FlexiForce[®]

Standard Force & Load Sensors Model # A301

Physical Properties

Thickness Length Width Sensing Area Connector Substrate Pin Spacing 0.203 mm (0.008 in.) 25.4 mm (1 in.)* 14 mm (0.55 in.) 9.53 mm (0.375 in.) diameter 2-pin Male Square Pin Polyester (ex: Mylar) 2.54 mm (0.1 in.)

√ ROHS Compliant

* Length does not include pins, please add approximately 6mm (.25 in.) for pin length for a total length of approximately 32mm (1.25 in).

Standard Force Ranges (as tested with circuit shown below)

Force Range:

Low: 0 - 1 lb. (4.4 N) Medium: 0 - 25 lb. (111 N) High: 0 - 100 lb. (445 N)

Force Range Adjustments:

In order to measure higher forces, apply a lower drive voltage (-0.5 V, -0.10 V, etc.) and reduce the resistance of the feedback resistor (1k Ω min.) To measure lower forces, apply a higher drive voltage and increase the resistance of the feedback resistor.

* Supply Voltages should be constant

- ** Reference Resistance R_F is $1k\Omega$ to $100k\Omega$
- Sensor Resistance R_s at no load is >5M Ω
- Max recommended current is 2.5mA

Typical Performance

Linearity (Error)	< ±3%
Repeatability	$< \pm 2.5\%$ of full scale
Hysteresis	< 4.5 % of full scale
Drift	< 5% per logarithmic time scale
Response Time	< 5 µsec

Operating Temperature -40°F - 140°F (-40°C - 60°C)* *Force reading change per degree of temperature change = ±0.2%/°F (0.36%/°C)

Evaluation Conditions

Line drawn from 0 to 50% load Conditioned sensor, 80% of full force applied Conditioned sensor, 80% of full force applied Constant load Impact load, output recorded on oscilloscope *Time required for the sensor to respond to an input force*

