

Schottky Diode

Features

- For general purpose applications.
- This diode features low turn-on voltage. This device is protected by a PN junction guard ring against excessive voltage, such as electrostatic discharges
- This diode is also available in the MiniMELF case with type designation BAS85.

Mechanical Data

Case: DO-35 Glass Case

Weight: 130 mg

Packaging Codes/Options:

TR / 10 k per 13" reel (52 mm tape), 50 k/box

TAP / 10 k per Ammo tape (52 mm tape), 50 k/box

Parts Table

Part	Ordering code	Marking	Remarks
BAT85	BAT85-TR or BAT85-TAP	-	Tape and Reel / Ammopack

Absolute Maximum Ratings

$T_{amb} = 25^\circ C$, unless otherwise specified

Parameter	Test condition	Part	Symbol	Value	Unit
Continuous reverse voltage			V_R	30	V
Forward continuous current	$T_{amb} = 25^\circ C$		I_F	200 ¹⁾	mA
Peak forward current	$T_{amb} = 25^\circ C$		I_{FM}	300 ¹⁾	mA
Surge forward current	$t_p < 1 \text{ s}, T_{amb} = 25^\circ C$		I_{FSM}	600 ¹⁾	mA
Power dissipation	$T_{amb} = 65^\circ C$		P_{tot}	200 ¹⁾	mW

¹⁾ Valid provided that leads at a distance of 4 mm from case are kept at ambient temperature

Thermal Characteristics

$T_{amb} = 25^\circ C$, unless otherwise specified

Parameter	Test condition	Symbol	Value	Unit
Thermal resistance junction to ambient air		R_{thJA}	430 ¹⁾	°C/W
Junction temperature		T_j	125	°C
Ambient operating temperature range		T_{amb}	- 65 to + 125	°C
Storage temperature range		T_S	- 65 to + 150	°C

¹⁾ Valid provided that leads at a distance of 4 mm from case are kept at ambient temperature

Electrical Characteristics $T_{amb} = 25^\circ C$, unless otherwise specified

Parameter	Test condition	Part	Symbol	Min	Typ.	Max	Unit
Reverse breakdown voltage	$I_R = 10 \mu A$ (pulsed)		$V_{(BR)R}$	30			V
Leakage current	$V_R = 25 V$		I_R			2	μA
Forward voltage	Pulse test $t_p < 300 \mu s$, $\delta < 2 \%$, $I_F = 0.1 \text{ mA}$		V_F			0.24	V
	Pulse test $t_p < 300 \mu s$, $\delta < 2 \%$, $I_F = 1 \text{ mA}$		V_F			0.32	V
	Pulse test $t_p < 300 \mu s$, $\delta < 2 \%$, $I_F = 10 \text{ mA}$		V_F			0.4	V
	Pulse test $t_p < 300 \mu s$, $\delta < 2 \%$, $I_F = 30 \text{ mA}$		V_F		0.5		V
	Pulse test $t_p < 300 \mu s$, $\delta < 2 \%$, $I_F = 100 \text{ mA}$		V_F			0.8	V
Diode capacitance	$V_R = 1 V$, $f = 1 \text{ MHz}$		C_{tot}			10	pF
Reverse recovery time	$I_F = 10 \text{ mA}$, $I_R = 10 \text{ mA}$, $I_{rr} = 1 \text{ mA}$		t_{rr}			5	ns

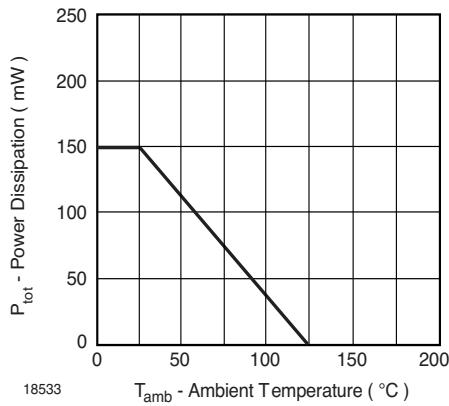

Typical Characteristics ($T_{amb} = 25^\circ C$ unless otherwise specified)

Fig. 1 Admissible Power Dissipation vs. Ambient Temperature

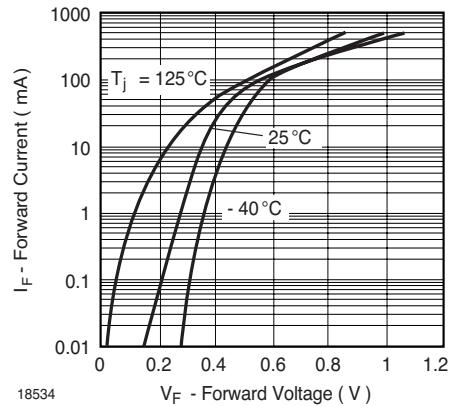


Fig. 2 Typical Instantaneous Forward Characteristics

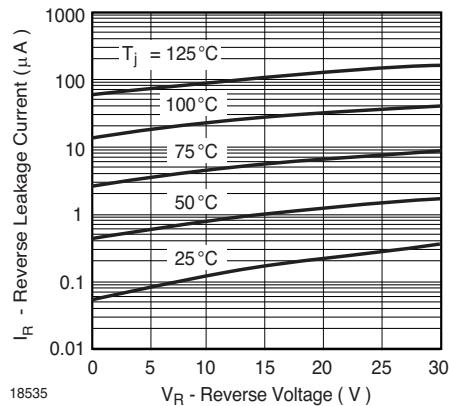


Fig. 3 Typical Reverse Characteristics

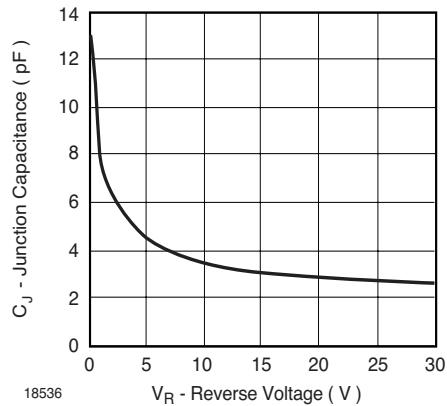
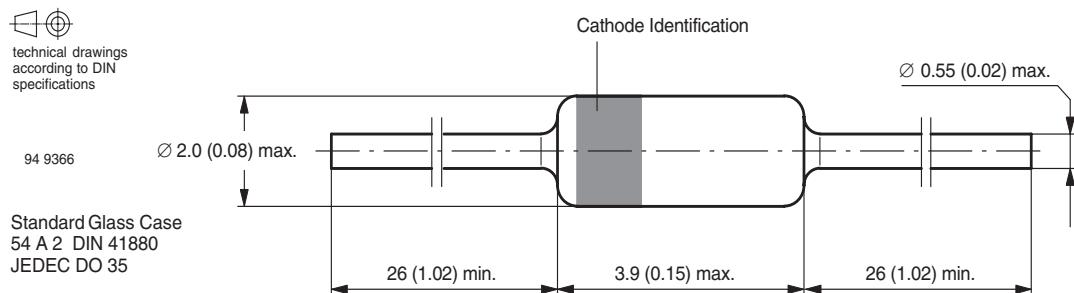



Fig. 4 Typical Junction Capacitance

Package Dimensions in mm (Inches)

Ozone Depleting Substances Policy Statement

It is the policy of **Vishay Semiconductor GmbH** to

1. Meet all present and future national and international statutory requirements.
2. Regularly and continuously improve the performance of our products, processes, distribution and operating systems with respect to their impact on the health and safety of our employees and the public, as well as their impact on the environment.

It is particular concern to control or eliminate releases of those substances into the atmosphere which are known as ozone depleting substances (ODSs).

The Montreal Protocol (1987) and its London Amendments (1990) intend to severely restrict the use of ODSs and forbid their use within the next ten years. Various national and international initiatives are pressing for an earlier ban on these substances.

Vishay Semiconductor GmbH has been able to use its policy of continuous improvements to eliminate the use of ODSs listed in the following documents.

1. Annex A, B and list of transitional substances of the Montreal Protocol and the London Amendments respectively
2. Class I and II ozone depleting substances in the Clean Air Act Amendments of 1990 by the Environmental Protection Agency (EPA) in the USA
3. Council Decision 88/540/EEC and 91/690/EEC Annex A, B and C (transitional substances) respectively.

Vishay Semiconductor GmbH can certify that our semiconductors are not manufactured with ozone depleting substances and do not contain such substances.

We reserve the right to make changes to improve technical design and may do so without further notice.

Parameters can vary in different applications. All operating parameters must be validated for each customer application by the customer. Should the buyer use Vishay Semiconductors products for any unintended or unauthorized application, the buyer shall indemnify Vishay Semiconductors against all claims, costs, damages, and expenses, arising out of, directly or indirectly, any claim of personal damage, injury or death associated with such unintended or unauthorized use.

Vishay Semiconductor GmbH, P.O.B. 3535, D-74025 Heilbronn, Germany
Telephone: 49 (0)7131 67 2831, Fax number: 49 (0)7131 67 2423