | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
| 0 | 0 | 0 | 0 | ALMPIN
 CLKEN | 0 | 0 | 0 | 0 | 0 | 0 | 0 |

This register controls the alarm pin functionality.

Bits 23:8 Must be 0

Bit 7

ALMPINCLKEN: Alarm pin clock enable

$0=$ Disables the monitoring of internal clocks; the PD_ALM and LED_ALM pins function as diagnostic fault alarm output pins (default after reset)
1 = Enables the monitoring of internal clocks; these clocks can be brought out on PD_ALM and LED_ALM selectively (depending on the value of the CLKALMPIN[2:0] register bits).

Bits 6:0 Must be 0

Figure 101. LED2VAL: LED2 Digital Sample Value Register (Address $\boldsymbol{=} \mathbf{2 A h}$, Reset Value $=\mathbf{0 0 0 0 h}$)

23	22	21	20	19	18	17	16	15	14	13	12
LED2VAL[23:0]											
11	10	9	8	7	6	5	4	3	2	1	0
LED2VAL[23:0]											

Bits 23:0 LED2VAL[23:0]: LED2 digital value

This register contains the digital value of the latest LED2 sample converted by the ADC. The ADC_RDY signal goes high each time that the contents of this register are updated. The host processor must readout this register before the next sample is converted by the AFE.

Figure 102. ALED2VAL: Ambient LED2 Digital Sample Value Register
(Address $=2 \mathrm{Bh}$, Reset Value $=0000 \mathrm{~h}$)

23	22	21	20	19	18	17	16	15	14	13	12
			8		ALED2VAL[23:0]						
11	10	9	8	7	6	5	4	3	2	1	0
					ALED2VAL[23:0]						

Bits 23:0

ALED2VAL[23:0]: LED2 ambient digital value

This register contains the digital value of the latest LED2 ambient sample converted by the ADC. The ADC_RDY signal goes high each time that the contents of this register are updated. The host processor must readout this register before the next sample is converted by the AFE.

Figure 103. LED1VAL: LED1 Digital Sample Value Register (Address $\mathbf{= 2 C h}$, Reset Value $=\mathbf{0 0 0 0 h}$)

23	22	21	20	19	18	17	16	15	14	13	12
LED1VAL[23:0]											
11	10	9	8	7	6	5	4	3	2	1	0
LED1VAL[23:0]											

Bits 23:0 LED1VAL[23:0]: LED1 digital value
This register contains the digital value of the latest LED1 sample converted by the ADC. The ADC_RDY signal goes high each time that the contents of this register are updated. The host processor must readout this register before the next sample is converted by the AFE.

Figure 104. ALED1VAL: Ambient LED1 Digital Sample Value Register
(Address = 2Dh, Reset Value $=\mathbf{0 0 0 0}$ h)

23	22	21	20	19	18	17	16	15	14	13	12
ALED1VAL[23:0]											
11	10	9	8	7	6	5	4	3	2	1	0
ALED1VAL[23:0]											

Bits 23:0

ALED1VAL[23:0]: LED1 ambient digital value

This register contains the digital value of the latest LED1 ambient sample converted by the ADC. The ADC_RDY signal goes high each time that the contents of this register are updated. The host processor must readout this register before the next sample is converted by the AFE.

Figure 105. LED2-ALED2VAL: LED2-Ambient LED2 Digital Sample Value Register
(Address $=2 \mathrm{Eh}$, Reset Value $=0000 \mathrm{~h}$)

23	22	21	20	19	18	17	16	15	14	13	12
LED2-ALED2VAL[23:0]											
11	10	9	8	7	6	5	4	3	2	1	0
LED2-ALED2VAL[23:0]											

Bits 23:0 LED2-ALED2VAL[23:0]: (LED2 - LED2 ambient) digital value
This register contains the digital value of the LED2 sample after the LED2 ambient is subtracted. The host processor must readout this register before the next sample is converted by the AFE.
Note that this value is inverted when compared to waveforms shown in many publications.
Figure 106. LED1-ALED1VAL: LED1-Ambient LED1 Digital Sample Value Register (Address $=2 \mathrm{Fh}$, Reset Value $=\mathbf{0 0 0 0 h}$)

23	22	21	20	19	18	17	16	15	14	13	12
					LED1-ALED1VAL[23:0]						
11	10	9	8	7	6	5	4	3	2	1	0
				LED1-ALED1VAL[23:0]							

Bits 23:0 LED1-ALED1VAL[23:0]: (LED1 - LED1 ambient) digital value
This register contains the digital value of the LED1 sample after the LED1 ambient is subtracted from it. The host processor must readout this register before the next sample is converted by the AFE.
Note that this value is inverted when compared to waveforms shown in many publications.

Figure 107. DIAG: Diagnostics Flag Register (Address $=\mathbf{3 0 h}$, Reset Value $=\mathbf{0 0 0 0 h}$)

| 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | 14 | 12 | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | PD_ALM | |
| 11 | 10 | 9 | 8 | 7 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
| LED | LED1 | LED2 | LEDSC | OUTPSH
 GND | OUTNSH
 GND | PDOC | PDSC | INNSC
 GND | INPSC
 GND | INNSC
 LED | INPSC
 LED | |

This register is read only. This register contains the status of all diagnostic flags at the end of the diagnostics sequence. The end of the diagnostics sequence is indicated by the signal going high on DIAG_END pin.

Bits 23:13	Read only
Bit 12	PD_ALM: Power-down alarm status diagnostic flag
	This bit indicates the status of PD_ALM (and the PD_ALM pin). $0=$ No fault (default after reset) $1=$ Fault present
Bit 11	LED_ALM: LED alarm status diagnostic flag
	This bit indicates the status of LED_ALM (and the LED_ALM pin). $0=$ No fault (default after reset) 1 = Fault present
Bit 10	LED1OPEN: LED1 open diagnostic flag
	This bit indicates that LED1 is open. $0=$ No fault (default after reset) 1 = Fault present
Bit 9	LED2OPEN: LED2 open diagnostic flag
	This bit indicates that LED2 is open. $0=$ No fault (default after reset) 1 = Fault present
	This bit indicates that LED2 is open. $0=$ No fault (default after reset) 1 = Fault present
Bit 8	LEDSC: LED short diagnostic flag
	This bit indicates an LED short. $0=$ No fault (default after reset) 1 = Fault present
Bit 7	OUTPSHGND: OUTP to GND diagnostic flag
	This bit indicates that OUTP is shorted to the GND cable. $0=$ No fault (default after reset) 1 = Fault present
Bit 6	OUTNSHGND: OUTN to GND diagnostic flag
	This bit indicates that OUTN is shorted to the GND cable. $0=$ No fault (default after reset) 1 = Fault present
Bit 5	PDOC: PD open diagnostic flag
	This bit indicates that PD is open. $0=$ No fault (default after reset) 1 = Fault present

Bit 4
 PDSC: PD short diagnostic flag

This bit indicates a PD short.
$0=$ No fault (default after reset)
1 = Fault present

Bit 3

Bit 2

Bit 1

Bit 0

INNSCGND: INN to GND diagnostic flag
This bit indicates a short from the INN pin to the GND cable.
$0=$ No fault (default after reset)
1 = Fault present
INPSCGND: INP to GND diagnostic flag
This bit indicates a short from the INP pin to the GND cable.
$0=$ No fault (default after reset)
1 = Fault present
INNSCLED: INN to LED diagnostic flag
This bit indicates a short from the INN pin to the LED cable.
$0=$ No fault (default after reset)
1 = Fault present
INPSCLED: INP to LED diagnostic flag
This bit indicates a short from the INP pin to the LED cable.
$0=$ No fault (default after reset)
1 = Fault present

9 Applications and Implementation

9.1 Application Information

The AFE4400 can be used for measuring SPO2 and for monitoring heart rate. The high dynamic range of the device enables measuring SPO2 with a high degree of accuracy even under low-perfusion (ac-to-dc ratio) conditions. An SPO2 measurement system involves two different wavelength LEDs-usually Red and IR. By computing the ratio of the ac to dc at the two different wavelengths, the SPO2 can be calculated. Heart rate monitoring systems can also benefit from the high dynamic range of the device, which enables capturing a highfidelity pulsating signal even in cases where the signal strength is low.

For more information on application guidelines, refer to the AFE44x0SPO2EVM User's Guide (SLAU480).

9.2 Typical Application

Device connections in a typical application are shown in Figure 108. Refer to the AFE44x0SPO2EVM User's Guide (SLAU480) for more details. The schematic in Figure 108 is a part of the AFE44x0SPO2EVM and shows a cabled application in which the LEDs and photodiode are connected to the AFE4400 through a cable. However, in an application without cables, the LEDs and photodiode can be directly connected to the TXP, TXN and INP, INN pins directly, as shown in the Design Requirements section.

NOTE: The following signals must be considered as two sets of differential pains and routed as adjacent signals within each pair: TXM, TXP and INM, INP.
INM and INP must be guarded with VCM_SHIELD the signal. Run the VCM_SHIELD signal to the DB9 connector and back to the device.
Figure 108. AFE44x0SPO2EVM: Connections to the AFE4490

AFE4400
www.ti.com

Typical Application (continued)

9.2.1 Design Requirements

An SPO2 application usually involves a Red LED and an IR LED. These LEDs can be connected either in the common anode configuration or H-bridge configuration to the TXP, TXN pins. Figure 109 shows common anode configuration and Figure 110 shows H -bridge configuration.

Figure 109. LEDs in Common Anode Configuration

Figure 110. LEDs in H -Bridge Configuration

9.2.2 Detailed Design Procedure

The photodiode receives the light from both the Red and IR phases and usually has good sensitivities at both these wavelengths.
The photodiode connected in this manner operates in zero bias because of the negative feedback from the transimpedance amplifier. The connections of the photodiode to the AFE inputs are shown in Figure 111.

Figure 111. Photodiode Connection

AFE4400

Typical Application (continued)

The signal current generated by the photodiode is converted into a voltage by the transimpedance amplifier, which has a programmable transimpedance gain. The rest of the signal chain then presents a voltage to the ADC. The full-scale output of the transimpedance amplifier is $\pm 1 \mathrm{~V}$ and the full-scale input to the ADC is $\pm 1.2 \mathrm{~V}$. An automatic gain control loop can be used to set the target dc voltage at the ADC input to approximately 50% of full scale. This type of AGC loop can control a combination of LED current and TIA gain to achieve this target value; see Figure 112.

Figure 112. AGC Loop
The ADC output is a 22 -bit code that is obtained by discarding the two MSBs of the 24 -bit registers. The data format is binary twos complement format, MSB first. TI recommends that the input to the ADC does not exceed $\pm 1 \mathrm{~V}$ (which is approximately 80% full-scale) because the TIA has a full-scale range of $\pm 1 \mathrm{~V}$.

Typical Application (continued)

9.2.3 Application Curve

The dc component of the current from the PPG signal is referred to as Pleth (short for photoplethysmography) current. The input-referred noise current (referred differentially to the INP, INN inputs) as a function of the Pleth current is shown in Figure 113 at a PRF of 100 Hz and for various duty cycles of LED pulsing. For example, a duty cycle of 25% refers to a case where the LED is pulsed for 25% of the pulse repetition period and the receiver samples the photodiode current for the same period of time. The noise shown in Figure 113 is the integrated noise over a $5-\mathrm{Hz}$ bandwidth from dc.

Figure 113. Input-Referred Noise Current vs Pleth Current (PRF = 100 Hz)

10 Power Supply Recommendations

The AFE4400 has two sets of supplies: the receiver supplies (RX_ANA_SUP, RX_DIG_SUP) and the transmitter supplies (TX_CTRL_SUP, LED_DRV_SUP). The receiver supplies can be between 2.0 V to 3.6 V , whereas the transmitter supplies can be between $\overline{3} .0 \mathrm{~V}$ to 5.25 V . Another consideration that determines the minimum allowed value of the transmitter supplies is the forward voltage of the LEDs being driven. The current source and switches inside the AFE require voltage headroom that mandates the transmitter supply to be a few hundred millivolts higher than the LED forward voltage. TX_REF is the voltage that governs the generation of the LED current from the internal reference voltage. Choosing the lowest allowed TX_REF setting reduces the additional headroom required but results in higher transmitter noise. Other than for the highest-end clinical SPO2 applications, this extra noise resulting from a lower TX_REF setting can be acceptable.
LED_DRV_SUP and TX_CTRL_SUP are recommended to be tied together to the same supply (between 3.0 V to 5.25 V). The external supply (connected to the common anode of the two LEDs) must be high enough to account for the forward drop of the LEDs as well as the voltage headroom required by the current source and switches inside the AFE. In most cases, this voltage is expected to fall below 5.25 V ; thus the external supply can be the same as LED_DRV_SUP. However, there may be cases (for instance when two LEDs are connected in series) where the voltage required on the external supply is higher than 5.25 V . Such a case must be handled with care to ensure that the voltage on the TXP and TXN pins remains less than 5.25 V and never exceeds the supply voltage of LED_DRV_SUP, TX_CTRL_SUP by more than 0.3 V .
Many scenarios of power management are possible.
Case 1: The LED forward voltage is such that a voltage of 3.3 V is acceptable on LED_DRV_SUP. In this case, a single 3.3-V supply can be used to drive all four pins (RX_ANA_SUP, RX_DIG_SUP, TX_CTRL_SUP, LED_DRV_SUP). Care should be taken to provide some isolation between the transmit and receive supplies because LED_DRV_SUP carries the high-switching current from the LEDs.
Case 2: A low-voltage supply of 2.2 V is available in the system. In this case, a boost converter can be used to derive the voltage for LED_DRV_SUP, as shown in Figure 114.

Figure 114. Boost Converter
The boost converter requires a clock (usually in the megahertz range) and there is usually a ripple at the boost converter output at this switching frequency. While this frequency is much higher than the signal frequency of interest (which is at maximum a few tens of hertz around dc), a small fraction of this switching noise can possibly alias to the low-frequency band. Therefore, TI strongly recommends that the switching frequency of the boost converter be offset from every multiple of the PRF by at least 20 Hz . This offset can be ensured by choosing the appropriate PRF.

Case 3: In cases where a high-voltage supply is available in the system, a buck converter or an LDO can be used to derive the voltage levels required to drive RX_ANA and RX_DIG, as shown in Figure 115.

Figure 115. Buck Converter or an LDO
For more information on power-supply recommendations, see the AFE44x0SPO2EVM User's Guide (SLAU480).

11 Layout

11.1 Layout Guidelines

Some key layout guidelines are mentioned below:

1. TXP, TXN are fast-switching lines and should be routed away from sensitive reference lines as well as from the INP, INN inputs.
2. If the INP, INN lines are required to be routed over a long trace, TI recommends that VCM be used as a shield for the INP, INN lines.
3. The device can draw high-switching currents from the LED_DRV_SUP pin. Therefore, TI recommends having a decoupling capacitor electrically close to the pin.

11.2 Layout Example

Figure 116. Typical Layout of the AFE4400 Board

12 Device and Documentation Support

12.1 Trademarks

SPI is a trademark of Motorola.
All other trademarks are the property of their respective owners.

12.2 Electrostatic Discharge Caution

This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.
ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

12.3 Glossary

SLYZ022 - TI Glossary.
This glossary lists and explains terms, acronyms, and definitions.

13 Mechanical, Packaging, and Orderable Information

The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation.

PACKAGING INFORMATION

Orderable Device	Status (1)	Package Type	Package Drawing	Pins	Package Qty	Eco Plan (2)	Lead/Ball Finish (6)	MSL Peak Temp (3)	Op Temp (${ }^{\circ} \mathrm{C}$)	Device Marking (4/5)	Samples
AFE4400RHAR	ACTIVE	VQFN	RHA	40	2500	Green (RoHS \& no $\mathrm{Sb} / \mathrm{Br}$)	CU NIPDAU	Level-3-260C-168 HR	0 to 70	AFE4400	Samples
AFE4400RHAT	ACTIVE	VQFN	RHA	40	250	Green (RoHS \& no Sb/Br)	CU NIPDAU	Level-3-260C-168 HR	0 to 70	AFE4400	Samples

${ }^{(1)}$ The marketing status values are defined as follows:
ACTIVE: Product device recommended for new designs.
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.
NRND: Not recommended for new designs. Device is in production to support existing customers, but Tl does not recommend using this part in a new design.
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.
OBSOLETE: TI has discontinued the production of the device.
${ }^{(2)}$ Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS \& no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.
TBD: The Pb-Free/Green conversion plan has not been defined
Pb-Free (RoHS): Tl's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.
Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb -Free (RoHS compatible) as defined above.
Green (RoHS \& no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)
${ }^{(3)}$ MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.
${ }^{(4)}$ There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.
${ }^{(5)}$ Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a " \sim " will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.
${ }^{(6)}$ Lead/Ball Finish - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer:The information provided on this page represents Tl's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

[^0]
TAPE AND REEL INFORMATION

Device	Package Type	Package Drawing	Pins	SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	$\begin{gathered} \mathrm{AO} \\ (\mathrm{~mm}) \end{gathered}$	$\begin{gathered} \mathrm{BO} \\ (\mathrm{~mm}) \end{gathered}$	$\begin{gathered} \text { K0 } \\ (\mathrm{mm}) \end{gathered}$	$\begin{gathered} \text { P1 } \\ (\mathrm{mm}) \end{gathered}$	$\begin{gathered} \mathrm{W} \\ (\mathrm{~mm}) \end{gathered}$	Pin1 Quadrant
AFE4400RHAR	VQFN	RHA	40	2500	330.0	16.4	6.3	6.3	1.5	12.0	16.0	Q2
AFE4400RHAT	VQFN	RHA	40	250	180.0	16.4	6.3	6.3	1.5	12.0	16.0	Q2

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
AFE4400RHAR	VQFN	RHA	40	2500	367.0	367.0	38.0
AFE4400RHAT	VQFN	RHA	40	250	210.0	185.0	35.0

NOTES: A. All linear dimensions are in millimeters. Dimensioning and tolerancing per ASME Y14.5M-1994.
B. This drawing is subject to change without notice.
C. QFN (Quad Flatpack No-Lead) Package configuration.
D. The package thermal pad must be soldered to the board for thermal and mechanical performance.
E. See the additional figure in the Product Data Sheet for details regarding the exposed thermal pad features and dimensions.
F. Package complies to JEDEC MO-220 variation VJJD-2.

RHA (S-PVQFN-N4O)

PLASTIC QUAD FLATPACK NO-LEAD

THERMAL INFORMATION

This package incorporates an exposed thermal pad that is designed to be attached directly to an external heatsink. The thermal pad must be soldered directly to the printed circuit board (PCB). After soldering, the PCB can be used as a heatsink. In addition, through the use of thermal vias, the thermal pad can be attached directly to the appropriate copper plane shown in the electrical schematic for the device, or alternatively, can be attached to a special heatsink structure designed into the PCB. This design optimizes the heat transfer from the integrated circuit (IC).

For information on the Quad Flatpack No-Lead (QFN) package and its advantages, refer to Application Report, QFN/SON PCB Attachment, Texas Instruments Literature No. SLUA271. This document is available at www.ti.com.

The exposed thermal pad dimensions for this package are shown in the following illustration.

Bottom View

Exposed Thermal Pad Dimensions

NOTES: A. All linear dimensions are in millimeters
B. The Pin 1 Identification mark is an optional feature that may be present on some devices In addition, this Pin 1 feature if present is electrically connected to the center thermal pad and therefore should be considered when routing the board layout.

RHA (S-PVQFN-N4O)

PLASTIC QUAD FLATPACK NO-LEAD

NOTES: A. All linear dimensions are in millimeters.
B. This drawing is subject to change without notice.
C. Publication IPC-7351 is recommended for alternate designs.
D. This package is designed to be soldered to a thermal pad on the board. Refer to Application Note, Quad Flat-Pack Packages, Texas Instruments Literature No. SLUA271 and also the Product Data Sheets for specific thermal information, via requirements, and recommended board layout. These documents are available at www.ti.com http://www.ti.com.
E. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC 7525 for stencil design considerations.
F. Customers should contact their board fabrication site for recommended solder mask tolerances and via tenting recommendations for vias placed in the thermal pad.

TEXAS
INSTRUMENTS
www.ti.com

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as "components") are sold subject to Tl's terms and conditions of sale supplied at the time of order acknowledgment.
TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in Tl's terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.
TI assumes no liability for applications assistance or the design of Buyers' products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers' products and applications, Buyers should provide adequate design and operating safeguards.
TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.
Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.
Resale of Tl components or services with statements different from or beyond the parameters stated by Tl for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.
Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications.
In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, Tl's goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.
No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use.
Only those TI components which TI has specifically designated as military grade or "enhanced plastic" are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have not been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.
TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

Products		Applications	
Audio	www.ti.com/audio	Automotive and Transportation	www.ti.com/automotive
Amplifiers	amplifier.ti.com	Communications and Telecom	www.ti.com/communications
Data Converters	dataconverter.ti.com	Computers and Peripherals	www.ti.com/computers
DLP® Products	www.dlp.com	Consumer Electronics	www.ti.com/consumer-apps
DSP	dsp.ti.com	Energy and Lighting	www.ti.com/energy
Clocks and Timers	www.ti.com/clocks	Industrial	www.ti.com/industrial
Interface	interface.ti.com	Medical	www.ti.com/medical
Logic	logic.ti.com	Security	www.ti.com/security
Power Mgmt	power.ti.com	Space, Avionics and Defense	www.ti.com/space-avionics-defense
Microcontrollers	$\underline{\text { microcontroller.ti.com }}$	Video and Imaging	www.ti.com/video
RFID	www.ti-rfid.com		
OMAP Applications Processors	www.ti.com/omap	TI E2E Community	e2e.ti.com
Wireless Connectivity	www.ti.com/wirelessco		

[^0]: In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

