

PIC24HJ32GP302/304, PIC24HJ64GPX02/X04, and PIC24HJ128GPX02/X04 Data Sheet

High-Performance, 16-bit Microcontrollers

 $\ensuremath{\textcircled{}^\circ}$ 2008 Microchip Technology Inc.

Note the following details of the code protection feature on Microchip devices:

- Microchip products meet the specification contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions.
- There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip's Data Sheets. Most likely, the person doing so is engaged in theft of intellectual property.
- Microchip is willing to work with the customer who is concerned about the integrity of their code.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as "unbreakable."

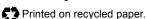
Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip's code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION, INCLUDING BUT NOT LIMITED TO ITS CONDITION. QUALITY, PERFORMANCE, MERCHANTABILITY OR FITNESS FOR PURPOSE. Microchip disclaims all liability arising from this information and its use. Use of Microchip devices in life support and/or safety applications is entirely at the buyer's risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights.

QUALITY MANAGEMENT SYSTEM CERTIFIED BY DNV ISO/TS 16949:2002

Trademarks

The Microchip name and logo, the Microchip logo, Accuron, dsPIC, KEELOQ, KEELOQ logo, MPLAB, PIC, PICmicro, PICSTART, PRO MATE, rfPIC and SmartShunt are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.


FilterLab, Linear Active Thermistor, MXDEV, MXLAB, SEEVAL, SmartSensor and The Embedded Control Solutions Company are registered trademarks of Microchip Technology Incorporated in the U.S.A.

Analog-for-the-Digital Age, Application Maestro, CodeGuard, dsPICDEM, dsPICDEM.net, dsPICworks, dsSPEAK, ECAN, ECONOMONITOR, FanSense, In-Circuit Serial Programming, ICSP, ICEPIC, Mindi, MiWi, MPASM, MPLAB Certified logo, MPLIB, MPLINK, mTouch, PICkit, PICDEM, PICDEM.net, PICtail, PIC³² logo, PowerCal, PowerInfo, PowerMate, PowerTool, REAL ICE, rfLAB, Select Mode, Total Endurance, UNI/O, WiperLock and ZENA are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

 $\ensuremath{\mathsf{SQTP}}$ is a service mark of Microchip Technology Incorporated in the U.S.A.

All other trademarks mentioned herein are property of their respective companies.

© 2008, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved.

Microchip received ISO/TS-16949:2002 certification for its worldwide headquarters, design and wafer fabrication facilities in Chandler and Tempe, Arizona; Gresham, Oregon and design centers in California and India. The Company's quality system processes and procedures are for its PIC® MCUs and dsPIC® DSCs, KEELOQ® code hopping devices, Serial EEPROMs, microperipherals, nonvolatile memory and analog products. In addition, Microchip's quality system for the design and manufacture of development systems is ISO 9001:2000 certified.

PIC24HJ32GP302/304, PIC24HJ64GPX02/X04, AND PIC24HJ128GPX02/X04

High-Performance, 16-bit Microcontrollers

Operating Range:

- Up to 40 MIPS operation (at 3.0-3.6V):
 - Industrial temperature range (-40°C to +85°C)
 - Extended temperature range (-40°C to +125°C)

High-Performance CPU:

- Modified Harvard architecture
- C compiler optimized instruction set
- · 16-bit wide data path
- 24-bit wide instructions
- Linear program memory addressing up to 4M instruction words
- · Linear data memory addressing up to 64 Kbytes
- 71 base instructions: mostly 1 word/1 cycle
- Flexible and powerful addressing modes
- Software stack
- 16 x 16 multiply operations
- 32/16 and 16/16 divide operations
- Up to ±16-bit shifts for up to 40-bit data

Direct Memory Access (DMA):

- 8-channel hardware DMA
- Up to 2 Kbytes dual ported DMA buffer area (DMA RAM) to store data transferred via DMA:
 - Allows data transfer between RAM and a peripheral while CPU is executing code (no cycle stealing)
- Most peripherals support DMA

On-Chip Flash and SRAM:

- Flash program memory (up to 128 Kbytes)
- Data SRAM (up to 8 Kbytes)
- Boot, Secure, and General Security for program Flash

Timers/Capture/Compare/PWM:

- Timer/Counters, up to five 16-bit timers:
 - Can pair up to make two 32-bit timers
 - One timer runs as a Real-Time Clock with an external 32.768 kHz oscillator
 - Programmable prescaler
- Input Capture (up to four channels):
 - Capture on up, down or both edges
 - 16-bit capture input functions
 - 4-deep FIFO on each capture
- Output Compare (up to four channels):
 - Single or Dual 16-bit Compare mode
 - 16-bit Glitchless PWM mode
- Hardware Real-Time Clock/Calendar (RTCC):
 - Provides clock, calendar, and alarm functions

Interrupt Controller:

- 5-cycle latency
- 118 interrupt vectors
- · Up to 45 available interrupt sources
- · Up to three external interrupts
- Seven programmable priority levels
- · Five processor exceptions

Digital I/O:

- · Peripheral pin Select functionality
- Up to 35 programmable digital I/O pins
- · Wake-up/Interrupt-on-Change for up to 21 pins
- Output pins can drive from 3.0V to 3.6V
- Up to 5V output with open drain configuration
- · All digital input pins are 5V tolerant
- 4 mA sink on all I/O pins

Communication Modules:

- 4-wire SPI (up to two modules):
 - Framing supports I/O interface to simple codecs
 - Supports 8-bit and 16-bit data
 - Supports all serial clock formats and sampling modes
- I²C™:
 - Full Multi-Master Slave mode support
 - 7-bit and 10-bit addressing
 - Bus collision detection and arbitration
 - Integrated signal conditioning
 - Slave address masking
- UART (up to two modules):
 - Interrupt on address bit detect
 - Interrupt on UART error
 - Wake-up on Start bit from Sleep mode
 - 4-character TX and RX FIFO buffers
 - LIN bus support
 - IrDA[®] encoding and decoding in hardware
 - High-Speed Baud mode
 - Hardware Flow Control with CTS and RTS
- Enhanced CAN (ECAN™ module) 2.0B active:
 - Up to eight transmit and up to 32 receive buffers
 - 16 receive filters and three masks
 - Loopback, Listen Only and Listen All
 - Messages modes for diagnostics and bus monitoring
 - Wake-up on CAN message
 - Automatic processing of Remote Transmission Requests
 - FIFO mode using DMA
 - DeviceNet[™] addressing support
- Parallel Master Slave Port (PMP/EPSP):
 - Supports 8-bit or 16-bit data
 - Supports 16 address lines
- Programmable Cyclic Redundancy Check (CRC):
 - Programmable bit length for the CRC generator polynomial (up to 16-bit length)
 - 8-deep, 16-bit or 16-deep, 8-bit FIFO for data input

System Management:

- · Flexible clock options:
 - External, crystal, resonator, internal RC
 - Fully integrated Phase-Locked Loop (PLL)
 - Extremely low jitter PLL
- Power-up Timer
- Oscillator Start-up Timer/Stabilizer
- · Watchdog Timer with its own RC oscillator
- · Fail-Safe Clock Monitor
- · Reset by multiple sources

Power Management:

- On-chip 2.5V voltage regulator
- · Switch between clock sources in real time
- · Idle, Sleep, and Doze modes with fast wake-up

Analog-to-Digital Converters (ADCs):

- 10-bit, 1.1 Msps or 12-bit, 500 Ksps conversion:
 - Two and four simultaneous samples (10-bit ADC)
 - Up to 13 input channels with auto-scanning
 - Conversion start can be manual or synchronized with one of four trigger sources
 - Conversion possible in Sleep mode
 - ±2 LSb max integral nonlinearity
 - ±1 LSb max differential nonlinearity

Comparator Module:

• Two analog comparators with programmable input/output configuration

CMOS Flash Technology:

- Low-power, high-speed Flash technology
- · Fully static design
- 3.3V (±10%) operating voltage
- Industrial and Extended temperature
- · Low power consumption

Packaging:

- 28-pin SDIP/SOIC/QFN-S
- 44-pin TQFP/QFN

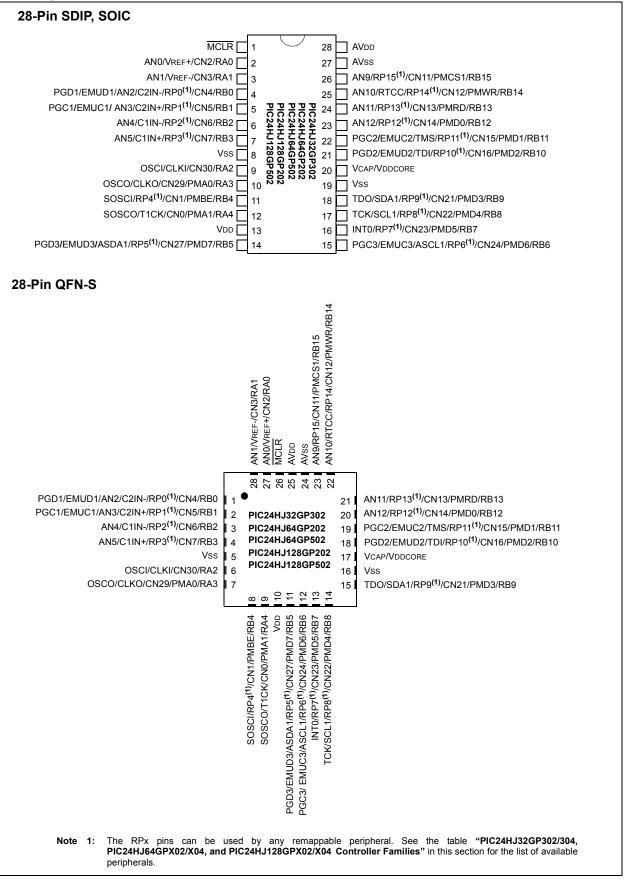
Note: See the device variant tables for exact peripheral features per device.

PIC24HJ32GP302/304, PIC24HJ64GPX02/X04, AND PIC24HJ128GPX02/X04 PRODUCT FAMILIES

The device names, pin counts, memory sizes, and peripheral availability of each device are listed below. The following pages show their pinout diagrams.

PIC24HJ32GP302/304, PIC24HJ64GPX02/X04, and PIC24HJ128GPX02/X04 Controller Families

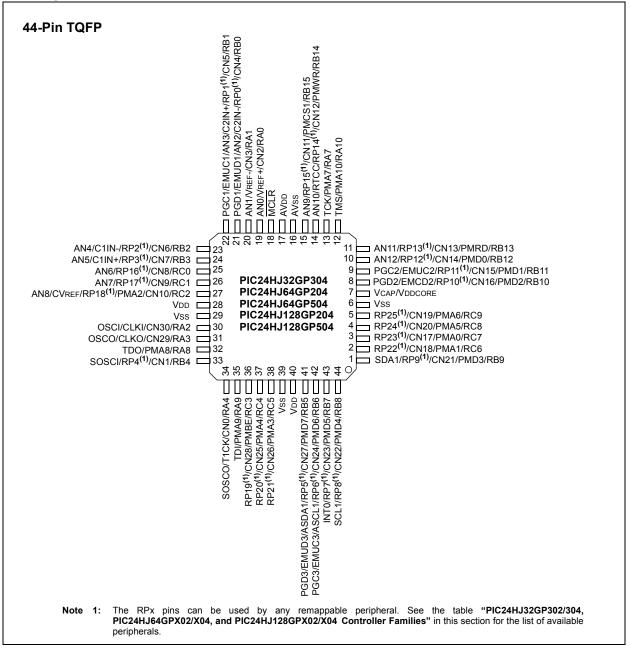
					Re	ma	ppable	Per	iphe	ral						j.			
Device	Pins	Program Flash Memory (Kbyte)	RAM (Kbyte) ⁽¹⁾	Remappable Pins	16-bit Timer ⁽²⁾	Input Capture	Output Compare Standard PWM	UART	SPI	ECAN™	External Interrupts ⁽³⁾	RTCC	I ² C™	CRC Generator	10-bit/12-bit ADC (Channels)	Analog Comparator (2 Channels/Voltage Regulator)	8-bit Parallel Master Port (Address Lines)	I/O Pins	Packages
PIC24HJ128GP504	44	128	8	26	5	4	4	2	2	1	3	1	1	1	13	1/1	11	35	QFN TQFP
PIC24HJ128GP502	28	128	8	16	5	4	4	2	2	1	3	1	1	1	10	1/0	2	21	SDIP SOIC QFN-S
PIC24HJ128GP204	44	128	8	26	5	4	4	2	2	0	3	1	1	1	13	1/1	11	35	QFN TQFP
PIC24HJ128GP202	28	128	8	16	5	4	4	2	2	0	3	1	1	1	10	1/0	2	21	SDIP SOIC QFN-S
PIC24HJ64GP504	44	64	8	26	5	4	4	2	2	1	3	1	1	1	13	1/1	11	35	QFN TQFP
PIC24HJ64GP502	28	64	8	16	5	4	4	2	2	1	3	1	1	1	10	1/0	2	21	SDIP SOIC QFN-S
PIC24HJ64GP204	44	64	8	26	5	4	4	2	2	0	3	1	1	1	13	1/1	11	35	QFN TQFP
PIC24HJ64GP202	28	64	8	16	5	4	4	2	2	0	3	1	1	1	10	1/0	2	21	SDIP SOIC QFN-S
PIC24HJ32GP304	44	32	4	26	5	4	4	2	2	0	3	1	1	1	13	1/1	11	35	QFN TQFP
PIC24HJ32GP302	28	32	4	16	5	4	4	2	2	0	3	1	1	1	10	1/0	2	21	SDIP SOIC QFN-S


Note 1: RAM size is inclusive of 2 Kbytes of DMA RAM for all devices except PIC24HJ32GP302/304, which include 1 Kbyte of DMA RAM.

2: Only four out of five timers are remappable.

3: Only two out of three interrupts are remappable.

PIC24HJ32GP302/304, PIC24HJ64GPX02/X04, AND PIC24HJ128GPX02/X04


Pin Diagrams

Pin Diagrams (Continued)

· ·		
44-Pin QFN	PGC1/EMUC1/AN3/C2IN+/RP1 ⁽¹⁾ /CN5/RB1 PGD1/EMUD1/AN2/C2IN-/RP0 ⁽¹⁾ /CN4/RB0 AN1/VREF-/CN3/RA1 AN0/VREF+/CN2/RA0 MCLR AN0D AV0D AV10/RP15 ⁽¹⁾ /CN11/PM/CS1/RB15 AN10/RTCC/RP14 ⁽¹⁾ /CN12/PM/WR/RB14 TCK/PMA7(RA10 TCK/PMA10/RA10	
AN4/C1IN-/RP2 ⁽¹⁾ /CN6/RB2 23 AN5/C1IN+/RP3 ⁽¹⁾ /CN7/RB3 24 AN6/RP16 ⁽¹⁾ /CN8/RC0 25 AN7/RP17 ⁽¹⁾ /CN9/RC1 26 AN8/CVREF/RP18 ⁽¹⁾ /PMA2/CN10/RC2 27 VDD 28 VSS 29 OSCI/CLKI/CN30/RA2 30 OSCO/CLKO/CN29/RA3 31 TD0/PMA8/RA8 32 SOSCI/RP4 ⁽¹⁾ /CN1/RB4 33	L L Q Z Z Q F R C R C F E C 11 I I I I I I I PIC24HJ32GP304 8 PIC24HJ64GP204 7 I I I PIC24HJ64GP504 6 PIC24HJ128GP204 5 I I I I I	
	SOSCOTTCK/CN0/RA4 TDI/PMA9/RA9 RP19 ⁽¹⁾ /CN28/PMBE/RC3 RP20 ⁽¹⁾ /CN28/PMBE/RC3 RP21 ⁽¹⁾ /CN26/PMA4/RC4 RP21 ⁽¹⁾ /CN26/PMA4/RC5 VD5 VD5 VD5 VD5 VD5 VD5 VD5 VD5 VD5 VD	
	used by any remappable peri	pheral. See the table "PIC24HJ32GP302/304, Iler Families" in this section for the list of available

Pin Diagrams (Continued)

Table of Contents

PIC2	4HJ32GP302/304, PIC24HJ64GPX02/X04, and PIC24HJ128GPX02/X04 Product Families	3
1.0	Device Overview	9
2.0	CPU	
3.0	Memory Organization	
4.0	Flash Program Memory	47
5.0	Resets	53
6.0	Interrupt Controller	61
7.0	Direct Memory Access (DMA)	101
8.0	Oscillator Configuration	
9.0	Power-Saving Features	123
10.0	I/O Ports	125
11.0	Timer1	153
12.0	Timer2/3 And TImer4/5 feature	155
13.0	Input Capture	
14.0	Output Compare	163
15.0	Serial Peripheral Interface (SPI)	
16.0	Inter-Integrated Circuit (I ² C TM)	173
17.0	Universal Asynchronous Receiver Transmitter (UART)	
	Enhanced CAN (ECAN™) Module	
19.0	10-bit/12-bit Analog-to-Digital Converter (ADC1)	
20.0		
	Real-Time Clock and Calendar (RTCC)	
22.0	Programmable Cyclic Redundancy Check (CRC) Generator	241
23.0	Parallel Master Port (PMP)	245
24.0	Special Features	253
25.0	Instruction Set Summary	263
26.0	Development Support	271
27.0	Electrical Characteristics	275
	Packaging Information	
Appe	endix A: Revision History	327
Index	<	329
	Microchip Web Site	
Custo	omer Change Notification Service	335
Custo	omer Support	335
Read	ler Response	336
Produ	uct Identification System	337

TO OUR VALUED CUSTOMERS

It is our intention to provide our valued customers with the best documentation possible to ensure successful use of your Microchip products. To this end, we will continue to improve our publications to better suit your needs. Our publications will be refined and enhanced as new volumes and updates are introduced.

If you have any questions or comments regarding this publication, please contact the Marketing Communications Department via E-mail at **docerrors@microchip.com** or fax the **Reader Response Form** in the back of this data sheet to (480) 792-4150. We welcome your feedback.

Most Current Data Sheet

To obtain the most up-to-date version of this data sheet, please register at our Worldwide Web site at:

http://www.microchip.com

You can determine the version of a data sheet by examining its literature number found on the bottom outside corner of any page. The last character of the literature number is the version number, (e.g., DS30000A is version A of document DS30000).

Errata

An errata sheet, describing minor operational differences from the data sheet and recommended workarounds, may exist for current devices. As device/documentation issues become known to us, we will publish an errata sheet. The errata will specify the revision of silicon and revision of document to which it applies.

To determine if an errata sheet exists for a particular device, please check with one of the following:

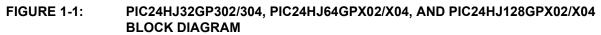
Microchip's Worldwide Web site; http://www.microchip.com

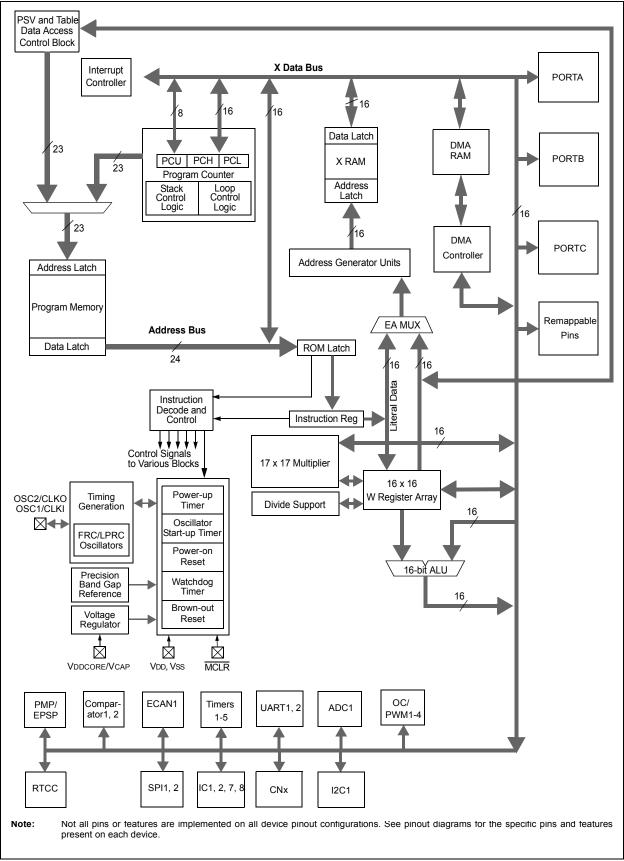
• Your local Microchip sales office (see last page)

When contacting a sales office, please specify which device, revision of silicon and data sheet (include literature number) you are using.

Customer Notification System

Register on our website at www.microchip.com to receive the most current information on all of our products.


1.0 DEVICE OVERVIEW


Note:	This data sheet summarizes the features
	of the PIC24HJ32GP302/304,
	PIC24HJ64GPX02/X04, and
	PIC24HJ128GPX02/X04 families of
	devices. It is not intended to be a
	comprehensive reference source. To
	complement the information in this data
	sheet, refer to the related section of the
	PIC24H Family Reference Manual, which
	is available from the Microchip website
	(www.microchip.com)

This document contains device specific information for the PIC24HJ32GP302/304, PIC24HJ64GPX02/X04, and PIC24HJ128GPX02/X04 devices.

Figure 1-1 shows a general block diagram of the core and peripheral modules in the PIC24HJ32GP302/304, PIC24HJ64GPX02/X04, and PIC24HJ128GPX02/X04 families of devices.

Table 1-1 lists the functions of the various pins shown in the pinout diagrams.

Pin Name	Pin Type	Buffer Type	Description
AN0-AN12	- 77-	Analog	Analog input channels.
CLKI CLKO	I O		
OSC1	І	ST/CMOS	Oscillator crystal input. ST buffer when configured in RC mode; CMOS otherwise.
OSC2	І/О	—	Oscillator crystal output. Connects to crystal or resonator in Crystal Oscillator mode. Optionally functions as CLKO in RC and EC modes.
SOSCI	I	ST/CMOS	32.768 kHz low-power oscillator crystal input; CMOS otherwise.
SOSCO	O		32.768 kHz low-power oscillator crystal output.
CN0-CN30	I	ST	Change notification inputs. Can be software programmed for internal weak pull-ups on all inputs.
IC1-IC2		ST	Capture inputs 1/2
IC7-IC8		ST	Capture inputs 7/8.
OCFA	I	ST	Compare Fault A input (for Compare Channels 1, 2, 3 and 4).
OC1-OC4	O	—	Compare outputs 1 through 4.
INT0		ST	External interrupt 0.
INT1		ST	External interrupt 1.
INT2		ST	External interrupt 2.
RA0-RA4	I/O	ST	PORTA is a bidirectional I/O port.
RA7-RA10	I/O	ST	PORTA is a bidirectional I/O port.
RB0-RB15	I/O	ST	PORTB is a bidirectional I/O port.
RC0-RC9	I/O	ST	PORTC is a bidirectional I/O port.
T1CK		ST	Timer1 external clock input.
T2CK		ST	Timer2 external clock input.
T3CK		ST	Timer3 external clock input.
T4CK		ST	Timer4 external clock input.
T5CK		ST	Timer5 external clock input.
U1CTS		ST	UART1 clear to send.
U1RTS	0	—	UART1 ready to send.
U1RX		ST	UART1 receive.
U1TX	0	—	UART1 transmit.
U2CTS		ST	UART2 clear to send.
U2RTS	0	—	UART2 ready to send.
U2RX		ST	UART2 receive.
U2TX	0	—	UART2 transmit.
SCK1	I/O	ST	Synchronous serial clock input/output for SPI1.
SDI1	I	ST	SPI1 data in.
SDO1	O	—	SPI1 data out.
SS1	I/O	ST	SPI1 slave synchronization or frame pulse I/O.
SCK2	I/O	ST	Synchronous serial clock input/output for SPI2.
SDI2	I	ST	SPI2 data in.
SDO2	0	—	SPI2 data out.
SS2	I/O	ST	SPI2 slave synchronization or frame pulse I/O.
SCL1	I/O	ST	Synchronous serial clock input/output for I2C1.
SDA1	I/O	ST	Synchronous serial data input/output for I2C1.
ASCL1	I/O	ST	Alternate synchronous serial clock input/output for I2C1.
ASDA1	I/O	ST	Alternate synchronous serial data input/output for I2C1.
ST = S		gger input w	input or outputAnalog = Analog inputP = Powervith CMOS levelsO = OutputI = Input

TABLE 1-1:	PINOUT I/O	DESCRIPTIONS
------------	-------------------	--------------

Pin Name	Pin Type	Buffer Type	Description
TMS TCK TDI TDO	 0	ST ST ST —	JTAG Test mode select pin. JTAG test clock input pin. JTAG test data input pin. JTAG test data output pin.
C1RX C1TX	I O	ST —	ECAN1 bus receive pin. ECAN1 bus transmit pin.
RTCC	0	—	Real-Time Clock Alarm Output.
CVREF	0	ANA	Comparator Voltage Reference Output.
C1IN- C1IN+ C1OUT	 0	ANA ANA —	Comparator 1 Negative Input. Comparator 1 Positive Input. Comparator 1 Output.
C2IN- C2IN+ C2OUT	 0	ANA ANA —	Comparator 2 Negative Input. Comparator 2 Positive Input. Comparator 2 Output.
PMA0	I/O	TTL/ST	Parallel Master Port Address Bit 0 Input (Buffered Slave modes) and Output
PMA1	I/O	TTL/ST	(Master modes). Parallel Master Port Address Bit 1 Input (Buffered Slave modes) and Output (Master modes).
PMA2 -PMPA10 PMBE PMCS1 PMD0-PMPD7	0 0 1/0	 TTL/ST	Parallel Master Port Address (Demultiplexed Master Modes). Parallel Master Port Byte Enable Strobe. Parallel Master Port Chip Select 1 Strobe. Parallel Master Port Data (Demultiplexed Master mode) or Address/Data (Multiplexed Master modes).
PMRD PMWR	0 0		Parallel Master Port Read Strobe. Parallel Master Port Write Strobe.
PGD1/EMUD1 PGC1/EMUC1 PGD2/EMUD2 PGC2/EMUC2 PGD3/EMUD3 PGC3/EMUC3	/O /O /O 	ST ST ST ST ST ST	Data I/O pin for programming/debugging communication channel 1. Clock input pin for programming/debugging communication channel 1. Data I/O pin for programming/debugging communication channel 2. Clock input pin for programming/debugging communication channel 2. Data I/O pin for programming/debugging communication channel 3. Clock input pin for programming/debugging communication channel 3.
MCLR	I/P	ST	Master Clear (Reset) input. This pin is an active-low Reset to the device.
AVDD	Р	Р	Positive supply for analog modules.
AVss	Р	Р	Ground reference for analog modules.
Vdd	Р	_	Positive supply for peripheral logic and I/O pins.
VDDCORE	Р	—	CPU logic filter capacitor connection.
Vss	Р		Ground reference for logic and I/O pins.
VREF+	I	Analog	Analog voltage reference (high) input.
VREF-	I	Analog	Analog voltage reference (low) input.

TABLE 1-1: PINOUT I/O DESCRIPTIONS (CONTINUED)

Legend: CMOS = CMOS compatible input or output ST = Schmitt Trigger input with CMOS levels TTL = TTL input buffer Analog = Analog inputP = PowerO = OutputI = Input

2.0 CPU

Note: This data sheet summarizes the features PIC24HJ32GP302/304, the of PIC24HJ64GPX02/X04, and PIC24HJ128GPX02/X04 families of devices. It is not intended to be a comprehensive reference source. То complement the information in this data sheet, refer to the PIC24H Family Reference Manual, "Section 2. CPU" (DS70245), which is available from the Microchip website (www.microchip.com).

2.1 Overview

The PIC24HJ32GP302/304, PIC24HJ64GPX02/X04, and PIC24HJ128GPX02/X04 CPU module has a 16-bit (data) modified Harvard architecture with an enhanced instruction set and addressing modes. The CPU has a 24-bit instruction word with a variable length opcode field. The Program Counter (PC) is 23 bits wide and addresses up to 4M x 24 bits of user program memory space. The actual amount of program memory implemented varies by device. A single-cycle instruction prefetch mechanism is used to help maintain throughput and provides predictable execution. All instructions execute in a single cycle, with the exception of instructions that change the program flow, the double word move (MOV.D) instruction and the table instructions. Overhead-free, single-cycle program loop constructs are supported using the REPEAT instruction, which is interruptible at any point.

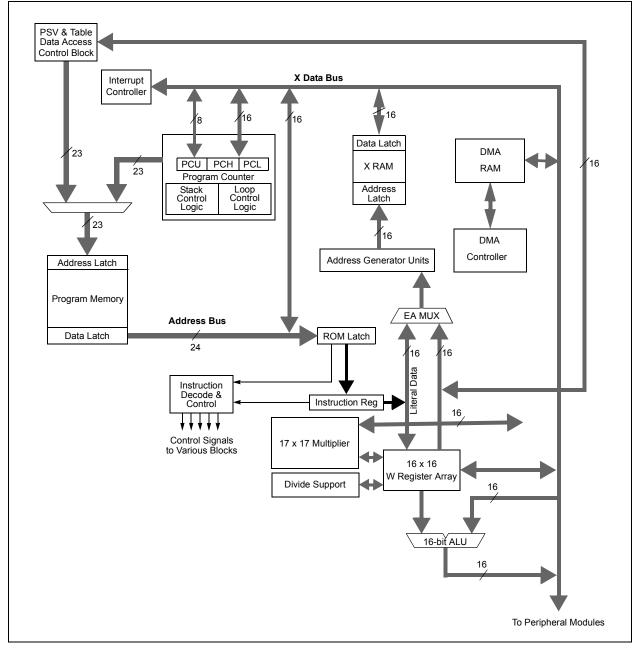
The PIC24HJ32GP302/304, PIC24HJ64GPX02/X04, and PIC24HJ128GPX02/X04 devices have sixteen, 16-bit working registers in the programmer's model. Each of the working registers can serve as a data, address or address offset register. The 16th working register (W15) operates as a software Stack Pointer (SP) for interrupts and calls. The PIC24HJ32GP302/304, PIC24HJ64GPX02/X04, and PIC24HJ128GPX02/X04 instruction set includes many addressing modes and is designed for optimum C compiler efficiency. For most instructions, the PIC24HJ32GP302/304, PIC24HJ64GPX02/X04, and PIC24HJ128GPX02/X04 is capable of executing a data (or program data) memory read, a working register (data) read, a data memory write and a program (instruction) memory read per instruction cycle. As a result, three parameter instructions can be supported, allowing A + B = C operations to be executed in a single cycle.

A block diagram of the CPU is shown in Figure 2-1, and the programmer's model for the PIC24HJ32GP302/ 304, PIC24HJ64GPX02/X04, and PIC24HJ128GPX02/X04 is shown in Figure 2-2.

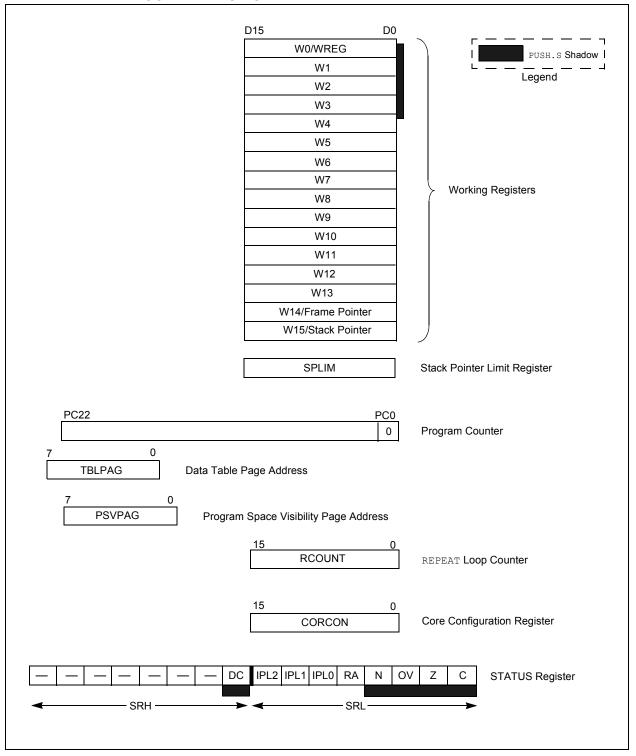
2.2 Data Addressing Overview

The data space can be linearly addressed as 32K words or 64 Kbytes using an Address Generation Unit (AGU). The upper 32 Kbytes of the data space memory map can optionally be mapped into program space at any 16K program word boundary defined by the 8-bit Program Space Visibility Page (PSVPAG) register. The program to data space mapping feature lets any instruction access program space as if it were data space.

The data space also includes 2 Kbytes of DMA RAM, which is primarily used for DMA data transfers, but may be used as general purpose RAM.


2.3 Special MCU Features

The PIC24HJ32GP302/304, PIC24HJ64GPX02/X04, and PIC24HJ128GPX02/X04 features a 17-bit by 17-bit, single-cycle multiplier. The multiplier can perform signed, unsigned and mixed-sign multiplication. Using a 17-bit by 17-bit multiplier for 16-bit by 16-bit multiplication makes mixed-sign multiplication possible.


The PIC24HJ32GP302/304, PIC24HJ64GPX02/X04, and PIC24HJ128GPX02/X04 devices support 16/16 and 32/16 integer divide operations. All divide instructions are iterative operations. They must be executed within a REPEAT loop, resulting in a total execution time of 19 instruction cycles. The divide operation can be interrupted during any of those 19 cycles without loss of data.

A multi-bit data shifter is used to perform up to a 16-bit, left or right shift in a single cycle.

FIGURE 2-1: PIC24HJ32GP302/304, PIC24HJ64GPX02/X04, AND PIC24HJ128GPX02/X04 CPU CORE BLOCK DIAGRAM

FIGURE 2-2: PIC24HJ32GP302/304, PIC24HJ64GPX02/X04, AND PIC24HJ128GPX02/X04 PROGRAMMER'S MODEL

© 2008 Microchip Technology Inc.

2.4 CPU Control Registers

U-0	U-0	U-0	U-0	U-0	U-0	U-0	R/W-0
_	_	_	_	_	—	_	DC
bit 15							bit 8
R/W-0 ⁽¹⁾	R/W-0 ⁽²⁾	R/W-0 ⁽²⁾	R-0	R/W-0	R/W-0	R/W-0	R/W-0
	IPL<2:0> ⁽²⁾		RA	Ν	OV	Z	С
bit 7							bit C
Legend:							
C = Clear onl	y bit	R = Readable	e bit	U = Unimpler	mented bit, read	l as '0'	
S = Set only	bit	W = Writable	bit	-n = Value at	POR		
'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unk	nown		
bit 15-9	Unimplemer	nted: Read as '	0'				
bit 8	DC: MCU AL	U Half Carry/Bo	orrow bit				
	of the re 0 = No carry data) of	sult occurred -out from the 4 the result occur	th low-order l red	bit (for byte-siz	data) or 8th low- ed data) or 8th	-	
bit 7-5	IPL<2:0>: CI	PU Interrupt Pri	ority Level Sta	atus bits ⁽²⁾			
	100 = CPU 011 = CPU 010 = CPU 001 = CPU	nterrupt Priority nterrupt Priority nterrupt Priority nterrupt Priority nterrupt Priority nterrupt Priority	Level is 4 (12 Level is 3 (11 Level is 2 (10 Level is 1 (9)	2))))			
bit 4	RA: REPEAT	Loop Active bit					
		loop in progress loop not in prog					
bit 3		Negative bit					
	1 = Result wa 0 = Result wa	as negative as non-negative	e (zero or pos	itive)			
bit 2	OV: MCU AL	U Overflow bit					
	This bit is used for signed arithmetic (two's complement). It indicates an overflow of a magnitude causes the sign bit to change state. 1 = Overflow occurred for signed arithmetic (in this arithmetic operation) 0 = No overflow occurred						magnitude tha
bit 1	Z: MCU ALU	Zero bit					
					time in the past cleared it (i.e., a		ılt)
bit 0	C: MCU ALU	Carry/Borrow	bit				
		out from the Mos					
L	he IPL<2:0> bits	s are concatena	ated with the I	PL<3> bit (COI	RCON<3>) to fo 3> = 1. User in		
	he IPI <2·0> Sta	atus hits are rea	d only when I		NTCON1<15>)		

REGISTER 2-1: SR: CPU STATUS REGISTER

2: The IPL<2:0> Status bits are read only when NSTDIS = 1 (INTCON1<15>).

REGISTER 2-2: CORCON: CORE CONTROL REGISTER

Unimplemented: Read as '0'

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	—	—	-	—	—
bit 15							bit 8
U-0	U-0	U-0	U-0	R/C-0	R/W-0	U-0	U-0
—	—	—	—	IPL3 ⁽¹⁾	PSV	—	—
bit 7							bit 0
Legend:		C = Clear only	y bit				
R = Readable	e bit	W = Writable	bit	-n = Value at	POR	'1' = Bit is set	
0' = Bit is clea	ared	'x = Bit is unk	nown	U = Unimpler			
bit 15-4	Unimplemen	ted: Read as '	0'				
bit 3	IPL3: CPU Int	terrupt Priority	Level Status b	oit 3 ⁽¹⁾			
	1 = CPU interrupt priority level is greater than 7						
	0 = CPU interrupt priority level is 7 or less						
bit 2	t 2 PSV: Program Space Visibility in Data Space Enable bit						
1 = Program space visible in data space							
0 = Program space not visible in data space							

Note 1: The IPL3 bit is concatenated with the IPL<2:0> bits (SR<7:5>) to form the CPU interrupt priority level.

bit 1-0

2.5 Arithmetic Logic Unit (ALU)

The PIC24HJ32GP302/304, PIC24HJ64GPX02/X04, and PIC24HJ128GPX02/X04 ALU is 16 bits wide and is capable of addition, subtraction, bit shifts and logic operations. Unless otherwise mentioned, arithmetic operations are two's complement in nature. Depending on the operation, the ALU can affect the values of the Carry (C), Zero (Z), Negative (N), Overflow (OV) and Digit Carry (DC) Status bits in the SR register. The C and DC Status bits operate as Borrow and Digit Borrow bits, respectively, for subtraction operations.

The ALU can perform 8-bit or 16-bit operations, depending on the mode of the instruction that is used. Data for the ALU operation can come from the W register array or data memory, depending on the addressing mode of the instruction. Likewise, output data from the ALU can be written to the W register array or a data memory location.

Refer to the "*dsPIC30F/33F Programmer's Reference Manual*" (DS70157) for information on the SR bits affected by each instruction.

The PIC24HJ32GP302/304, PIC24HJ64GPX02/X04, and PIC24HJ128GPX02/X04 CPU incorporates hard-ware support for both multiplication and division. This includes a dedicated hardware multiplier and support hardware for 16-bit-divisor division.

2.5.1 MULTIPLIER

Using the high-speed 17-bit x 17-bit multiplier, the ALU supports unsigned, signed or mixed-sign operation in several MCU multiplication modes:

- 16-bit x 16-bit signed
- 16-bit x 16-bit unsigned
- 16-bit signed x 5-bit (literal) unsigned
- 16-bit unsigned x 16-bit unsigned
- 16-bit unsigned x 5-bit (literal) unsigned
- 16-bit unsigned x 16-bit signed
- 8-bit unsigned x 8-bit unsigned

2.5.2 DIVIDER

The divide block supports 32-bit/16-bit and 16-bit/16-bit signed and unsigned integer divide operations with the following data sizes:

- 1. 32-bit signed/16-bit signed divide
- 2. 32-bit unsigned/16-bit unsigned divide
- 3. 16-bit signed/16-bit signed divide
- 4. 16-bit unsigned/16-bit unsigned divide

The quotient for all divide instructions ends up in W0 and the remainder in W1. 16-bit signed and unsigned DIV instructions can specify any W register for both the 16-bit divisor (Wn) and any W register (aligned) pair (W(m + 1):Wm) for the 32-bit dividend. The divide algorithm takes one cycle per bit of divisor, so both 32-bit/16-bit and 16-bit/16-bit instructions take the same number of cycles to execute.

2.5.3 MULTI-BIT DATA SHIFTER

The multi-bit data shifter is capable of performing up to 16-bit arithmetic or logic right shifts, or up to 16-bit left shifts in a single cycle. The source can be either a working register or a memory location.

The shifter requires a signed binary value to determine both the magnitude (number of bits) and direction of the shift operation. A positive value shifts the operand right. A negative value shifts the operand left. A value of '0' does not modify the operand.

3.0 MEMORY ORGANIZATION

Note:	This data sheet summarizes the features						
	of the PIC24HJ32GP302/304,						
	PIC24HJ64GPX02/X04, and						
	PIC24HJ128GPX02/X04 families of						
	devices. It is not intended to be a compre-						
	hensive reference source. To complement						
	the information in this data sheet, refer to						
	the PIC24H Family Reference Manual,						
	"Section 4. Program Memory"						
	(DS70238), which is available from the						
	Microchip website (www.microchip.com).						

The PIC24HJ32GP302/304, PIC24HJ64GPX02/X04, and PIC24HJ128GPX02/X04 architecture features separate program and data memory spaces and buses. This architecture also allows the direct access of program memory from the data space during code execution.

3.1 Program Address Space

The program address memory space of the PIC24HJ32GP302/304, PIC24HJ64GPX02/X04, and PIC24HJ128GPX02/X04 devices is 4M instructions. The space is addressable by a 24-bit value derived either from the 23-bit Program Counter (PC) during program execution, or from table operation or data space remapping as described in Section 3.4 "Interfacing Program and Data Memory Spaces".

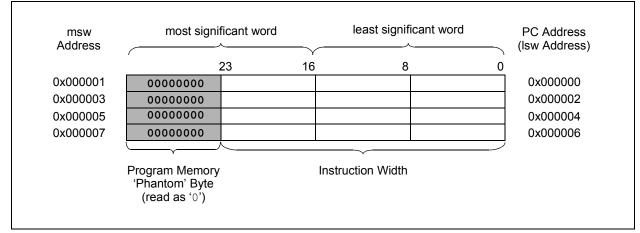
User application access to the program memory space is restricted to the lower half of the address range (0x000000 to 0x7FFFF). The exception is the use of TBLRD/TBLWT operations, which use TBLPAG<7> to permit access to the Configuration bits and Device ID sections of the configuration memory space.

The memory map for the PIC24HJ32GP302/304, PIC24HJ64GPX02/X04, and PIC24HJ128GPX02/X04 devices is shown in Figure 3-1.

FIGURE 3-1: PROGRAM MEMORY MAP FOR PIC24HJ32GP302/304, PIC24HJ64GPX02/X04, AND PIC24HJ128GPX02/X04 DEVICES

	PIC24HJ32GP302/304	PIC24HJ64GPX02/X04	PIC24HJ128GPX02/X04	
T	GOTO Instruction	GOTO Instruction	GOTO Instruction	0x000000 0x000002
	Reset Address	Reset Address	Reset Address	0x000002 0x000004
	Interrupt Vector Table	Interrupt Vector Table	Interrupt Vector Table	0x0000FE
	Reserved	Reserved	Reserved	0x000100
	Alternate Vector Table	Alternate Vector Table	Alternate Vector Table	0x000104 0x0001FE 0x000200
	User Program Flash Memory (11264 instructions)	User Program – – – – Flash Memory – – – – (22016 instructions)		0x0057FE 0x005800
			User Program Flash Memory (44032 instructions)	0x00ABFE
	Unimplemented			0x00AC00
	(Read '0's)	Unimplemented		0x0157FE
		(Read '0's)		0x015800
			Unimplemented	
			(Read '0's)	
1			(iteau 03)	
<u>+</u>	├ ──── ├ − − −	+		0x7FFFFE 0x800000
1				0.000000
	Reserved	Reserved	Reserved	
				0xF7FFFE
	Device Configuration Registers	Device Configuration Registers	Device Configuration Registers	0xF80000 0xF80017
	Reserved	Reserved	Reserved	0xF80018
				0xFEFFFE
	DEVID (2)	DEVID (2)	DEVID (2)	0xFF0000 0xFF0002
¥	Reserved	Reserved	Reserved	
				0xFFFFFE

3.1.1 PROGRAM MEMORY ORGANIZATION


The program memory space is organized in wordaddressable blocks. Although it is treated as 24 bits wide, it is more appropriate to think of each address of the program memory as a lower and upper word, with the upper byte of the upper word being unimplemented. The lower word always has an even address, while the upper word has an odd address (Figure 3-2).

Program memory addresses are always word-aligned on the lower word, and addresses are incremented or decremented by two during code execution. This arrangement provides compatibility with data memory space addressing and makes data in the program memory space accessible.

3.1.2 INTERRUPT AND TRAP VECTORS

All PIC24HJ32GP302/304, PIC24HJ64GPX02/X04, and PIC24HJ128GPX02/X04 devices reserve the addresses between 0x00000 and 0x000200 for hard-coded program execution vectors. A hardware Reset vector is provided to redirect code execution from the default value of the PC on device Reset to the actual start of code. A GOTO instruction is programmed by the user application at 0x000000, with the actual address for the start of code at 0x000002.

PIC24HJ32GP302/304, PIC24HJ64GPX02/X04, and PIC24HJ128GPX02/X04 devices also have two interrupt vector tables, located from 0x000004 to 0x0000FF and 0x000100 to 0x0001FF. These vector tables allow each of the device interrupt sources to be handled by separate Interrupt Service Routines (ISRs). A more detailed discussion of the interrupt vector tables is provided in **Section 6.1 "Interrupt Vector Table**".

FIGURE 3-2: PROGRAM MEMORY ORGANIZATION

3.2 Data Address Space

The PIC24HJ32GP302/304, PIC24HJ64GPX02/X04, and PIC24HJ128GPX02/X04 CPU has a separate 16bit-wide data memory space. The data space is accessed using separate Address Generation Units (AGUs) for read and write operations. The data memory maps are shown in Figure 3-3 and Figure 3-4.

All Effective Addresses (EAs) in the data memory space are 16 bits wide and point to bytes within the data space. This arrangement gives a data space address range of 64 Kbytes or 32K words. The lower half of the data memory space (that is, when EA<15> = 0) is used for implemented memory addresses, while the upper half (EA<15> = 1) is reserved for the Program Space Visibility area (see Section 3.4.3 "Reading Data From Program Memory Using Program Space Visibility").

PIC24HJ32GP302/304, PIC24HJ64GPX02/X04, and PIC24HJ128GPX02/X04 devices implement up to 8 Kbytes of data memory. Should an EA point to a location outside of this area, an all-zero word or byte is returned.

3.2.1 DATA SPACE WIDTH

The data memory space is organized in byte addressable, 16-bit wide blocks. Data is aligned in data memory and registers as 16-bit words, but all data space EAs resolve to bytes. The Least Significant Bytes (LSBs) of each word have even addresses, while the Most Significant Bytes (MSBs) have odd addresses.

3.2.2 DATA MEMORY ORGANIZATION AND ALIGNMENT

To maintain backward compatibility with PIC[®] MCU devices and improve data space memory usage efficiency, the PIC24HJ32GP302/304, PIC24HJ64GPX02/X04, and PIC24HJ128GPX02/X04 instruction set supports both word and byte operations. As a consequence of byte accessibility, all effective address calculations are internally scaled to step through word-aligned memory. For example, the core recognizes that Post-Modified Register Indirect Addressing mode [Ws++] results in a value of Ws + 1 for byte operations and Ws + 2 for word operations.

A data byte read, reads the complete word that contains the byte, using the LSB of any EA to determine which byte to select. The selected byte is placed onto the LSB of the data path. That is, data memory and registers are organized as two parallel byte-wide entities with shared (word) address decode but separate write lines. Data byte writes only write to the corresponding side of the array or register that matches the byte address. All word accesses must be aligned to an even address. Misaligned word data fetches are not supported, so care must be taken when mixing byte and word operations, or translating from 8-bit MCU code. If a misaligned read or write is attempted, an address error trap is generated. If the error occurred on a read, the instruction underway is completed. If the error occurred on a write, the instruction is executed but the write does not occur. In either case, a trap is then executed, allowing the system and/or user application to examine the machine state prior to execution of the address Fault.

All byte loads into any W register are loaded into the Least Significant Byte. The Most Significant Byte is not modified.

A sign-extend instruction (SE) is provided to allow user applications to translate 8-bit signed data to 16-bit signed values. Alternatively, for 16-bit unsigned data, user applications can clear the MSB of any W register by executing a zero-extend (ZE) instruction on the appropriate address.

3.2.3 SFR SPACE

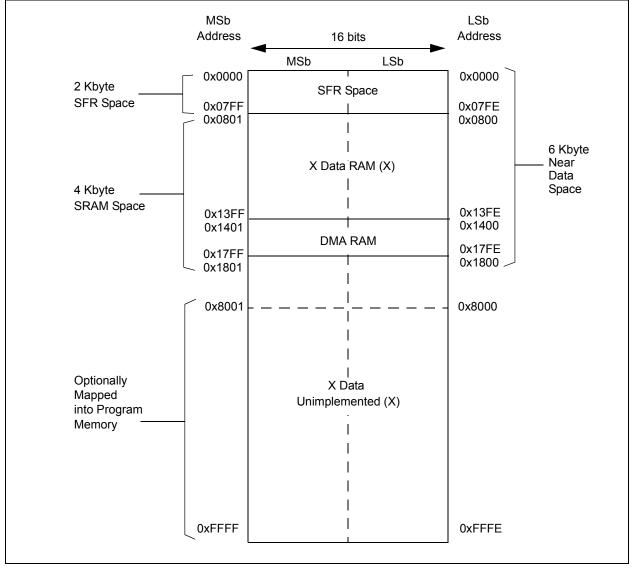
The first 2 Kbytes of the Near Data Space, from 0x0000 to 0x07FF, is primarily occupied by Special Function Registers (SFRs). These are used by the PIC24HJ32GP302/304, PIC24HJ64GPX02/X04, and PIC24HJ128GPX02/X04 core and peripheral modules for controlling the operation of the device.

SFRs are distributed among the modules that they control, and are generally grouped together by module. Much of the SFR space contains unused addresses; these are read as '0'.

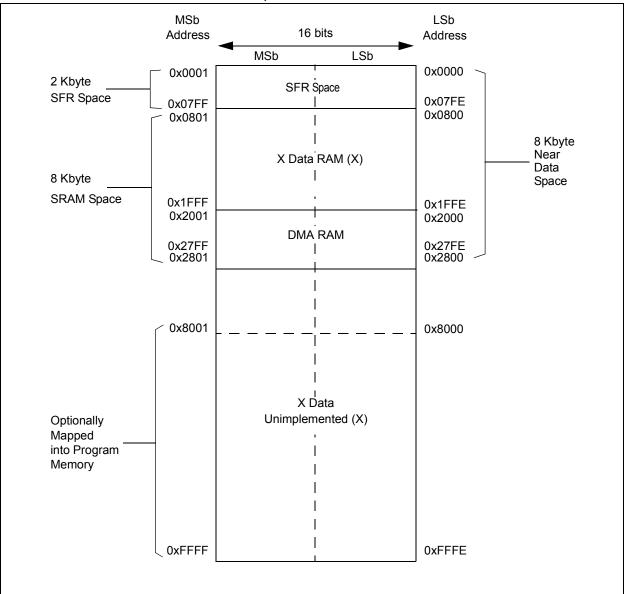
Note: The actual set of peripheral features and interrupts varies by the device. Refer to the corresponding device tables and pinout diagrams for device-specific information.

3.2.4 NEAR DATA SPACE

The 8 Kbyte area between 0x0000 and 0x1FFF is referred to as the near data space. Locations in this space are directly addressable via a 13-bit absolute address field within all memory direct instructions. Additionally, the whole data space is addressable using MOV instructions, which support Memory Direct Addressing mode with a 16-bit address field, or by using Indirect Addressing mode using a working register as an address pointer.


3.2.5 DMA RAM

The PIC24HJ32GP302/304 devices contain 1 Kbytes of dual ported DMA RAM located at the end of X data space. The PIC24HJ64GPX02/X04 and PIC24HJ128GPX02/X04 devices contain 2 Kbytes of dual ported DMA RAM located at the end of X data space. Memory locations in the DMA RAM space are accessible simultaneously by the CPU and the DMA controller module. DMA RAM is utilized by the DMA controller to store data to be transferred to various peripherals using DMA, as well as data transferred from various peripherals using DMA. The DMA RAM can be accessed by the DMA controller without having to steal cycles from the CPU.


When the CPU and the DMA controller attempt to concurrently write to the same DMA RAM location, the hardware ensures that the CPU is given precedence in accessing the DMA RAM location. Therefore, the DMA RAM provides a reliable means of transferring DMA data without ever having to stall the CPU.

Note:	DMA RAM can be used for general							
	purpose data storage if the DMA function							
	is not required in an application.							

FIGURE 3-3: DATA MEMORY MAP FOR PIC24HJ32GP302/304 DEVICES WITH 4 KB RAM

FIGURE 3-4:DATA MEMORY MAP FOR PIC24HJ128GP202/204, PIC24HJ64GP202/204,
PIC24HJ128GP502/504, AND PIC24HJ64GP502/504 DEVICES WITH 8 KB RAM

© 2008 Microchip Technology Inc.

TABLE 3-1 :	3-1:	CPU C	CPU CORE REGISTERS MAP	GISTER	S MAP													
SFR Name	SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
WREGO	0000								Working Register 0	jister 0								0000
WREG1	0002								Working Register 1	jister 1								0000
WREG2	0004								Working Register 2	jister 2								0000
WREG3	0006								Working Register 3	pister 3								0000
WREG4	0008								Working Register 4	jister 4								0000
WREG5	000A								Working Register 5	jister 5								0000
WREG6	000C								Working Register 6	jister 6								0000
WREG7	000E								Working Register 7	jister 7								0000
WREG8	0010								Working Register 8	jister 8								0000
WREG9	0012								Working Register 9	jister 9								0000
WREG10	0014								Working Register 10	ister 10								0000
WREG11	0016							-	Working Register 11	ister 11								0000
WREG12	0018								Working Register 12	ister 12								0000
WREG13	001A							1	Working Register 13	ister 13								0000
WREG14	001C								Working Register 14	ister 14								0000
WREG15	001E								Working Register 15	ister 15								0800
SPLIM	0020							Stac	Stack Pointer Limit Register	nit Register								XXXX
PCL	002E							Program	Program Counter Low Word Register	v Word Regis	ster							0000
PCH	0030	Ι	Ι	Ι	Ι		Ι	Ι				Progra	m Counter h	Program Counter High Byte Register	gister			0000
TBLPAG	0032	I			I			Ι				Table F	^a age Addres	Table Page Address Pointer Register	gister			0000
PSVPAG	0034	Ι	Ι	Ι	Ι			Ι			Progr	am Memory	 Visibility Pa 	Program Memory Visibility Page Address Pointer Register	^D ointer Regi	ster		0000
RCOUNT	0036							Repe	Repeat Loop Counter Register	nter Register								XXXX
SR	0042	I	I		Ι		I	Ι	DC	IPL2	IPL1	IPLO	RA	z	VO	Z	c	0000
CORCON	0044	Ι			Ι		I	I	I				I	IPL3	PSV		I	0000
DISICNT	0052		I						Disable	Disable Interrupts Counter Register	Counter Rec	gister						XXXX
Legend:	IN = X	\mathbf{x} = unknown value on Reset, — = unimplemented, read as	s on Reset, -	- = unimple	mented, re		set values a	are shown in	^{'0'} . Reset values are shown in hexadecimal.	al.								

PIC24HJ32GP302/304, PIC24HJ64GPX02/X04, AND PIC24HJ128GPX02/X04

C c

TABLI	П 3-2:	CHZ	ANGE N	OTIFICA	TABLE 3-2: CHANGE NOTIFICATION REGIST	EGISTEF	RAP F	OR PIC	24HJ128	3GP202/	502, PIC	TER MAP FOR PIC24HJ128GP202/502, PIC24HJ64GP202/502, AND PIC24HJ32GP302	GP202/£	502, ANI	D PIC24	HJ32GP	302	
SFR Name	SFR SFR Name Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
CNEN1	0900	CNEN1 0060 CN15IE	CN14IE	CN13IE	CN12IE	CN11E	1	I	I	CN7IE	CN6IE	CN5IE	CN4IE	CN3IE	CN2IE	CN1IE	CNOIE	0000
CNEN2 0062	0062	Ι	CN30IE	CN29IE	Ι	CN27IE	I	I	CN24IE	CN23IE	CN22IE	CN21IE	I	I	Ι	Ι	CN16IE	0000
CNPU1	0068	CN15PUE	CN14PUE	CN13PUE	CNPU1 0068 CN15PUE CN14PUE CN13PUE CN12PUE CN11PU	CN11PUE	I		Ι	CN7PUE	CN6PUE	CN7PUE CN6PUE CN4PUE CN4PUE CN3PUE CN2PUE CN1PUE CN0PUE	CN4PUE	CN3PUE	CN2PUE	CN1PUE	CNOPUE	0000
CNPU2 006A	006A	Ι	CN30PUE	CN30PUE CN29PUE	Ι	CN27PUE	Ι		CN24PUE	CN24PUE CN23PUE CN22PUE CN21PUE	CN22PUE	CN21PUE	I	I	I		CN16PUE	0000
Legend:		= unknown v	/alue on Res	set, — = unir	x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal	, read as '0'.	Reset value	es are show	/n in hexade	cimal.								
	ч, ч, ц	L L							2011 1105	1 VUCOUR	JID VUS		CD2011	NV VUI		П 1200	201	

	All Resets	0000	0000	00,	0.0
	, Re			00	оо Ш
204	Bit 0	CNOIE	CN 16IE	CN0PUE	CN16PUE
102000	Bit 1	CN1IE	CN17IE	CN1PUE	CN17PUE
1 LIV 241	Bit 2	CN2IE	CN18IE	CN2PUE	CN18PUE
004, ANI	Bit 3	CN3IE	CN19IE	CN3PUE	CN19PUE
2140710	Bit 4	CN4IE	CN20IE	CN4PUE	CN20PUE
74U004	Bit 6 Bit 5	CN5IE	CN21IE	CN5PUE	CN21PUE
004, TIC	Bit 6	CN6IE	CN22IE	CN6PUE	CN22PUE
1404 10	Bit 7	CN7IE	CN23IE	CN7PUE	CN23PUE
	Bit 8	CN8IE	CN24IE	CN8PUE	CN24PUE
	Bit 9	CN9IE	CN25IE	CN9PUE	CN25PUE
IEK MAF FOK FICZ403 1200F 204/304, FICZ403040F 204/304, AND FICZ40320F 304	Bit 10	CN10IE	CN26IE	CN10PUE	CN26PUE
	Bit 11	CNEN1 0060 CN15IE CN14IE CN13IE CN12IE CN11IE CN10IE CN9IE CN9IE CN7IE CN6IE CN6IE CN6IE CN4IE CN3IE CN2IE CN1IE CN0IE	CN30IE CN29IE CN28IE CN28IE CN26IE CN26IE CN25IE CN24IE CN23IE CN22IE CN21IE CN20IE CN19IE CN18IE CN17IE CN16IE	CNPU1 0068 CN15PUE CN14PUE CN13PUE CN12PUE CN11PUE CN10PUE CN9PUE CN8PUE CN7PUE CN6PUE CN5PUE CN4PUE CN2PUE CN2PUE CN1PUE CN0PUE 0000	CN30PUE CN29PUE CN28PUE CN27PUE CN26PUE CN25PUE CN24PUE CN23PUE CN22PUE CN21PUE CN20PUE CN19PUE CN18PUE CN17PUE CN16PUE 0000
	Bit 12	CN12IE	CN28IE	CN12PUE	CN28PUE
	Bit 13	CN13IE	CN29IE	CN13PUE	CN29PUE
	Bit 15 Bit 14	CN14IE	CN30IE	CN14PUE	CN30PUE
100	Bit 15	CN15IE	Ι	CN15PUE	Ι
	R SFR F	0900	00C2	0068	006A
IADLE	SFR Name	CNEN1	CNEN2 00C2	CNPU1	CNPU2 006A

x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal. Legend:

PIC24HJ32GP302/304, PIC24HJ64GPX02/X04, AND PIC24HJ128GPX02/X04

TABLE	3-4:	INTER	INTERRUPT CONTROLLER REG	ONTRO	LLER RE	EGISTEF	ISTER MAP											
SFR Name	SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
INTCON1	0080	NSTDIS		Ι		Ι				I	DIVOERR	DMACERR	MATHERR	ADDRERR	STKERR	OSCFAIL		0000
INTCON2	0082	ALTIVT	DISI			Ι	-			Ι	-	Ι	Ι	Ι	INT2EP	INT1EP	INTOEP	0000
IFS0	0084	I	DMA1IF	AD1IF	U1TXIF	U1RXIF	SPI11F	SPI1EIF	T3IF	T2IF	0C2IF	IC2IF	DMA0IF	T11F	OC1IF	IC1IF	INTOIF	0000
IFS1	0086	U2TXIF	U2RXIF	INT2IF	T5IF	T4IF	OC4IF	OC3IF	DMA2IF	IC8IF	IC7IF	I	INT1IF	CNIF	CMIF	MI2C1IF	SI2C1IF	0000
IFS2	0088	Ι	DMA4IF	PMPIF		Ι	-			Ι	-	Ι	DMA3IF	C1IF ⁽¹⁾	C1RXIF ⁽¹⁾	SPI2IF	SPI2EIF	0000
IFS3	A800	Ι	RTCIF	DMA5IF		Ι	Ι		1	Ι	Ι	I	Ι	Ι	I	I		0000
IFS4	008C	Ι		Ι	I	Ι		1		1	C1TXIF ⁽¹⁾	DMA7IF	DMA6IF	CRCIF	U2EIF	U1EIF		0000
IEC0	0094	Ι	DMA1IE	AD1IE	U1TXIE	U1RXIE	SPI1IE	SPI1EIE	T3IE	T2IE	OC2IE	IC2IE	DMA0IE	T1IE	OC1IE	IC1IE	INTOIE	0000
IEC1	9600	U2TXIE	U2RXIE	INT2IE	T5IE	T4IE	OC4IE	OC3IE	DMA2IE	IC8IE	IC7IE	I	INT1IE	CNIE	CMIE	MI2C1IE	SI2C1IE	0000
IEC2	8600	Ι	DMA4IE	PMPIE		I				I	-	I	DMA3IE	C1IE ⁽¹⁾	C1RXIE ⁽¹⁾	SPI2IE	SPIZEIE	0000
IEC3	V600	Ι	RTCIE	DMA5IE		I				I	-	I	I	I	I	I	I	0000
IEC4	D600	-	Ι			I				I	C1TXIE ⁽¹⁾	DMA7IE	DMA6IE	CRCIE	U2EIE	U1EIE	I	0000
IPC0	00A4	Ι		T1IP<2:0>		Ι	0	0C1IP<2:0>		I		IC1IP<2:0>		Ι	Z	NT0IP<2:0>		444
IPC1	9A00	Ι		T2IP<2:0>		I	0	0C2IP<2:0>		I		IC2IP<2:0>		I	DN	DMA0IP<2:0>		444
IPC2	00A8	Ι	'n	U1RXIP<2:0>		I	S	SPI11P<2:0>		I	5	SPI1EIP<2:0>		I	F	T3IP<2:0>		444
IPC3	00AA	-	Ι			Ι	D	DMA1IP<2:0>	_	Ι		AD11P<2:0>		Ι	U1	U1TXIP<2:0>		0444
IPC4	00AC	Ι	0	CNIP<2:0>		Ι		CMIP<2:0>		Ι	V	MI2C1IP<2:0>		Ι	SIS	SI2C1IP<2:0>		444
IPC5	00AE	Ι	IC	IC8IP<2:0>		Ι		IC7IP<2:0>		I	Ι	Ι	I	Ι	N	INT1IP<2:0>		4404
IPC6	00B0	Ι	-	T4IP<2:0>		Ι	0	OC4IP<2:0>		Ι		OC3IP<2:0>		Ι	DN	DMA2IP<2:0>		4444
IPC7	00B2	Ι	în	U2TXIP<2:0>		Ι	n	U2RXIP<2:0>	_	Ι		INT2IP<2:0>		Ι	Г	T5IP<2:0>		444
IPC8	00B4	Ι	С	C1IP<2:0> ⁽¹⁾		Ι	C1	C1RXIP<2:0> ⁽¹⁾	(1)	Ι		SP12IP<2:0>		Ι	SP	SPI2EIP<2:0>		4444
IPC9	00B6	Ι	Ι	Ι	I	Ι	Ι	Ι	1	Ι	Ι	Ι	Ι	Ι	DN	DMA3IP<2:0>		0004
IPC11	00BA					Ι	D	DMA4IP<2:0>	^	I		PMPIP<2:0>		Ι				0440
IPC15	00C2					Ι	ш	RTCIP<2:0>		I		DMA5IP<2:0>		Ι				4440
IPC16	00C4	Ι	Ű	CRCIP<2:0>		Ι		U2EIP<2:0>		Ι		U1EIP<2:0>		Ι	Ι	I		4440
IPC17	00C6	Ι	Ι	I		Ι	C1	C1TXIP<2:0> ⁽¹⁾	(1)	I		DMA7IP<2:0>		Ι	DN	DMA6IP<2:0>		0444
INTTREG	00E0	Ι	Ι	Ι	Ι		ILR<3:0>>	<<0:		Ι			VEC	VECNUM<6:0>				4444
Legend:	n = ×	x = unknown value on Reset,	e on Reset, –	– = unimple	mented, rea	— = unimplemented, read as '0'. Reset values are shown in hexadecimal.	set values	are shown i	n hexadeci	mal.								
Note 1:		rupts disablec	Interrupts disabled on devices without ECAN TM modules	without ECA	N™ module	ŝS.												

	TABLE 3-5:	TIMER	REGIS	TIMER REGISTER MAP	AP													
Ad SF	SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
ò	0100								Timer1	Timer1 Register								XXXX
0	0102								Period I	Period Register 1								FFF
	0104	TON	Ι	TSIDL	Ι	Ι	Ι	Ι	Ι	Ι	TGATE	TCKP	TCKPS<1:0>	Ι	TSYNC	TCS	Ι	0000
_	0106								Timer2	Timer2 Register								XXXX
	0108						Ē	mer3 Holding) Register (fc	or 32-bit time	Timer3 Holding Register (for 32-bit timer operations only)	(fluc						XXXX
	010A								Timer3	Timer3 Register								XXXX
	010C								Period I	Period Register 2								FFF
i i	010E								Period I	Period Register 3								FFF
1	0110	TON	Ι	TSIDL	Ι	I	1	I	I	I	TGATE	TCKP	TCKPS<1:0>	T32	Ι	TCS	I	0000
I	0112	TON	Ι	TSIDL	I	1	1	I		I	TGATE	TCKP	TCKPS<1:0>	I	I	TCS	I	0000
	0114								Timer4	Timer4 Register								XXXX
L	0116						Ē	mer5 Holding	t Register (fc	or 32-bit time	Timer5 Holding Register (for 32-bit timer operations only)	(Aluc						XXXX
I	0118								Timer5	Timer5 Register								XXXX
I	011A								Period I	Period Register 4								FFF
	011C								Period I	Period Register 5								FFF
	011E	TON	Ι	TSIDL	Ι	I	I	Ι	I	Ι	TGATE	TCKP	TCKPS<1:0>	T32	Ι	TCS	I	0000
	0120	TON	Ι	TSIDL			1				TGATE	TCKP	TCKPS<1:0>	1	1	TCS	I	0000
	× = unk	nown valu	e on Reset,	— = unimp	olemented,	read as '0'.	x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.	s are showi	n in hexade	cimal.								
3	TABLE 3-6:	INPUT	- CAPTI	INPUT CAPTURE REGISTER MA	GISTER	RAP												
	SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
-	0140								Input 1 Cap	Input 1 Capture Register	эг							XXXX
	0142	I		ICSIDL	Ι	I	I	1	I	ICTMR	ICI<1:0>	-05	ICOV	ICBNE		ICM<2:0>		0000
	0144								Input 2 Cap	Input 2 Capture Register	зr							XXXX
	0146	Ι	Ι	ICSIDL	Ι	I	Ι	1	I	ICTMR	ICI<1:0>	1:0>	ICOV	ICBNE		ICM<2:0>		0000
	0158								Input 7 Cap	Input 7 Capture Register	۶r							XXXX
	015A	I	Ι	ICSIDL	I	I	I	I	I	ICTMR	ICI<1:0>	è:	ICOV	ICBNE		ICM<2:0>		0000

DS70293B-page 27

PIC24HJ32GP302/304, PIC24HJ64GPX02/X04, AND PIC24HJ128GPX02/X04

0000 XXXX

ICM<2:0>

ICBNE

ICOV

ICI<1:0>

Input 8Capture Register ICTMR

I

I

L

I

1

ICSIDL

I

1

015E 015C

x = unknown value on Reset,

Legend: IC8CON **IC8BUF**

— = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 3-7:	-7:	OUTPU	IT COMI	OUTPUT COMPARE REGISTER	EGISTE	ER MAP	0											
SFR Name	SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
OC1RS	0180							Out	put Compan	e 1 Second	Output Compare 1 Secondary Register							XXXX
OC1R	0182								Output Cc	Output Compare 1 Register	egister							XXXX
OC1CON	0184	1		OCSIDL	1					Ι	Ι	I	OCFLT	OCTSEL		OCM<2:0>		0000
OC2RS	0186							Out	put Compan	e 2 Second	Output Compare 2 Secondary Register							XXXX
OC2R	0188								Output Cc	Output Compare 2 Register	egister							XXXX
OC2CON	018A	1		OCSIDL	I			I	I	I	I	I	OCFLT	OCTSEL		OCM<2:0>		0000
OC3RS	018C							out	put Compan	e 3 Second	Output Compare 3 Secondary Register							XXXX
OC3R	018E								Output Cc	Output Compare 3 Register	egister							XXXX
OC3CON	0190	1		OCSIDL	1					Ι	Ι	I	OCFLT	OCTSEL		OCM<2:0>		0000
OC4RS	0192							Out	put Compan	e 4 Second	Output Compare 4 Secondary Register							XXXX
OC4R	0194								Output Cc	Output Compare 4 Register	egister							XXXX
OC4CON	0196	1		OCSIDL				I	I	I	Ι	I	OCFLT	OCTSEL		OCM<2:0>		0000
Legend:	x = unk	x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal	on Reset, -	— = unimple	mented, re	ad as '0'. I	Reset valu	es are shc	wn in hexa	adecimal.								
TABLE 3-8:	-8:	12C RE	12C REGISTER MAP	MAP	,		•											
SFR Name	SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	0 Bit 9	9 Bit 8		Bit 7 Bit 6	6 Bit 5	5 Bit 4	bit 3	Bit 2	Bit 1	Bit 0	All Resets
I2C1RCV	0200	Ι	I										Reœ	Receive Register				0000
I2C1TRN	0202	Ι	Ι	I	I				-	1			Tran	Transmit Register				00FF
I2C1BRG	0204	Ι	Ι	I	Ι				_			Bauc	d Rate Gener	Baud Rate Generator Register				0000
I2C1CON	0206	I2CEN	Ι	12CSIDL	SCLREL	- IPMIEN	V A10M	1 DISSLW	SLW SMEN		GCEN STREN	EN ACKDT	DT ACKEN	IN RCEN	PEN	RSEN	SEN	1000
I2C1STAT	0208	ACKSTAT	TRSTAT				BCL	GCSTAT	TAT ADD10		IWCOL I2COV	A_D_VC	A P	S	R_N	RBF	TBF	0000
I2C1ADD	020A	Ι	I	I	Ι							Add	Address Register					0000
I2C1MSK	020C	Ι	Ι	I	I							Addres	Address Mask Register	ster				0000
Legend:	× = unk	x = unknown value on Reset, —	on Reset, -	— = unimple	mented, re	ad as '0'. I	Reset value	es are shc	= unimplemented, read as '0'. Reset values are shown in hexadecimal	adecimal.								
TABLE 3-9:	:6-	UART1	REGIS ⁻	UART1 REGISTER MAP	۵													
	CED																	

SFR Name Addr	SFR Addr		Bit 14	Bit 15 Bit 14 Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
U1MODE	0220	0220 UARTEN		NSIDL	IREN	RTSMD	I	UEN1 UEN0		WAKE	WAKE LPBACK ABAUD URXINV	ABAUD	URXINV	BRGH	PDSEL<1:0>		STSEL	0000
U1STA	0222	0222 UTXISEL1 UTXINV UTXISEL0	UTXINV	UTXISEL0		UTXBRK	UTXEN	TXBRK UTXEN UTXBF TRMT	TRMT		URXISEL<1:0>	ADDEN	RIDLE	PERR		FERR OERR URXDA		0110
U1TXREG	0224	Ι	I	I		I	I	-	UTX8			Ú	UART Transmit Register	iit Register				XXXX
U1RXREG	0226	Ι	I	I		I	I	-	URX8			Ń	UART Received Register	sd Register				0000
U1BRG	0228							Bau	d Rate Gen	Baud Rate Generator Prescaler	aler							0000
Legend:	x = unkn	own value o	in Reset, —	\mathbf{x} = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.	ented, rea	d as '0'. Reŧ	set values	are shown	in hexade(cimal.								

PIC24HJ32GP302/304, PIC24HJ64GPX02/X04, AND PIC24HJ128GPX02/X04

TABLE 3	-10:	TABLE 3-10: UART2 REGISTER MAP	REGIST	ER MAP														
SFR Name	SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10 Bit 9		Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
U2MODE	0230	UARTEN	1	NSIDL	IREN	RTSMD	I	UEN1	UENO	WAKE	LPBACK ABAUD URXINV	ABAUD	URXINV	BRGH	PDSEL<1:0>	<1:0>	STSEL	0000
U2STA	0232	UTXISEL1 UTXINV UTXISEL0	UTXINV	UTXISEL0		UTXBRK UTXEN UTXBF	UTXEN	UTXBF	TRMT		URXISEL<1:0>	ADDEN	RIDLE	PERR	FERR	FERR OERR URXDA	URXDA	0110
U2TXREG	0234	Ι	I	I		Ι			UTX8			'n	UART Transmit Register	it Register				XXXX
U2RXREG	0236	Ι	Ι	Ι				1	URX8			'n	UART Receive Register	e Register				0000
U2BRG	0238							Bauc	d Rate Gen	Baud Rate Generator Prescaler	aler							0000
Legend:		\mathbf{x} = unknown value on Reset, — = unimplemented, read	n Reset, —	- = unimplem	ented, rea	d as '0'. Res	set values ¿	as '0'. Reset values are shown in hexadecimal	in hexaded	cimal.								

TABLE 3-11: SPI1 REGISTER MAP

SFR Name	SFR Addr	Bit 15	Bit 14 Bit 13	Bit 13	Bit 12	Bit 11	Bit 11 Bit 10 Bit 9 Bit 8	Bit 9		Bit 7	Bit 6	Bit 6 Bit 5 Bit 4 Bit 3 Bit 2	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
SPI1STAT 0240 SPIEN	0240	SPIEN	I	SPISIDL	I	I	I	I	I	1	SPIROV	I	I	I	ļ	- SPITBF SPIRBF	SPIRBF	0000
SPI1CON1 0242	0242		Ι	I	DISSCK	DISSDO	DISSDO MODE16 SMP CKE SSEN	SMP	CKE	SSEN	CKP MSTEN	MSTEN		SPRE<2:0>		PPRE <	PPRE<1:0>	0000
SPI1CON2	0244	FRMEN	SPI1CON2 0244 FRMEN SPIFSD FRMPOL	FRMPOL	I	I				I	I	I				FRMDLY		0000
SPI1BUF 0248	0248							SPI1 Transi	SPI1 Transmit and Receive Buffer Register	eive Buffer F	Register							0000
Legend:	x = unknc	own value o	Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.	unimplemer	nted, read a	as '0'. Rese	t values are	shown in I	hexadecims	al.								

TABLE 3-12: SPI2 REGISTER MAP

SFR Name	SFR Addr	Bit 15	Bit 14 Bit 13	Bit 13	Bit 12	Bit 11	Bit 11 Bit 10	Bit 9 Bit 8		Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
SPI2STAT 0260 SPIEN	0260	SPIEN	I	SPISIDL			1		1	1	SPIROV		1	1		SPITBF SPIRBF	SPIRBF	0000
SPI2CON1 0262	0262	Ι	Ι		DISSCK	DISSDO	DISSDO MODE16 SMP		CKE	SSEN	CKP MSTEN	MSTEN		SPRE<2:0>		PPRE<1:0>	<1:0>	0000
SPI2CON2 0264 FRMEN	0264	FRMEN	SPIFSD FRMPOL	FRMPOL		I	I		I							FRMDLY	I	0000
SPIZBUF	0268							SPI2 Transr	SPI2 Transmit and Receive Buffer Register	eive Buffer F	Register							0000
Legend: x = unknown value on Reset, — = unimplemented, read	x = unkno	own value oi	n Reset, — =	unimplemer	nted, read a	as '0'. Rese	as '0'. Reset values are shown in hexadecimal.	shown in h	nexadecima	H.								

PIC24HJ32GP302/304, PIC24HJ64GPX02/X04, AND PIC24HJ128GPX02/X04

© 2008 Microchip Technology Inc.

TABLE 3-13 :		ADC1 F	EGIST	ER MA	ADC1 REGISTER MAP FOR PIC24HJ64GP202/502, PIC24HJ128GP202/502 AND PIC24HJ32GP302	IC24HJ	64GP20	12/502,	PIC24H.	J128GP;	202/502	AND PI	C24HJ3	2GP302				
File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
ADC1BUF0	0300								ADC Dé	ADC Data Buffer 0								XXXX
AD1CON1	0320	ADON	-	ADSIDL	ADDMABM	Ι	AD12B	FORN	FORM<1:0>		SSRC<2:0>		Ι	MASMIS	ASAM	JMAS	DONE	0000
AD1CON2	0322	>	VCFG<2:0>	^	Ι	Ι	CSCNA	CHP	CHPS<1:0>	BUFS	I		SMPI	SMPI<3:0>		BUFM	ALTS	0000
AD1CON3	0324	ADRC	-	Ι		S	SAMC<4:0>						ADCS<7:0>	<0:2>				0000
AD1CHS123	0326	Ι	-	Ι	Ι	Ι	CH123NB<1:0>	IB<1:0>	CH123SB	Ι	Ι	Ι	Ι	-	CH123NA<1:0>	IA<1:0>	CH123SA	0000
AD1CHS0	0328	CHONB	-	Ι		Ū	CH0SB<4:0>			CHONA	Ι	Ι		Ū	CH0SA<4:0>			0000
AD1PCFGL	032C	Ι	-	Ι	PCFG12	PCFG11	PCFG10	PCFG9	Ι	Ι	Ι	PCFG5	PCFG4	PCFG3	PCFG2	PCFG1	PCFG0	0000
AD1CSSL	0330	Ι	Ι	Ι	CSS12	CSS11	CSS10	CSS9	Ι	Ι	-	CSS5	CSS4	CSS3	CSS2	CSS1	CSS0	0000
AD1CON4	0332	Ι		Ι	Ι	Ι		Ι	Ι	Ι		Ι	Ι	Ι		DMABL<2:0>	<(0000
Legend:	x = unkn	own value	on Reset,	— = unim	$_{ m x}$ = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal	ad as '0'. F	teset value:	s are show	'n in hexade	cimal.								
TABLE 3-14:		ADC1 R	EGIST	ER MA	ADC1 REGISTER MAP FOR PIC24HJ64GP204/504, PIC24HJ128GP204/504 AND PIC24HJ32GP304	IC24HJ	64GP20	4/504,	PIC24H.	J128GP;	204/504	AND PI	C24HJ3	2GP304				
File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
ADC1BUF0	0300								ADC Da	ADC Data Buffer 0								XXXX
AD1CON1	0320	ADON	Ι	ADSIDL	ADDMABM	Ι	AD12B	FORM	FORM<1:0>	5	SSRC<2:0>		Ι	SIMSAM	ASAM	SAMP	DONE	0000
AD1CON2	0322	~	VCFG<2:0>	^	Ι	Ι	CSCNA	CHPS	CHPS<1:0>	BUFS	Ι		SMPI<3:0>	:3:0>		BUFM	ALTS	0000

													•				.	
0000	0>	DMABL<2:0>		Ι				-	I		Ι	Ι	Ι				0332	AD1CON4
0000	CSS0	CSS1	CSS2	CSS3	CSS4	CSS5	CSS6	CSS7	CSS8	CSS9	CSS10	CSS11	CSS12	Ι	Ι	Ι	0330	AD1CSSL
0000	PCFG0	PCFG1	PCFG2	PCFG3	PCFG4	PCFG5	PCFG6	PCFG7	PCFG8	PCFG9	PCFG11 PCFG10 PCFG9	PCFG11	PCFG12	Ι			032C	AD1PCFGL
0000		^	CH0SA<4:0>	O		Ι		CH0NA		•	CH0SB<4:0>	С		Ι	Ι	CHONB	0328	AD1CHS0
0000	CH123NA<1:0> CH123SA	VA<1:0>	CH123N	Ι		Ι		-	CH123NB<1:0> CH123SB	VB<1:0>	CH123N	Ι	Ι	Ι	Ι	Ι	0326	AD1CHS123
0000				ADCS<7:0>	ADCS						SAMC<4:0>	S		Ι	Ι	ADRC	0324	AD1CON3
0000	ALTS	BUFM		SMPI<3:0>	SMPI			BUFS	CHPS<1:0>	CHP	CSCNA	Ι	Ι	Δ	VCFG<2:0>	/	0322	AD1CON2
0000	DONE	SAMP	ASAM	SIMSAM	-		SSRC<2:0>	5	FORM<1:0>	FOR	AD12B	Ι	ADDMABM	ADSIDL	Ι	ADON	0320	AD1CON1
XXXX								ADC Data Buffer 0	ADC Da								0300	ADC1BUF0
All Resets	Bit 0	Bit 1	Bit 2	Bit 3	Bit 4	Bit 5	Bit 6	Bit 7	Bit 8	Bit 9	Bit 10	Bit 11	Bit 12	Bit 14 Bit 13	Bit 14	Bit 15	Addr	File Name

Preliminary

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

PIC24HJ32GP302/304, PIC24HJ64GPX02/X04, AND PIC24HJ128GPX02/X04

TABLE 3	3-15:	DMA F	REGIST	DMA REGISTER MAP	٩													
File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
DMA0CON	0380	CHEN	SIZE	DIR	HALF	NULLW	I	I		I	I	AMODE<1:0>	<1:0>		1	MODE<1:0>		0000
DMA0REQ	0382	FORCE		Ι		I			I	I			IR	RQSEL<6:0>				0000
DMA0STA	0384								S.	STA<15:0>								0000
DMA0STB	0386								S.	STB<15:0>								0000
DMA0PAD	0388								Ρ/	PAD<15:0>								0000
DMA0CNT	038A	I		Ι		I						CNT<9:0>	<0:6					0000
DMA1CON	038C	CHEN	SIZE	DIR	HALF	NULLW		I	1	Ι		AMODE<1:0>	<1:0>		1	MODE<1:0>		0000
DMA1REQ	038E	FORCE				Ι		Ι		Ι			IR	IRQSEL<6:0>				0000
DMA1STA	0390								S.	STA<15:0>								0000
DMA1STB	0392								S.	STB<15:0>								0000
DMA1PAD	0394								Ы	PAD<15:0>								0000
DMA1CNT	0396	I		I		I						CNT<9:0>	<0:6					0000
DMA2CON	0398	CHEN	SIZE	DIR	HALF	NULLW		Ι		Ι	Ι	AMODE<1:0>	<1:0>		Ι	MODE<1:0>		0000
DMA2REQ	A950	FORCE		Ι		I			I	I			IR	IRQSEL<6:0>				0000
DMA2STA	039C								S.	STA<15:0>								0000
DMA2STB	039E								S.	STB<15:0>								0000
DMA2PAD	03A0								Ы	PAD<15:0>								0000
DMA2CNT	03A2	I		I		I						CNT<9:0>	<0:6					0000
DMA3CON	03A4	CHEN	SIZE	DIR	HALF	NULLW		Ι	Ι	Ι	Ι	AMODE<1:0>	<1:0>		Ι	MODE<1:0>		0000
DMA3REQ	03A6	FORCE		Ι	Ι	Ι		I					IR	IRQSEL<6:0>				0000
DMA3STA	03A8								S.	STA<15:0>								0000
DMA3STB	03AA								S.	STB<15:0>								0000
DMA3PAD	03AC								P/	PAD<15:0>								0000
DMA3CNT	03AE	I		Ι	Ι	Ι						CNT<9:0>	<0:6					0000
DMA4CON	03B0	CHEN	SIZE	DIR	HALF	NULLW		I		Ι	Ι	AMODE<1:0>	<1:0>		Ι	MODE<1:0>		0000
DMA4REQ	03B2	FORCE		Ι	Ι	Ι		I					IR	RQSEL<6:0>				0000
DMA4STA	03B4								S.	STA<15:0>								0000
DMA4STB	03B6								S.	STB<15:0>								0000
DMA4PAD	03B8								Ρ/	PAD<15:0>								0000
DMA4CNT	03BA	Ι		Ι	Ι	Ι						CNT<9:0>	-0:6					0000
DMA5CON	03BC	CHEN	SIZE	DIR	HALF	NULLW	I	I	I	I		AMODE<1:0>	<1:0>		I	MODE<1:0>		0000
DMA5REQ	03BE	FORCE		Ι	Ι	I	I	I	ļ	I			R	RQSEL<6:0>				0000
DMA5STA	03C0								S.	STA<15:0>								0000
DMA5STB	03C2								S.	STB<15:0>								0000
Legend:	un =	implement	ed, read as	= unimplemented, read as '0'. Reset values are shown in	values are :		hexadecimal.											

PIC24HJ32GP302/304, PIC24HJ64GPX02/X04, AND PIC24HJ128GPX02/X04

© 2008 Microchip Technology Inc.

TABLE 3-15 :	3-15:	DMA	DMA REGISTER MAP (CONTINU	ER MA	P (CON	TINUED)	(
File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0 F	All Resets
DMA5PAD	03C4								L C	PAD<15:0>								0000
DMA5CNT	03C6	I	Ι	I	Ι	Ι	I					CNT	CNT<9:0>					0000
DMA6CON	03C8	CHEN	SIZE	DIR	HALF	NULLW	I	I	I	I	Ι	AMODE<1:0>	=<1:0>	I	I	MODE<1:0>		0000
DMA6REQ	03CA	FORCE	I	I	I	I	I	I	I	I			=	IRQSEL<6:0>				0000
DMA6STA	03CC								S	STA<15:0>								0000
DMA6STB	03CE								S	STB<15:0>								0000
DMA6PAD	03D0								Ъ,	PAD<15:0>								0000
DMA6CNT	03D2	I	I	I	I	I	I					CNT	CNT<9:0>					0000
DMA7CON	03D4	CHEN	SIZE	DIR	HALF	NULLW	I	I	I	Ι	Ι	AMODE<1:0>	=<1:0>	I	I	MODE<1:0>		0000
DMA7REQ	03D6	FORCE	Ι	I	Ι	I	I	I	I	I				IRQSEL<6:0>				0000
DMA7STA	03D8								S	STA<15:0>								0000
DMA7STB	03DA								S	STB<15:0>								0000
DMA7PAD	03DC								P,	PAD<15:0>								0000
DMA7CNT	03DE	I	Ι	I			I					CNT	CNT<9:0>					0000
DMACS0	03E0		PWCOL7 PWCOL6 PWCOL5	PWCOL5	PWCOL4	PWCOL3	PWCOL2	PWCOL2 PWCOL1 PWCOL0		XWCOL7	XWCOL6	XWCOL6 XWCOL5	XWCOL4	XWCOL3	XWCOL2	XWCOL1 X	XWCOL0	0000
DMACS1	03E2	I	Ι	I	Ι		LSTCH<3:0>	<3:0>		7TSqq	PPST6	PPST5	PPST4	PPST3	PPST2	PPST1	PPST0	0000
DSADR	03E4								DS,	DSADR<15:0>								0000
Legend:	IN =	nimplement	ted, read as	'0'. Reset	= unimplemented, read as '0'. Reset values are shown	shown in he	in hexadecimal.											

PIC24HJ32GP302/304, PIC24HJ64GPX02/X04, AND PIC24HJ128GPX02/X04

-

TABLE 3-16:	-16:	ECAN1	ECAN1 REGISTER MAP WHEN	ER MA	• WHEN	ပ်	CTRL1.WIN	= 0 OR 1		(FOR PIC24HJ128GP502/504 AND PIC24HJ64GP502/504)	HJ128G	P502/50		PICZ4H	J64GF:	0.2/ 004		
File Name	Addr	Ir Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
C1CTRL1	0400	 0	Ι	CSIDL	ABAT	CANCKS		REQOP<2:0>	<u>^</u>		OPMODE<2:0>	<0:	1	CANCAP		I	MIN	0480
C1CTRL2	0402	2	Ι	I	Ι	Ι	Ι		Ι	Ι		Ι			DNCNT<4:0>	<		0000
C1VEC	0404	4	Ι	I			FILHIT<4:0>	^		Ι				ICODE<6:0>	<			0000
C1FCTRL	0406	9	DMABS<2:0>	<0	Ι	Ι	Ι		Ι	Ι	Ι	I			FSA<4:0>			0000
C1FIFO	0408	8	Ι			FBF	FBP<5:0>			Ι				FNRE	FNRB<5:0>			0000
C1INTF	040A			TXBO	TXBP	RXBP	TXWAR	RXWAR	EWARN	IVRIF	WAKIF	F ERRIF	Ι	FIFOIF	RBOVIF	RBIF	TBIF	0000
C1INTE	040C		Ι		Ι		Ι	Ι	Ι	IVRIE	WAKIE	e errie	Ι	FIFOIE	RBOVIE	RBIE	TBIE	0000
C1EC	040E	ш			TERRC	TERRCNT<7:0>							RERRCNT<7:0>	VT<7:0>				0000
C1CFG1	0410	- 0	Ι		Ι		Ι		Ι	NLS	SJW<1:0>			BRP	BRP<5:0>			0000
C1CFG2	0412	2	WAKFIL	Ι	Ι		0)	SEG2PH<2:0>	^0	SEG2PHTS	rs sam		SEG1PH<2:0>	2:0>		PRSEG<2:0>	<u>^</u>	0000
C1FEN1	0414	4 FLTEN15	FLTEN14	FLTEN13	FLTEN12	FLTEN11	1 FLTEN10) FLTEN9	FLTEN8	FLTEN7	FLTEN6		FLTEN5 FLTEN4	FLTEN3	FLTEN2	FLTEN1	FLTEN0	FFFF
C1FMSKSEL1	-1 0418		F7MSK<1:0>	FGMS	F6MSK<1:0>	F5M	F5MSK<1:0>	F4MS	F4MSK<1:0>	F3MS	F3MSK<1:0>	F2M:	F2MSK<1:0>	F1MS	F1MSK<1:0>	FOMS	FOMSK<1:0>	0000
C1FMSKSEL2	-2 041A		F15MSK<1:0>	F14M	F14MSK<1:0>	F13N	F13MSK<1:0>	F12M5	F12MSK<1:0>	F11M	F11MSK<1:0>	F10N	F10MSK<1:0>	F9MS	F9MSK<1:0>	F8MS	F8MSK<1:0>	0000
Legend: —= TABLE 3-17:	= un 	 = unimplemented, read as '0'. Reset values are shown in ECAN1 REGISTER MAP WHEN C1 	, read as 'o REGIST	. Reset vali ER MAI	P WHEN		hexadecimal. CTRL1.WIN = 0 (FOR PIC24HJ128GP502/504 AND PIC24HJ64GP502/504)	= 0 (F(OR PIC	24HJ128	(GP502/	'504 AN	D PIC24	iHJ64GF	ə502/50	4		
File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
	0400- 041E							See	definition	See definition when WIN = x	×							
C1RXFUL1	0420	RXFUL15	RXFUL14	RXFUL13	RXFUL12	RXFUL11	RXFUL10	RXFUL9	RXFUL8	RXFUL7	RXFUL6	RXFUL5	RXFUL4	RXFUL3	RXFUL2	RXFUL1	RXFUL0	0000
C1RXFUL2	0422	RXFUL31 RXFUL30 RXFUL29 RXFUL28 RXFUL27	RXFUL30	RXFUL29	RXFUL28		RXFUL26	RXFUL25	RXFUL24	RXFUL23	RXFUL22	RXFUL21	RXFUL20	RXFUL19	RXFUL18	RXFUL17	RXFUL16	0000
C1RXOVF1	0428	RXOVF15 RXOVF14 RXOVF13 RXOVF12 RXOVF11 RXOVF10 RXOVF9	RXOVF14	RXOVF13	RXOVF12	RXOVF11	RXOVF10		RXOVF8	RXOVF7	RXOVF6	RXOVF5	RXOVF4	RXOVF3	RXOVF2	RXOVF1	RXOVF0	0000
C1RXOVF2	042A	RXOVF31 RXOVF30 RXOVF29 RXOVF28 RXOVF27	RXOVF30	RXOVF29	RXOVF28		RXOVF26	RXOVF25 RXOVF24		RXOVF23	RXOVF22	RXOVF21	RXOVF20	RXOVF19	RXOVF18		RXOVF17 RXOVF16	0000
C1TR01CON	0430	TXEN1	TXABT1	TXLARB1	TXERR1	TXREQ1	RTREN1	TX1PRI<1:0>	<1:0>	TXEN0	TXABT0	TXLARB0	TXERR0	TXREQ0	RTREN0	TX0PF	TX0PRI<1:0>	0000
C1TR23CON	0432	TXEN3	TXABT3	TXLARB3	TXERR3	TXREQ3	RTREN3	TX3PRI<1:0>	<1:0>	TXEN2	TXABT2	TXLARB2	TXERR2	TXREQ2	RTREN2	TX2PF	TX2PRI<1:0>	0000
C1TR45CON	0434	TXEN5	TXABT5	TXLARB5	TXERR5	TXREQ5	RTREN5	TX5PRI<1:0>	<1:0>	TXEN4	TXABT4	TXLARB4	TXERR4	TXREQ4	RTREN4	TX4PF	TX4PRI<1:0>	0000
C1TR67CON	0436	TXEN7	TXABT7	TXLARB7	TXERR7	TXREQ7	RTREN7	TX7PRI<1:0>	<1:0>	TXEN6	TXABT6	TXLARB6	TXERR6	TXREQ6	RTREN6	TX6PF	TX6PRI<1:0>	0000
C1RXD	0440								Received Data Word	Data Word								XXXX
C1TXD	0442								Transmit Data Word	ata Word								XXXX
Legend:	x = unkı	x = unknown value on Reset, — = unimplemented, read as	n Reset, —	= unimplen	rented, read		'0'. Reset values are shown in hexadecimal	re shown in	hexadecim	ıal.								

DS70293B-page 33

PIC24HJ32GP302/304, PIC24HJ64GPX02/X04, AND PIC24HJ128GPX02/X04

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
	0400- 041E								see definit	See definition when WIN = x	×= NI/							
C1BUFPNT1	0420		F3BP<3:0>	3:0>			F2BP<3:0>	<3:0>			F1BP<3:0>	<3:0>			F0BP<3:0>	<3:0>		0000
C1BUFPNT2	0422		F7BP<3:0>	3:0>			F6BP<3:0>	<3:0>			F5BP<3:0>	<3:0>			F4BP<3:0>	<3:0>		0000
C1BUFPNT3	0424		F11BP<3:0>	<3:0>			F10BP<3:0>	<3:0>			F9BP<3:0>	<3:0>			F8BP<3:0>	<3:0>		0000
C1BUFPNT4	0426		F15BP<3:0>	<3:0>			F14BP<3:0>	<3:0>			F13BP<3:0>	<3:0>			F12BP<3:0>	<3:0>		0000
C1RXM0SID	0430				SID<10:3>	10:3>					SID<2:0>		I	MIDE		EID<17:16>	7:16>	XXXX
C1RXM0EID	0432				EID<15:8>	15:8>							EID<7:0>	<0>				XXXX
C1RXM1SID	0434				SID<10:3>	10:3>					SID<2:0>		Ι	MIDE	1	EID<1	EID<17:16>	XXXX
C1RXM1EID	0436				EID<15:8>	15:8>							EID<7:0>	<0>				XXXX
C1RXM2SID	0438				SID<10:3>	10:3>					SID<2:0>		I	MIDE	1	EID<1	EID<17:16>	XXXX
C1RXM2EID	043A				EID<15:8>	15:8>							EID<7:0>	<0>				XXXX
C1RXF0SID	0440				SID<10:3>	10:3>					SID<2:0>		I	EXIDE		EID<1	EID<17:16>	XXXX
C1RXF0EID	0442				EID<15:8>	15:8>							EID<7:0>	<0>				XXXX
C1RXF1SID	0444				SID<10:3>	10:3>					SID<2:0>			EXIDE		EID<17:16>	7:16>	XXXX
C1RXF1EID	0446				EID<15:8>	15:8>							EID<7:0>	-:0>				XXXX
C1RXF2SID	0448				SID<10:3>	10:3>					SID<2:0>			EXIDE		EID<1	EID<17:16>	XXXX
C1RXF2EID	044A				EID<15:8>	15:8>							EID<7:0>	< <u>0</u> ;0>				XXXX
C1RXF3SID	044C				SID<10:3>	10:3>					SID<2:0>			EXIDE	Ι	EID<1	EID<17:16>	XXXX
C1RXF3EID	044E				EID<15:8>	15:8>							EID<7:0>	< <u>0</u> ;0>				XXXX
C1RXF4SID	0450				SID<10:3>	10:3>					SID<2:0>		Ι	EXIDE	Ι	EID<17:16>	7:16>	XXXX
C1RXF4EID	0452				EID<15:8>	15:8>							EID<7:0>	-:0>				XXXX
C1RXF5SID	0454				SID<10:3>	10:3>					SID<2:0>		Ι	EXIDE	Ι	EID<17:16>	7:16>	XXXX
C1RXF5EID	0456				EID<15:8>	15:8>							EID<7:0>	-:0>				XXXX
C1RXF6SID	0458				SID<10:3>	10:3>					SID<2:0>			EXIDE	Ι	EID<1	EID<17:16>	XXXX
C1RXF6EID	045A				EID<15:8>	15:8>							EID<7:0>	< <u>0</u> ;0>				XXXX
C1RXF7SID	045C				SID<10:3>	10:3>					SID<2:0>		Ι	EXIDE		EID<1	EID<17:16>	XXXX
C1RXF7EID	045E				EID<15:8>	15:8>							EID<7:0>	<0;7				XXXX
C1RXF8SID	0460				SID<10:3>	10:3>					SID<2:0>		Ι	EXIDE		EID<1	EID<17:16>	XXXX
C1RXF8EID	0462				EID<15:8>	15:8>							EID<7:0>	-:0>				XXXX
C1RXF9SID	0464				SID<10:3>	10:3>					SID<2:0>			EXIDE	Ι	EID<17:16>	7:16>	XXXX
C1RXF9EID	0466				EID<15:8>	15:8>							EID<7:0>	< <u>0</u> ;0>				XXXX
C1RXF10SID	0468				SID<10:3>	10:3>					SID<2:0>			EXIDE	Ι	EID<1	EID<17:16>	XXXX
CIRXE10FID	1910				EID/15.85	15.25								×-0>				~~~~

PIC24HJ32GP302/304, PIC24HJ64GPX02/X04, AND PIC24HJ128GPX02/X04

DS70293B-page 34

												1 100170)) (to		
File Name	Addr	Ir Bit 15	5 Bit 14	4 Bit 13	3 Bit 12	2 Bit 11	1 Bit 10	0 Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
C1RXF11SID	046C	0			S	SID<10:3>					SID<2:0>	_	1	EXIDE	Ι	EID<1	EID<17:16>	хххх
C1RXF11EID	046E				Ш	EID<15:8>							EID	EID<7:0>				XXXX
C1RXF12SID	0470	6			S	SID<10:3>					SID<2:0>	^	I	EXIDE	I	EID<1	EID<17:16>	XXXX
C1RXF12EID	0472	2			ш	EID<15:8>							EID	EID<7:0>				XXXX
C1RXF13SID	0474	4			S	SID<10:3>					SID<2:0>	^	I	EXIDE	Ι	EID<1	EID<17:16>	XXXX
C1RXF13EID	0476	9			Ш	EID<15:8>							EID	EID<7:0>				XXXX
C1RXF14SID	0478	3			S	SID<10:3>					SID<2:0>	^	I	EXIDE	I	EID<1	EID<17:16>	XXXX
C1RXF14EID	047A	4			Ш	EID<15:8>							EID	EID<7:0>				XXXX
C1RXF15SID	047C	0			S	SID<10:3>					SID<2:0>	^	Ι	EXIDE	Ι	EID<1	EID<17:16>	XXXX
C1RXF15EID	047E	111			Ш	EID<15:8>							EID	EID<7:0>				XXXX
Legend:	x = unkn	nown value	on Reset,	— = unimp	olemented,	, read as '0)'. Reset va	lues are sho	$_{ m x}$ = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal	ecimal.								
TABLE 3-19 :		PERIPI	PERIPHERAL PIN SELECT INPL	PIN SE	LECT		REGISI	T REGISTER MAP	٥									
File Name	Addr	Bit 15 Bi	Bit 14 Bit 13	13 Bit 12	12	Bit 11	Bit 10	Bit 9	Bit 8	8 Bit 7	7 Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
RPINR0	0680	1					INT1R<4:0>	<c< td=""><td></td><td></td><td>1</td><td>I</td><td>Ι</td><td>1</td><td>1</td><td>I</td><td>I</td><td>1F00</td></c<>			1	I	Ι	1	1	I	I	1F00
RPINR1	0682	1			1	Ι	Ι	I			1	I		≤	NT2R<4:0>			001F

IABLE 3-19:	-1ט:	ТПХ	Г Т Г	KAL FI	PEKIPHEKAL PIN SELECI INPU	_	KEGISIEK MAP	K MAP										
File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
RPINR0	0680	Ι	I	Ι			INT1R<4:0>			Ι	Ι	Ι		1		I		1F00
RPINR1	0682	Ι	-		Ι	I	I	I	Ι			I			INT2R<4:0>	•		001F
RPINR3	0686	Ι	Ι				T3CKR<4:0>			Ι	Ι				T2CKR<4:0>	^		1F1F
RPINR4	0688	Ι	Ι				T5CKR<4:0>								T4CKR<4:0>	~		1F1F
RPINR7	068E	Ι	Ι				IC2R<4:0>			I	I				IC1R<4:0>			1F1F
RPINR10	0694	Ι					IC8R<4:0>			Ι	Ι				IC7R<4:0>			1F1F
RPINR11	0690	Ι	-		Ι	Ι	Ι	Ι	-	Ι	Ι)	OCFAR<4:0>	^		001F
RPINR18	06A4	Ι	Ι			1	U1CTSR<4:0>			Ι	Ι			ן	U1RXR<4:0>	^		1F1F
RPINR19	06A6	Ι	Ι			1	U2CTSR<4:0>			I	I			ו	U2RXR<4:0>	^		1F1F
RPINR20	06A8	Ι	Ι				SCK1R<4:0>							-	SDI1R<4:0>	~		1F1F
RPINR21	06AA	Ι	Ι		I	I			I						SS1R<4:0>			001F
RPINR22	06AC	Ι	Ι				SCK2R<4:0>			Ι	Ι				SDI2R<4:0>	~		1F1F
RPINR23	06AE	Ι	Ι		I	I	I		-						SS2R<4:0>			001F
RPINR26 ⁽¹⁾	06B4	I	I		I	I		I	-)	C1RXR<4:0>	^		001F
Legend: Note 1:	x = unk This reç	nown va gister is	alue on F present f	teset, — for PIC24	x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal This register is present for PIC24HJ128GP502/504 and PIC24HJ64GP502/504 devices only.	ed, read as '0 i04 and PIC2	/. Reset value: 4HJ64GP502//	s are shown ir 504 devices o	n hexadecimal vnly.									

PIC24HJ32GP302/304, PIC24HJ64GPX02/X04, AND PIC24HJ128GPX02/X04

© 2008 Microchip Technology Inc.

SELECT OUTPUT REGISTER MAP FOR PIC24HJ128GP202/502, PIC24HJ64GP202/502 AND	• • • •
OUTPUT REGISTER MAP FOR PIC24HJ1	
L PIN	302
PERIPHERA	PIC24HJ32GP
TABLE 3-20:	

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
RPOR0	06C0	1					RP1R<4:0>				1	1			RP0R<4:0>			0000
RPOR1	06C2	I	I	I			RP3R<4:0>			I	I	I			RP2R<4:0>			0000
RPOR2	06C4	Ι	-	Ι			RP5R<4:0>			Ι		I			RP4R<4:0>			0000
RPOR3	0606	I	-	Ι			RP7R<4:0>			I		I			RP6R<4:0>			0000
RPOR4	06C8	I	I	I			RP9R<4:0>			I	I	I			RP8R<4:0>			0000
RPOR5	06CA	Ι	-	Ι			RP11R<4:0>			I		Ι		Ľ	RP10R<4:0>			0000
RPOR6	06CC	I	-	I			RP13R<4:0>			I		I		Ľ	RP12R<4:0>			0000
RPOR7	06CE	Ι	-				RP15R<4:0>			I				ц	RP14R<4:0>			0000
Legend:	x = unki	nown value	on Reset,	— = unimp	lemented, r	ead as '0'. F	x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.	are shown in	hexadecim:	<u>а</u> .								

PERIPHERAL PIN SELECT OUTPUT REGISTER MAP FOR PIC24HJ128GP204/504, PIC24HJ64GP204/504 AND **TABLE 3-21**:

		PIC24F	PIC24HJ32GP304	304														
File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
RPOR0	0000		1	I			RP1R<4:0>			I					RP0R<4:0>			0000
RPOR1	06C2		I	I			RP3R<4:0>			I	1	I			RP2R<4:0>			0000
RPOR2	06C4	I	I	I			RP5R<4:0>			I	I	I			RP4R<4:0>			0000
RPOR3	0606	-	Ι	Ι			RP7R<4:0>			Ι	I	Ι			RP6R<4:0>			0000
RPOR4	06C8	I	I	I			RP9R<4:0>			I	1	I			RP8R<4:0>			0000
RPOR5	06CA	I	I	I			RP11R<4:0>			I	I	I		Ľ	RP10R<4:0>			0000
RPOR6	06CC	-	Ι	Ι			RP13R<4:0>			Ι	I	Ι		Ľ	RP12R<4:0>			0000
RPOR7	06CE	-	Ι				RP15R<4:0>			Ι	I			Ľ	RP14R<4:0>			0000
RPOR8	06D0	-					RP17R<4:0>							Ч	RP16R<4:0>			0000
RPOR9	06D2	-	Ι	Ι			RP19R<4:0>			Ι	I	Ι		Ľ	RP18R<4:0>			0000
RPOR10	06D4	-	Ι	Ι			RP21R<4:0>			Ι		Ι		Ľ	RP20R<4:0>			0000
RPOR11	06D6	-	Ι	Ι			RP23R<4:0>			Ι	I			Ľ	RP22R<4:0>			0000
RPOR12	06D8	-	Ι	Ι			RP25R<4:0>			Ι	I	Ι		Ľ	RP24R<4:0>			0000
Legend:	× = unk	\mathbf{x} = unknown value on Reset, — = unimplemented, read as	on Reset,	— = unimp.	lemented, n	ead as '0'. F	'0'. Reset values are shown in hexadecimal	are shown ir	hexadecim	al.								

PIC24HJ32GP302/304, PIC24HJ64GPX02/X04, AND PIC24HJ128GPX02/X04

TABLE 3-22:		PARALLEL MAST PIC24HJ32GP302	LEL MA J32GP3	STER/S	PARALLEL MASTER/SLAVE PORT REGISTER MAP FOR PIC24HPIC24HJ128GP202/502, PIC24HJ64GP202/502 AND PIC24HJ32GP302	ORT RE	GISTER	RAP F	OR PIC:	24HPIC.	24HJ12	8GP202	/502, PI	IC24HJ6	34GP20;	2/502 AI	QN	
File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
PMCON	0090	PMPEN		PSIDL	ADRMU	ADRMUX<1:0>	PTBEEN	PTBEEN PTWREN PTRDEN	PTRDEN	CSF1	CSF0	ALP		CS1P	BEP	WRSP	RDSP	0000
PMMODE	0602	BUSY	IRQM	IRQM<1:0>	INCM<1:0	<1:0>	MODE16	MODE<1:0>	<1:0>	WAITB<1:0>	<1:0>		WAITM<3:0>	1<3:0>		WAITE<1:0>	<1:0>	0000
PMADDR	1000	ADDR15	CS1							ADDR<13:0>	13:0>							0000
PMDOUT1							ä	Parallel Port Data Out Register 1 (Buffers 0 and 1)	ata Out Regi	ister 1 (Buffe	ers 0 and 1)							0000
PMDOUT2	0000						ä	Parallel Port Data Out Register 2 (Buffers 2 and 3)	ata Out Regi	ister 2 (Buff	ers 2 and 3)							0000
PMDIN1	0608							Parallel Port Data In Register 1 (Buffers 0 and 1)	Data In Regis	ster 1 (Buffe	rs 0 and 1)							0000
PMPDIN2	060A							Parallel Port Data In Register 2 (Buffers 2 and 3)	Data In Regis	ster 2 (Buffe	rs 2 and 3)							0000
PMAEN	060C	Ι	PTEN14		-	-	I		Ι	1	1			Ι		PTEN<1:0>	<1:0>	0000
PMSTAT	060E	IBF	IBOV	I	Ι	1B3F	IB2F	IB1F	IB0F	OBE	OBUF	I		OB3E	OB2E	OB1E	OB0E	0000
.					-													

— = unimplemented, read as '0'. Reset values are shown in hexadecimal. Legend:

TABLE 3-23: PARALLEL MASTER/SLAVE PORT REGISTER MAP	LEL MASTER/SLAVE PORT REGISTER MAP	ASTER/SLAVE PORT REGISTER MAP	LAVE PORT REGISTER MAP	ORT REGISTER MAP FOR PIC24HJ128GP204/504, PIC24HJ64GP204/504 AND PIC24HJ32GP304	GISTER MAP	MAP	۲F	OR PIC	24HJ12	8GP204	/504, PI	C24HJ6	4GP20	4/504 A		24HJ32(3P304
File Name Addr Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10	Bit 14 Bit 13 Bit 12 Bit 11	Bit 13 Bit 12 Bit 11	Bit 12 Bit 11		Bit 1(6	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
0600 PMPEN PSIDL ADRMUX<1:0> PTBEEN	- PSIDL ADRMUX<1:0>	ADRMUX<1:0>			PTBE	EN	PTWREN PTRDEN		CSF1	CSF0	ALP	I	CS1P	BEP	WRSP	RDSP	0000
0602 BUSY IRQM<1:0> INCM<1:0> MOE	INCM<1:0>	INCM<1:0>			MOL	MODE16	MODE<1:0>	<1:0>	WAITB<1:0>	<1:0>		WAITM<3:0>	I<3:0>		WAITE<1:0>	=<1:0>	0000
ADDR15 CS1	CS1								ADDR<13:0>	13:0>							0000
1000t						Pć	Parallel Port Data Out Register 1 (Buffers 0 and 1)	ata Out Reg	ister 1 (Buffi	ers 0 and 1)							0000
0606						Ę	Parallel Port Data Out Register 2 (Buffers 2 and 3)	ata Out Reg	ister 2 (Buff	ers 2 and 3)							0000
0608						щ	Parallel Port Data In Register 1 (Buffers 0 and 1)	ata In Regi	ster 1 (Buffe	rs 0 and 1)							0000
060A						ц	Parallel Port Data In Register 2 (Buffers 2 and 3)	ata In Regi	ster 2 (Buffe	rs 2 and 3)							0000
060C — PTEN14 — — — — —				1						Ч	PTEN<10:0>						0000

— = unimplemented, read as '0'. Reset values are shown in hexadecimal.

PIC24HJ32GP302/304, PIC24HJ64GPX02/X04, AND PIC24HJ128GPX02/X04

0000

OBOE

OB1E

OB2E

OB3E

1

OBUF

OBE

IB0F

IB1F

IB2F

IB3F

I

IBOV

IBF

060E

PMSTAT

Legend:

© 2008 Microchip Technology Inc.

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	0 Bit 9		Bit 8 E	Bit 7 Bi	Bit 6 Bit	Bit 5 Bit 4	4 Bit 3	3 Bit 2	:2 Bit 1	Bit 0	All Resets
ALRMVAL	0620							Alarm Value Register Window based on APTR<1:0>	Register Wir	Idow based	on APTR<1	- <u>0</u>						XXXX
ALCFGRPT	0622	ALRMEN	CHIME		AMA	AMASK<3:0>		AL	ALRMPTR<1:0>	4			∢	ARPT<7:-0>				0000
RTCVAL	0624						R	RTCC Value Register Window based on RTCPTR<1:0>	egister Winc	tow based c	M RTCPTR<	:1:0>						XXXX
RCFGCAL	0626	RTCEN	I	RTCWRE	RTCWREN RTCSYNC HALFSEC	C HALFSI	EC RTCOE		RTCPTR<1:0>	^				CAL<7:0>				0000
Legend:	× = unkn	\mathbf{x} = unknown value on Reset, — = unimplemented, read as	on Reset, –	– = unimple	emented, rea		teset values	¹ 0'. Reset values are shown in hexadecimal.	in hexadeci	mal.								
TABLE 3-25:	Ĩ	CRC RE	CRC REGISTER MAP	R MAP			-	-								-	-	
File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
CRCCON	0640	Ι	I	CSIDL			WORD<4:0>	6		CRCFUL	CRCMPT	Ι	CRCGO		Ы	PLEN<3:0>		0000
CRCXOR	0642								X<1	X<15:0>								0000
CRCDAT	0644								CRC Data Input Register	ıput Registε	۲							0000
CRCWDAT	0646								CRC Rest	CRC Result Register								0000
Legend:	— = unir	= unimplemented, read as '0'. Reset values are shown in	, read as '0	'. Reset va	lues are sho		hexadecimal.											
TABLE 3-26:		DUAL C	OMPAF	RATOR	DUAL COMPARATOR REGISTER	IER MAP	٩											
File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	AII Resets
CMCON	0630	CMIDL	1	C2EVT	C1EVT	C2EN	C1EN	C2OUTEN	C1OUTEN	I C2OUT	C10UT	C2INV	C1INV	C2NEG	C2POS	S C1NEG	C1POS	0000
CVRCON	0632								Ι	CVREN	CVROE	CVRR	CVRSS		Ö	CVR<3:0>		0000
Legend:	— = unir	= unimplemented, read as '0'. Reset values are shown in	l, read as '0	r'. Reset va	lues are shc		hexadecimal.											
TABLE 3-27:		PORTA	REGISI	TER MA	P FOR	PIC24H	J128GF	PORTA REGISTER MAP FOR PIC24HJ128GP202/502, PIC24HJ64GP202/502 AND PIC24HJ32GP302	., PIC24	HJ64GI	202/50	2 AND F	PIC24H	J32GP3	302			
File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
TRISA	02C0	I	I	I	I	I	Ι	I	I	I	1	I	TRISA4	TRISA3	TRISA2	2 TRISA1	TRISA0	079F
PORTA	02C2					Ι	-	I	I	Ι		Ι	RA4	RA3	RA2	RA1	RAO	XXXX
LATA	02C4	I	I	Ι	Ι		Ι	Ι	Ι		Ι	Ι	LATA4	LATA3	LATA2	E LATA1	LATA0	XXXX
ODCA	02C6	Ι	I	I	Ι		Ι	Ι	Ι		1			I		1	I	XXXX

PIC24HJ32GP302/304, PIC24HJ64GPX02/X04, AND PIC24HJ128GPX02/X04

DS70293B-page 38

Addr Bit							-										
	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
02C0 -		1	1	1	I	TRISA10	TRISA9	TRISA8	TRISA7	Ι	1	TRISA4	TRISA3	TRISA2	TRISA1	TRISAO	079F
02C2 -				1		RA10	RA9	RA8	RA7		I	RA4	RA3	RA2	RA1	RA0	XXXX
02C4 -				I		LATA10	LATA9	LATA8	LATA7		I	LATA4	LATA3	LATA2	LATA1	LATA0	XXXX
02C6 -				I		ODCA10	ODCA9	ODCA8	ODCA7	I	I	Ι	Ι	Ι	Ι	Ι	XXXX
$_{\rm X}$ = unknown value on Reset,	n value oi	n Reset, —	- = unimple	= unimplemented, read as	d as '0'. R€	'0'. Reset values are shown in hexadecimal.	are shown ii	n hexadeci	imal.								
3-29: PO	PORTB	REGISTER MAP	TER MA	۵.													
Addr B	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	AII Resets
02C8 TR	TRISB15	TRISB14	TRISB13	TRISB12	TRISB11	TRISB10	TRISB9	TRISB8	TRISB7	TRISB6	3 TRISB5	TRISB4	TRISB3	TRISB2	TRISB1	TRISBO	FFF
02CA R	RB15	RB14	RB13	RB12	RB11	RB10	RB9	RB8	RB7	RB6	RB5	RB4	RB3	RB2	RB1	RBO	XXXX
02CC LA	LATB15	LATB14	LATB13	LATB12	LATB11	LATB10	LATB9	LATB8	LATB7	LATB6	LATB5	LATB4	LATB3	LATB2	LATB1	LATB0	XXXX
02CE		I	Ι	Ι	ODCB11	ODCB10	ODCB9	ODCB8	ODCB7	ODCB6	0DCB5	Ι	Ι	I	Ι	I	XXXX
e Addr Bit	Bit 15	Bit 14	Bit 13	Bit 14 Bit 13 Bit 12 Bit	Bit 11	:11 Bit 10 Bit 9	Bit 9		Bit 7	Bit 6	Bit 8 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
							TRISC9	TRISC8	TRISC7	TRISC6	TRISC5	TRISC4	TRISC3	TRISC2	TRISC1	TRISCO	Resets 03FF
02D2 -		1	I	1	I	I	RC9	RC8	RC7	RC6	RC5	RC4	RC3	RC2	RC1	RC0	XXXX
02D4 -		I	I	1	I	1	LATC9	LATC8	LATC7	LATC6	LATC5	LATC4	LATC3	LATC2	LATC1	LATC0	XXXX
02D6 -		Ι	Ι	Ι	Ι	Ι	ODCC9	ODCC8	ODCC7	ODCC6	ODCC5	ODCC4	ODCC3	Ι	-	Ι	XXXX
Legend: x = unknown value on Reset, TABLE 3-31: SYSTEM CON	'STEM	n Reset, —	-= unimple ROL RE	own value on Reset, —= unimplemented, read as SYSTEM CONTROL REGISTER N	as N	'0'. Reset values are shown in hexadecimal.	are shown ii	n hexadeci	imal.								
	15 Bi	Bit 14 Bi	Bit 13	Bit 12	ш	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
0740 TRAPR		IOPUWR		1		1	CM	VREGS	EXTR	SWR	SWDTEN	NDTO	SLEEP	IDLE	BOR	POR	(1) XXXXX
0742 —		ŏ	COSC<2:0>				NOSC<2:0>		CLKLOCK	K IOLOCK	K LOCK	I	CF	I	LPOSCEN	OSWEN	0300 (2)
0744 ROI	IC	Ď	DOZE<2:0>		DOZEN	Η	FRCDIV<2:0>	^	PLLPC	PLLPOST<1:0>			ш	PLLPRE<4::0>	<0		0040
0746 —	_			Ι	Ι	Ι						PLLDIV<8:0>	<				0030
0748 —				Ι		Ι	I	Ι	Ι	Ι			TUN	TUN<5:0>			0000

PIC24HJ32GP302/304, PIC24HJ64GPX02/X04, AND PIC24HJ128GPX02/X04

	3
	Bit
	Bit 4
	Bit 5
	Bit 6
	Bit 7
	Bit 8
	Bit 9
	1 Bit 10
-	Bit 11
RAP ⁽¹	Bit 12 Bit 11
GISTEF	Bit 13
CURITY REGISTER M	Bit 15 Bit 14
SECUF	Bit 15
	Addr
ABLE 3-32	le Name

60
Bit 10
Bit 11
Bit 12
Bit 13
Bit 14
Bit 15
Addr
File Name

TABLE 3-32: SECURITY REGISTER MAP ⁽¹⁾	3-32:	SECUF	SITY RE	GISTER	RAP ⁽¹	(
File Name	Addr	Bit 15	File Name Addr Bit 15 Bit 14 Bit 13	Bit 13	Bit 12	Bit 11	Bit 10 Bit 9		Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
BSRAM	0250			I							I				IW_BSR	IW_BSR IR_BSR RL_BSR 0000	RL_BSR	0000
SSRAM	0752	I				I	I		I	I			I		IW_ SSR	IW_SSR IR_SSR RL_SSR 0000	RL_SSR	0000
- bacood	1		Locard: <u> </u>	- unimple	omontod ro	, o, oo por	Concet violue	o oro obow	lowinobovod ai armedo oro porilov topod "o"	, oimol								

 $\rm x$ = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal. This register is not present in devices with 32K Flash (PIC24HJ32GP302/304). Legend: Note 1:

÷

NVM REGISTER MAP TABLE 3-33:

Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Resets	MRERR - - - - ERASE - 0000	0000	unimplemented. read as 'o'. Reset values are shown in hexadecimal.
Bit 10	1). Reset values are shown
Bit 12			nplemented. read as '0'. F
sit 15 Bit 14 Bit 13	WR WREN WRE		x = unknown value on Reset. — = unimplemented. read
File Name Addr Bit 15 Bit 14	VMCON 0760	VVMKEY 0766	-eaend: × = unknown

PMD REGISTER MAP TABLE 3-34:

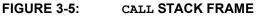
Addr	Bit 15	Bit 14	File Name Addr Bit 15 Bit 14 Bit 13 Bit 12	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
L	-5MD	T4MD	0770 T5MD T4MD T3MD T2MD T1MI	T2MD	T1MD		Ι	Ι	I2C1MD U2MD U1MD SPI2MD SP11MD	U2MD	U1MD	SPI2MD	SPI1MD	I	C1MD	C1MD AD1MD 0000	0000
	IC8MD	0772 IC8MD IC7MD		I	I	-	IC2MD	IC2MD IC1MD	Ι	I	I	I	OC4MD	OC3MD	OC4MD OC3MD OC2MD OC1MD 0000	OC1MD	0000
0774	I	1	I	I	I	CMPMD	CMPMD RTCCMD PMPMD CRCMD	PMPMD	CRCMD	I	I	I	I	I	I	1	0000
<u> </u>	own value	on Reset.	Legend: x = unknown value on Reset. — = unimplemented. read a	lemented. r	ead as '0'.	Reset valu	as '0'. Reset values are shown in hexadecimal.	vn in hexade	ecimal.								

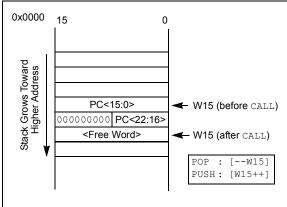
D.

PIC24HJ32GP302/304, PIC24HJ64GPX02/X04, AND PIC24HJ128GPX02/X04

3.2.6 SOFTWARE STACK

In addition to its use as a working register, the W15 register in the PIC24HJ32GP302/304, PIC24HJ64GPX02/X04, and PIC24HJ128GPX02/X04 devices is also used as a software Stack Pointer. The Stack Pointer always points to the first available free word and grows from lower to higher addresses. It predecrements for stack pops and post-increments for stack pushes, as shown in Figure 3-5. For a PC push during any CALL instruction, the MSb of the PC is zeroextended before the push, ensuring that the MSb is always clear.


Note: A PC push during exception processing concatenates the SRL register to the MSb of the PC prior to the push.


The Stack Pointer Limit register (SPLIM) associated with the Stack Pointer sets an upper address boundary for the stack. SPLIM is uninitialized at Reset. As is the case for the Stack Pointer, SPLIM<0> is forced to '0' because all stack operations must be word aligned.

Whenever an EA is generated using W15 as a source or destination pointer, the resulting address is compared with the value in SPLIM. If the contents of the Stack Pointer (W15) and the SPLIM register are equal and a push operation is performed, a stack error trap does not occur. The stack error trap occurs on a subsequent push operation. For example, to cause a stack error trap when the stack grows beyond address 0x2000 in RAM, initialize the SPLIM with the value 0x1FFE.

Similarly, a Stack Pointer underflow (stack error) trap is generated when the Stack Pointer address is found to be less than 0x0800. This prevents the stack from interfering with the Special Function Register (SFR) space.

A write to the SPLIM register should not be immediately followed by an indirect read operation using W15.

3.2.7 DATA RAM PROTECTION FEATURE

The PIC24H product family supports Data RAM protection features that enable segments of RAM to be protected when used in conjunction with Boot and Secure Code Segment Security. BSRAM (Secure RAM segment for BS) is accessible only from the Boot Segment Flash code when enabled. SSRAM (Secure RAM segment for RAM) is accessible only from the Secure Segment Flash code when enabled. See Table 3-1 for an overview of the BSRAM and SSRAM SFRs.

3.3 Instruction Addressing Modes

The addressing modes shown in Table 3-35 form the basis of the addressing modes optimized to support the specific features of individual instructions. The addressing modes provided in the MAC class of instructions differ from those in the other instruction types.

3.3.1 FILE REGISTER INSTRUCTIONS

Most file register instructions use a 13-bit address field (f) to directly address data present in the first 8192 bytes of data memory (near data space). Most file register instructions employ a working register, W0, which is denoted as WREG in these instructions. The destination is typically either the same file register or WREG (with the exception of the MUL instruction), which writes the result to a register or register pair. The MOV instruction allows additional flexibility and can access the entire data space.

3.3.2 MCU INSTRUCTIONS

The three-operand MCU instructions are of the form:

Operand 3 = Operand 1 < function > Operand 2

where Operand 1 is always a working register (that is, the addressing mode can only be register direct), which is referred to as Wb. Operand 2 can be a W register, fetched from data memory, or a 5-bit literal. The result location can be either a W register or a data memory location. The following addressing modes are supported by MCU instructions:

- Register Direct
- Register Indirect
- · Register Indirect Post-Modified
- Register Indirect Pre-Modified
- 5-bit or 10-bit Literal

Note: Not all instructions support all the addressing modes given above. Individual instructions can support different subsets of these addressing modes.

Addressing Mode	Description
File Register Direct	The address of the file register is specified explicitly.
Register Direct	The contents of a register are accessed directly.
Register Indirect	The contents of Wn forms the Effective Address (EA).
Register Indirect Post-Modified	The contents of Wn forms the EA. Wn is post-modified (incremented or decremented) by a constant value.
Register Indirect Pre-Modified	Wn is pre-modified (incremented or decremented) by a signed constant value to form the EA.
Register Indirect with Register Offset (Register Indexed)	The sum of Wn and Wb forms the EA.
Register Indirect with Literal Offset	The sum of Wn and a literal forms the EA.

TABLE 3-35: FUNDAMENTAL ADDRESSING MODES SUPPORTED

3.3.3 MOVE (MOV) INSTRUCTION

Move instructions provide a greater degree of addressing flexibility than other instructions. In addition to the Addressing modes supported by most MCU instructions, MOV instructions also support Register Indirect with Register Offset Addressing mode, also referred to as Register Indexed mode.

Note:	For the MOV instructions, the addressing mode specified in the instruction can differ					
	for the source and destination EA.					
	However, the 4-bit Wb (Register Offset)					
	field is shared by both source and					
	destination (but typically only used by					
	one).					

In summary, the following addressing modes are supported by move instructions:

- Register Direct
- Register Indirect
- · Register Indirect Post-modified
- Register Indirect Pre-modified
- Register Indirect with Register Offset (Indexed)
- Register Indirect with Literal Offset
- 8-bit Literal
- 16-bit Literal

Note:	Not all instructions support all the address-
	ing modes given above. Individual instruc-
	tions may support different subsets of
	these addressing modes.

3.3.4 OTHER INSTRUCTIONS

Besides the addressing modes outlined previously, some instructions use literal constants of various sizes. For example, BRA (branch) instructions use 16-bit signed literals to specify the branch destination directly, whereas the DISI instruction uses a 14-bit unsigned literal field. In some instructions, such as ADD Acc, the source of an operand or result is implied by the opcode itself. Certain operations, such as NOP, do not have any operands.

3.4 Interfacing Program and Data Memory Spaces

The PIC24HJ32GP302/304, PIC24HJ64GPX02/X04, and PIC24HJ128GPX02/X04 architecture uses a 24bit-wide program space and a 16-bit-wide data space. The architecture is also a modified Harvard scheme, meaning that data can also be present in the program space. To use this data successfully, it must be accessed in a way that preserves the alignment of information in both spaces.

Aside from normal execution, the PIC24HJ32GP302/ 304, PIC24HJ64GPX02/X04, and PIC24HJ128GPX02/X04 architecture provides two methods by which program space can be accessed during operation:

- Using table instructions to access individual bytes or words anywhere in the program space
- Remapping a portion of the program space into the data space (Program Space Visibility)

Table instructions allow an application to read or write to small areas of the program memory. This capability makes the method ideal for accessing data tables that need to be updated periodically. It also allows access to all bytes of the program word. The remapping method allows an application to access a large block of data on a read-only basis, which is ideal for look-ups from a large table of static data. The application can only access the least significant word of the program word.

3.4.1 ADDRESSING PROGRAM SPACE

Since the address ranges for the data and program spaces are 16 and 24 bits, respectively, a method is needed to create a 23-bit or 24-bit program address from 16-bit data registers. The solution depends on the interface method to be used.

For table operations, the 8-bit Table Page register (TBLPAG) is used to define a 32K word region within the program space. This is concatenated with a 16-bit EA to arrive at a full 24-bit program space address. In this format, the Most Significant bit of TBLPAG is used to determine if the operation occurs in the user memory (TBLPAG<7> = 0) or the configuration memory (TBLPAG<7> = 1).

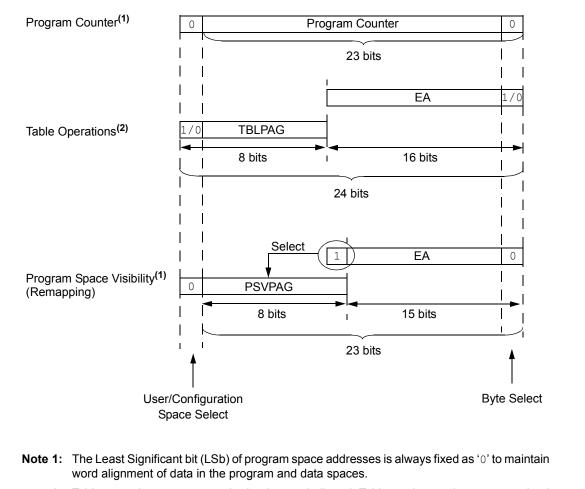

For remapping operations, the 8-bit Program Space Visibility register (PSVPAG) is used to define a 16K word page in the program space. When the Most Significant bit of the EA is '1', PSVPAG is concatenated with the lower 15 bits of the EA to form a 23-bit program space address. Unlike table operations, this limits remapping operations strictly to the user memory area.

Table 3-36 and Figure 3-6 show how the program EA is created for table operations and remapping accesses from the data EA. Here, P<23:0> refers to a program space word, and D<15:0> refers to a data space word.

Access			Progra	m Space A	Address	
Access Type	Space	<23>	<22:16>	<15>	<14:1>	<0>
Instruction Access	User	0		PC<22:1>		0
(Code Execution)			0xx xxxx x	XXX XXX		
TBLRD/TBLWT	User	TBLPAG<7:0>			Data EA<15:0>	
(Byte/Word Read/Write)		0	XXX XXXX	XXXX XX	xx xxxx xxxx	
	Configuration	TB	LPAG<7:0>		Data EA<15:0>	
		1xxx xxxx >		XXXX X	XXX XXXX XXXX	
Program Space Visibility	User	0	PSVPAG<7	/:0>	Data EA<14:	0>(1)
(Block Remap/Read)		0	XXXX XXXX	K	XXX XXXX XXXX	XXXX

Note 1: Data EA<15> is always '1' in this case, but is not used in calculating the program space address. Bit 15 of the address is PSVPAG<0>.

2: Table operations are not required to be word aligned. Table read operations are permitted in the configuration memory space.

3.4.2 DATA ACCESS FROM PROGRAM MEMORY USING TABLE INSTRUCTIONS

The TBLRDL and TBLWTL instructions offer a direct method of reading or writing the lower word of any address within the program space without going through data space. The TBLRDH and TBLWTH instructions are the only method to read or write the upper 8 bits of a program space word as data.

The PC is incremented by two for each successive 24-bit program word. This allows program memory addresses to directly map to data space addresses. Program memory can thus be regarded as two 16-bit-wide word address spaces, residing side by side, each with the same address range. TBLRDL and TBLWTL access the space that contains the least significant data word. TBLRDH and TBLWTH access the space that contains the upper data byte.

Two table instructions are provided to move byte or word-sized (16-bit) data to and from program space. Both function as either byte or word operations.

- TBLRDL (Table Read Low):
 - In Word mode, this instruction maps the lower word of the program space location (P<15:0>) to a data address (D<15:0>).

- In Byte mode, either the upper or lower byte of the lower program word is mapped to the lower byte of a data address. The upper byte is selected when Byte Select is '1'; the lower byte is selected when it is '0'.
- TBLRDH (Table Read High):
 - In Word mode, this instruction maps the entire upper word of a program address (P<23:16>) to a data address. The 'phantom' byte (D<15:8>), is always '0'.
 - In Byte mode, this instruction maps the upper or lower byte of the program word to D<7:0> of the data address, in the TBLRDL instruction. The data is always '0' when the upper 'phantom' byte is selected (Byte Select = 1).

In a similar fashion, two table instructions, TBLWTH and TBLWTL, are used to write individual bytes or words to a program space address. The details of their operation are explained in **Section 4.0 "Flash Program Memory"**.

For all table operations, the area of program memory space to be accessed is determined by the Table Page register (TBLPAG). TBLPAG covers the entire program memory space of the device, including user application and configuration spaces. When TBLPAG<7> = 0, the table page is located in the user memory space. When TBLPAG<7> = 1, the page is located in configuration space.

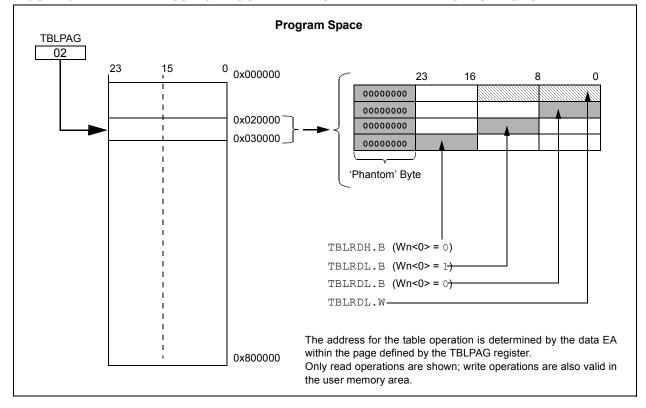


FIGURE 3-7: ACCESSING PROGRAM MEMORY WITH TABLE INSTRUCTIONS

3.4.3 READING DATA FROM PROGRAM MEMORY USING PROGRAM SPACE VISIBILITY

The upper 32 Kbytes of data space may optionally be mapped into any 16K word page of the program space. This option provides transparent access to stored constant data from the data space without the need to use special instructions (such as TBLRDL/H).

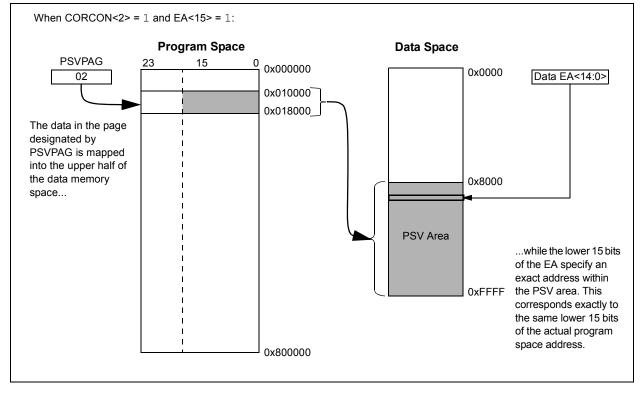
Program space access through the data space occurs if the Most Significant bit of the data space EA is '1' and program space visibility is enabled by setting the PSV bit in the Core Control register (CORCON<2>). The location of the program memory space to be mapped into the data space is determined by the Program Space Visibility Page register (PSVPAG). This 8-bit register defines any one of 256 possible pages of 16K words in program space. In effect, PSVPAG functions as the upper 8 bits of the program memory address, with the 15 bits of the EA functioning as the lower bits. By incrementing the PC by 2 for each program memory word, the lower 15 bits of data space addresses directly map to the lower 15 bits in the corresponding program space addresses.

Data reads to this area add a cycle to the instruction being executed, since two program memory fetches are required.

Although each data space address 8000h and higher maps directly into a corresponding program memory address (see Figure 3-8), only the lower 16 bits of the

24-bit program word are used to contain the data. The upper 8 bits of any program space location used as data should be programmed with '1111 1111' or '0000 0000' to force a NOP. This prevents possible issues should the area of code ever be accidentally executed.

Note:	PSV access is temporarily disabled during
	table reads/writes.


For operations that use PSV and are executed outside a REPEAT loop, the MOV and MOV.D instructions require one instruction cycle in addition to the specified execution time. All other instructions require two instruction cycles in addition to the specified execution time.

For operations that use PSV, and are executed inside a REPEAT loop, these instances require two instruction cycles in addition to the specified execution time of the instruction:

- Execution in the first iteration
- · Execution in the last iteration
- Execution prior to exiting the loop due to an interrupt
- Execution upon re-entering the loop after an interrupt is serviced

Any other iteration of the $\ensuremath{\mathtt{REPEAT}}$ loop allows the instruction using PSV to access data, to execute in a single cycle.

FIGURE 3-8: PROGRAM SPACE VISIBILITY OPERATION

4.0 FLASH PROGRAM MEMORY

Note:	This data sheet summarizes the features			
	of the PIC24HJ32GP302/304,			
	PIC24HJ64GPX02/X04, and			
	PIC24HJ128GPX02/X04 families of			
	devices. It is not intended to be a compre-			
	hensive reference source. To complement			
	the information in this data sheet, refer to			
	the PIC24H Family Reference Manual,			
	"Section 5. Flash Programming"			
	(DS70228), which is available from the			
	Microchip website (www.microchip.com).			

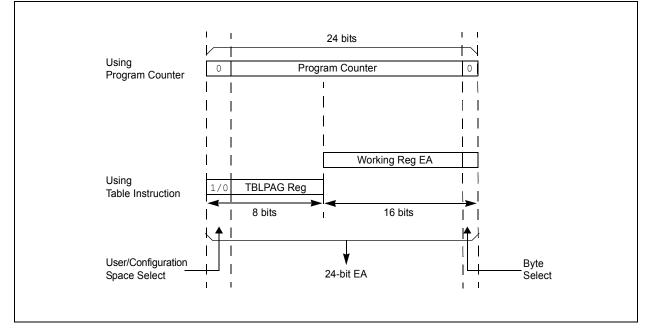
The PIC24HJ32GP302/304, PIC24HJ64GPX02/X04, and PIC24HJ128GPX02/X04 devices contain internal Flash program memory for storing and executing application code. The memory is readable, writable and erasable during normal operation over the entire VDD range.

Flash memory can be programmed in two ways:

- In-Circuit Serial Programming™ (ICSP™) programming capability
- Run-Time Self-Programming (RTSP)

ICSP allows the PIC24HJ32GP302/304, PIC24HJ64GPX02/X04, and PIC24HJ128GPX02/X04 devices to be serially programmed while in the end application circuit. This is done with two lines for programming clock and programming data (one of the alternate programming pin pairs: PGC1/PGD1, PGC2/ PGD2 or PGC3/PGD3), and three other lines for power (VDD), ground (Vss) and Master Clear (MCLR). This allows customers to manufacture boards with unprogrammed devices and then program the microcontroller just before shipping the product. This also allows the most recent firmware or a custom firmware to be programmed.

RTSP is accomplished using TBLRD (table read) and TBLWT (table write) instructions. With RTSP, the user application can write program memory data either in blocks or 'rows' of 64 instructions (192 bytes) at a time or a single program memory word, and erase program memory in blocks or 'pages' of 512 instructions (1536 bytes) at a time.


4.1 Table Instructions and Flash Programming

Regardless of the method used, all programming of Flash memory is done with the table read and table write instructions. These allow direct read and write access to the program memory space from the data memory while the device is in normal operating mode. The 24-bit target address in the program memory is formed using bits <7:0> of the TBLPAG register and the Effective Address (EA) from a W register specified in the table instruction, as shown in Figure 4-1.

The TBLRDL and the TBLWTL instructions are used to read or write to bits <15:0> of program memory. TBLRDL and TBLWTL can access program memory in both Word and Byte modes.

The TBLRDH and TBLWTH instructions are used to read or write to bits <23:16> of program memory. TBLRDH and TBLWTH can also access program memory in Word or Byte mode.

4.2 RTSP Operation

The PIC24HJ32GP302/304, PIC24HJ64GPX02/X04, and PIC24HJ128GPX02/X04 Flash program memory array is organized into rows of 64 instructions or 192 bytes. RTSP allows the user application to erase a page of memory, which consists of eight rows (512 instructions) at a time, and to program one row or one word at a time. Table 27-12 shows typical erase and programming times. The 8-row erase pages and single row write rows are edge-aligned from the beginning of program memory, on boundaries of 1536 bytes and 192 bytes, respectively.

The program memory implements holding buffers that can contain 64 instructions of programming data. Prior to the actual programming operation, the write data must be loaded into the buffers sequentially. The instruction words loaded must always be from a group of 64 boundary.

The basic sequence for RTSP programming is to set up a Table Pointer, then do a series of TBLWT instructions to load the buffers. Programming is performed by setting the control bits in the NVMCON register. A total of 64 TBLWTL and TBLWTH instructions are required to load the instructions.

All of the table write operations are single-word writes (two instruction cycles) because only the buffers are written. A programming cycle is required for programming each row.

4.3 Control Registers

Two SFRs are used to read and write the program Flash memory: NVMCON and NVMKEY.

The NVMCON register (Register 4-1) controls which blocks are to be erased, which memory type is to be programmed and the start of the programming cycle.

NVMKEY is a write-only register that is used for write protection. To start a programming or erase sequence, the user application must consecutively write 0x55 and 0xAA to the NVMKEY register. Refer to **Section 4.4 "Programming Operations"** for further details.

4.4 **Programming Operations**

A complete programming sequence is necessary for programming or erasing the internal Flash in RTSP mode. A programming operation is nominally 4 ms in duration and the processor stalls (waits) until the operation is finished. Setting the WR bit (NVMCON<15>) starts the operation, and the WR bit is automatically cleared when the operation is finished.

R/SO-0 ⁽¹⁾	R/W-0 ⁽¹⁾	R/W-0 ⁽¹⁾	U-0	U-0	U-0	U-0	U-0
WR	WREN	WRERR	_	_	_		
pit 15							bit
U-0	R/W-0 ⁽¹⁾	U-0	U-0	R/W-0 ⁽¹⁾	R/W-0 ⁽¹⁾	R/W-0 ⁽¹⁾	R/W-0 ⁽¹⁾
	ERASE	_	_			p<3:0>(2)	
bit 7							bit
Legend:		SO = Settab	le only bit				
R = Readable	e bit	W = Writable	-	U = Unimpler	mented bit, read	1 as '0'	
-n = Value at	POR	'1' = Bit is se	et	'0' = Bit is cle		x = Bit is unkr	nown
bit 15	WR: Write Cor						
		Flash memory hardware onc		r erase operatio	on. The operation	on is self-timed	and the bit
				lete and inactive	Э		
bit 14	WREN: Write E	-	·				
	1 = Enable Fla 0 = Inhibit Flas						
bit 13	WRERR: Write		-				
			•	ence attempt or	termination has	s occurred (bit i	s set
		ally on any set					
				npleted normally	/		
bit 12-7	Unimplemented: Read as '0'						
bit 6	ERASE: Erase/Program Enable bit						
			•	ed by NVMOP<3 ified by NVMOF			
bit 5-4	Unimplement						
bit 3-0	NVMOP<3:0>:			ts(2)			
	If ERASE = 1:						
	1111 = Memor	ry bulk erase o	peration				
	1110 = Reserv						
	1101 = Erase	•					
	1100 = Erase : 1011 = Reserv	•	ent				
	0011 = No ope						
	0010 = Memo r		operation				
	0001 = No ope						
	0000 = Erase :	a single Config	juration regi	ister byte			
	<u>If ERASE = 0:</u>						
	1111 = No ope						
	1110 = Reserv						
	1101 = No ope 1100 = No ope						
	1011 = Reserv						
	0011 = Memo r		m operation				
	0010 = No ope		an and the s				
	0001 = Memor 0000 = Progra			egister hyte			
	uuuu – riugia	in a single COI	ingulation	Cylolei Dyle			
Note 1: T	hese bits can only	y be reset on F	OR.				
	ll other combinati			inimplemented			

2: All other combinations of NVMOP<3:0> are unimplemented.

PIC24HJ32GP302/304, PIC24HJ64GPX02/X04, AND PIC24HJ128GPX02/X04

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	_	—	—	—	—
bit 15							bit 8
W-0	W-0	W-0	W-0	W-0	W-0	W-0	W-0
			NVMK	EY<7:0>			
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimplei	mented bit, read	l as '0'	
-n = Value at P	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown

REGISTER 4-2: NVMKEY: NONVOLATILE MEMORY KEY REGISTER

bit 15-8 Unimplemented: Read as '0'

bit 7-0 NVMKEY<7:0>: Key Register (write-only) bits

4.4.1 PROGRAMMING ALGORITHM FOR FLASH PROGRAM MEMORY

Programmers can program one row of program Flash memory at a time. To do this, it is necessary to erase the 8-row erase page that contains the desired row. The general process is:

- 1. Read eight rows of program memory (512 instructions) and store in data RAM.
- 2. Update the program data in RAM with the desired new data.
- 3. Erase the block (see Example 4-1):
 - a) Set the NVMOP bits (NVMCON<3:0>) to ⁽⁰⁰¹⁰⁾ to configure for block erase. Set the ERASE (NVMCON<6>) and WREN (NVMCON<14>) bits.
 - b) Write the starting address of the page to be erased into the TBLPAG and W registers.
 - c) Write 0x55 to NVMKEY.
 - d) Write 0xAA to NVMKEY.
 - e) Set the WR bit (NVMCON<15>). The erase cycle begins and the CPU stalls for the duration of the erase cycle. When the erase is done, the WR bit is cleared automatically.

- 4. Write the first 64 instructions from data RAM into the program memory buffers (see Example 4-2).
- 5. Write the program block to Flash memory:
 - a) Set the NVMOP bits to '0001' to configure for row programming. Clear the ERASE bit and set the WREN bit.
 - b) Write 0x55 to NVMKEY.
 - c) Write 0xAA to NVMKEY.
 - d) Set the WR bit. The programming cycle begins and the CPU stalls for the duration of the write cycle. When the write to Flash memory is done, the WR bit is cleared automatically.
- Repeat steps 4 and 5, using the next available 64 instructions from the block in data RAM by incrementing the value in TBLPAG, until all 512 instructions are written back to Flash memory.

For protection against accidental operations, the write initiate sequence for NVMKEY must be used to allow any erase or program operation to proceed. After the programming command has been executed, the user application must wait for the programming time until programming is complete. The two instructions following the start of the programming sequence should be NOPS, as shown in Example 4-3.

EXAMPLE 4-1: ERASING A PROGRAM MEMORY PAGE

;	Set up NVMCO	N for block erase operation		
	MOV	#0x4042, W0	;	
	MOV	W0, NVMCON	;	Initialize NVMCON
;	Init pointer	to row to be ERASED		
	MOV	<pre>#tblpage(PROG_ADDR), W0</pre>	;	
	MOV	W0, TBLPAG	;	Initialize PM Page Boundary SFR
	MOV	<pre>#tbloffset(PROG_ADDR), W0</pre>	;	Initialize in-page EA[15:0] pointer
	TBLWTL	WO, [WO]	;	Set base address of erase block
	DISI	#5	;	Block all interrupts with priority <7
			;	for next 5 instructions
	MOV	#0x55, W0		
	MOV	W0, NVMKEY	;	Write the 55 key
	MOV	#0xAA, W1	;	
	MOV	W1, NVMKEY	;	Write the AA key
	BSET	NVMCON, #WR	;	Start the erase sequence
	NOP		;	Insert two NOPs after the erase
	NOP		;	command is asserted

EXAMPLE 4-2: LOADING THE WRITE BUFFERS

; Set up NVMCON for row programming oper	ations
MOV #0x4001, W0	;
MOV W0, NVMCON	; Initialize NVMCON
; Set up a pointer to the first program	memory location to be written
; program memory selected, and writes en	abled
MOV #0x0000, W0	;
MOV W0, TBLPAG	; Initialize PM Page Boundary SFR
MOV #0x6000, W0	; An example program memory address
; Perform the TBLWT instructions to writ	e the latches
; Oth_program_word	
MOV #LOW_WORD_0, W2	;
MOV #HIGH_BYTE_0, W3	;
TBLWTL W2, [W0]	; Write PM low word into program latch
TBLWTH W3, [W0++]	; Write PM high byte into program latch
; 1st_program_word	
MOV #LOW_WORD_1, W2	;
MOV #HIGH_BYTE_1, W3	;
TBLWTL W2, [W0]	; Write PM low word into program latch
TBLWTH W3, [W0++]	; Write PM high byte into program latch
; 2nd_program_word	
MOV #LOW_WORD_2, W2	;
MOV #HIGH_BYTE_2, W3	;
TBLWTL W2, [W0]	; Write PM low word into program latch
TBLWTH W3, [W0++]	; Write PM high byte into program latch
•	
•	
•	
; 63rd_program_word	
MOV #LOW_WORD_31, W2	;
MOV #HIGH_BYTE_31, W3	;
TBLWTL W2, [W0]	; Write PM low word into program latch
TBLWTH W3, [W0++]	; Write PM high byte into program latch

EXAMPLE 4-3: INITIATING A PROGRAMMING SEQUENCE

DISI	#5	; Block all interrupts with priority <7
		; for next 5 instructions
MOV	#0x55, W0	
MOV	W0, NVMKEY	; Write the 55 key
MOV	#0xAA, W1	;
MOV	W1, NVMKEY	; Write the AA key
BSET	NVMCON, #WR	; Start the erase sequence
NOP		; Insert two NOPs after the
NOP		; erase command is asserted

5.0 RESETS

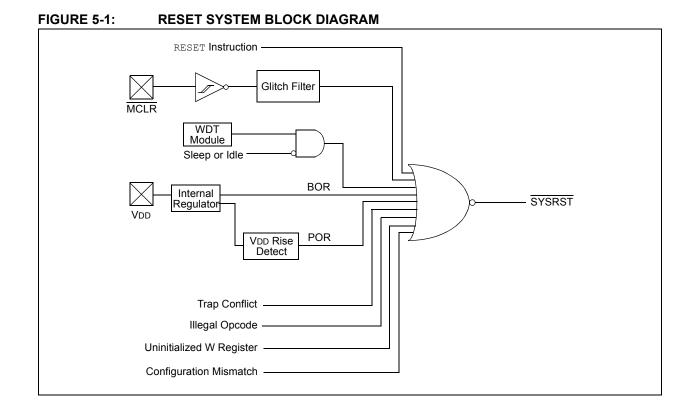
Note: This data sheet summarizes the features PIC24HJ32GP302/304. of the PIC24HJ64GPX02/X04, and PIC24HJ128GPX02/X04 families of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to the PIC24H Family Reference Manual, "Section 8. Reset" (DS70229), which is available from the Microchip website (www.microchip.com).

The Reset module combines all reset sources and controls the device Master Reset Signal, SYSRST. The following is a list of device Reset sources:

- · POR: Power-on Reset
- · BOR: Brown-out Reset
- MCLR: Master Clear Pin Reset
- SWR: RESET Instruction
- WDTO: Watchdog Timer Reset
- CM: Configuration Mismatch Reset
- TRAPR: Trap Conflict Reset
- IOPUWR: Illegal Condition Device Reset
 - Illegal Opcode Reset
 - Uninitialized W Register Reset
 - Security Reset

A simplified block diagram of the Reset module is shown in Figure 5-1.

Any active source of reset will make the SYSRST signal active. On system Reset, some of the registers associated with the CPU and peripherals are forced to a known Reset state and some are unaffected.


Note:	Refer to the specific peripheral section or
	Section 2.0 "CPU" of this manual for
	register Reset states.

All types of device Reset sets a corresponding status bit in the RCON register to indicate the type of Reset (see Register 5-1).

A POR clears all the bits, except for the POR bit (RCON<0>), that are set. The user application can set or clear any bit at any time during code execution. The RCON bits only serve as status bits. Setting a particular Reset status bit in software does not cause a device Reset to occur.

The RCON register also has other bits associated with the Watchdog Timer and device power-saving states. The function of these bits is discussed in other sections of this manual.

Note: The status bits in the RCON register should be cleared after they are read so that the next RCON register value after a device Reset is meaningful.

R/W-0	R/W-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0
TRAPR	IOPUWR		—		_	СМ	VREGS
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-1	R/W-1
EXTR	SWR	SWDTEN ⁽²⁾	WDTO	SLEEP	IDLE	BOR	POR
bit 7	SWR	SWDTEN,	WDTO	SLEEP	IDLE	BUR	bit (
Logondu							
Legend: R = Readable	, hit	$\lambda = \lambda $	-:+		monted bit read	d aa 'O'	
		W = Writable	oit	•	mented bit, read		
-n = Value at	PUR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unki	nown
bit 15	TRAPR: Trap	Reset Flag bit					
		onflict Reset ha onflict Reset ha		d			
bit 14	IOPUWR: Ille	gal Opcode or	Uninitialized V	W Access Res	et Flag bit		
	Address	Pointer caused	a Reset	-	ode or uninitial	lized W registe	er used as ar
	-	l opcode or unii		eset has not o	ccurrea		
bit 13-10	-	ited: Read as '					
bit 9	1 = A configu	ation Mismatch ration mismatcl ration mismatcl	n Reset has c				
bit 8	VREGS: Volta	age Regulator	Standby Durir	ng Sleep bit			
		egulator is active egulator goes i			еер		
bit 7	EXTR: External Reset (MCLR) Pin bit						
	 1 = A Master Clear (pin) Reset has occurred 0 = A Master Clear (pin) Reset has not occurred 						
bit 6	SWR: Software Reset (Instruction) Flag bit						
	1 = A RESET instruction has been executed 0 = A RESET instruction has not been executed						
bit 5	SWDTEN: Software Enable/Disable of WDT bit ⁽²⁾						
	1 = WDT is e 0 = WDT is d						
bit 4	WDTO: Watc	WDTO: Watchdog Timer Time-out Flag bit					
	1 = WDT time-out has occurred						
	0 = WDT time	e-out has not or	curred				
bit 3	SLEEP: Wak	e-up from Slee	o Flag bit				
		as been in Slee as not been in S					
bit 2	IDLE: Wake-up from Idle Flag bit						
		as in Idle mode as not in Idle m					
	II of the Reset st ause a device R		e set or cleare	ed in software.	Setting one of th	hese bits in soft	ware does no

REGISTER 5-1: RCON: RESET CONTROL REGISTER⁽¹⁾

2: If the FWDTEN Configuration bit is '1' (unprogrammed), the WDT is always enabled, regardless of the SWDTEN bit setting.

REGISTER 5-1: RCON: RESET CONTROL REGISTER⁽¹⁾ (CONTINUED)

- bit 1 BOR: Brown-out Reset Flag bit 1 = A Brown-out Reset has occurred 0 = A Brown-out Reset has not occurred
- bit 0 POR: Power-on Reset Flag bit 1 = A Power-up Reset has occurred 0 = A Power-up Reset has not occurred
 - **Note 1:** All of the Reset status bits can be set or cleared in software. Setting one of these bits in software does not cause a device Reset.
 - 2: If the FWDTEN Configuration bit is '1' (unprogrammed), the WDT is always enabled, regardless of the SWDTEN bit setting.

5.1 System Reset

The PIC24HJ32GP302/304, PIC24HJ64GPX02/X04, and PIC24HJ128GPX02/X04 family of devices have two types of Reset:

- Cold Reset
- · Warm Reset

A cold Reset is the result of a Power-on Reset (POR) or a Brown-out Reset (BOR). On a cold Reset, the FNOSC configuration bits in the FOSC device configuration register selects the device clock source.

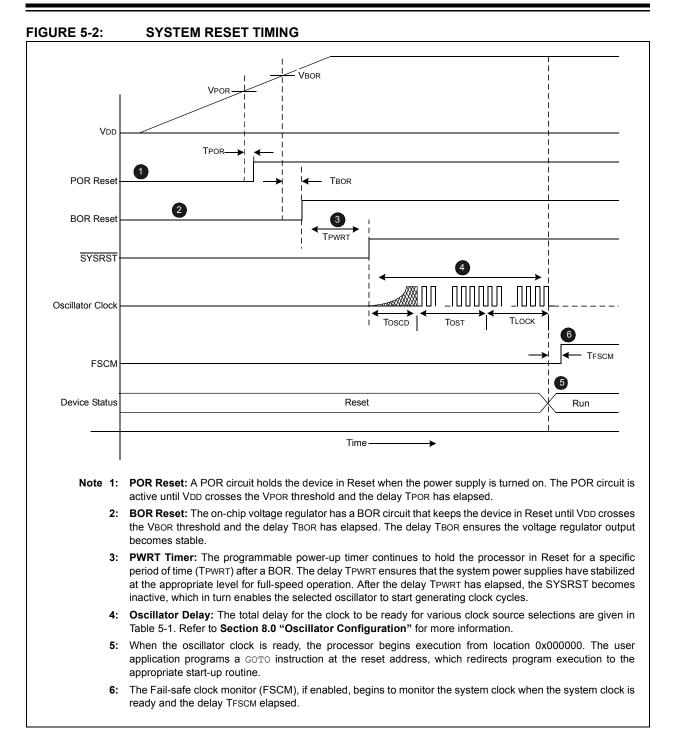
A warm Reset is the result of all other reset sources, including the RESET instruction. On warm Reset, the device will continue to operate from the current clock source as indicated by the Current Oscillator Selection (COSC<2:0>) bits in the Oscillator Control (OSCCON<14:12>) register.

The device is kept in a Reset state until the system power supplies have stabilized at appropriate levels and the oscillator clock is ready. The sequence in which this occurs is detailed below and is shown in Figure 5-2.

1. **POR Reset:** A POR circuit holds the device in Reset when the power supply is turned on. The POR circuit is active until VDD crosses the VPOR threshold and the delay TPOR has elapsed.

- 2. **BOR Reset:** The on-chip voltage regulator has a BOR circuit that keeps the device in Reset until VDD crosses the VBOR threshold and the delay TBOR has elapsed. The delay TBOR ensures that the voltage regulator output becomes stable.
- 3. **PWRT Timer:** The programmable power-up timer continues to hold the processor in Reset for a specific period of time (TPWRT) after a BOR. The delay TPWRT ensures that the system power supplies have stabilized at the appropriate level for full-speed operation. After the delay TPWRT has elapsed, the SYSRST becomes inactive, which in turn enables the selected oscillator to start generating clock cycles.
- Oscillator Delay: The total delay for the clock to be ready for various clock source selections is given in Table 5-1. Refer to Section 8.0 "Oscillator Configuration" for more information.
- When the oscillator clock is ready, the processor begins execution from location 0x000000. The user application programs a GOTO instruction at the reset address, which redirects program execution to the appropriate start-up routine.
- The Fail-safe clock monitor (FSCM), if enabled, begins to monitor the system clock when the system clock is ready and the delay TFSCM elapsed.

TABLE 5-1. OC	DOILEATOR DELAT			
Oscillator Mode	Oscillator Startup Delay	Oscillator Startup Timer	PLL Lock Time	Total Delay
FRC, FRCDIV16, FRCDIVN	Toscd	—	—	Toscd
FRCPLL	Toscd	—	TLOCK	TOSCD + TLOCK
XT	Toscd	Tost	—	TOSCD + TOST
HS	Toscd	Tost	—	TOSCD + TOST
EC	—	—	—	—
XTPLL	Toscd	Tost	TLOCK	TOSCD + TOST + TLOCK
HSPLL	Toscd	Tost	TLOCK	TOSCD + TOST + TLOCK
ECPLL	—	—	TLOCK	TLOCK
SOSC	Toscd	Tost	—	TOSCD + TOST
LPRC	Toscd	_	_	Toscd


TABLE 5-1:OSCILLATOR DELAY

Note 1: ToscD = Oscillator Start-up Delay (1.1 μs max for FRC, 70 μs max for LPRC). Crystal Oscillator start-up times vary with crystal characteristics, load capacitance, etc.

2: TOST = Oscillator Start-up Timer Delay (1024 oscillator clock period). For example, TOST = 102.4 μs for a 10 MHz crystal and TOST = 32 ms for a 32 kHz crystal.

3: TLOCK = PLL lock time (1.5 ms nominal), if PLL is enabled.

PIC24HJ32GP302/304, PIC24HJ64GPX02/X04, AND PIC24HJ128GPX02/X04

© 2008 Microchip Technology Inc.

Symbol	Parameter	Value
VPOR	POR threshold	1.8V nominal
TPOR	POR extension time	30 μs maximum
VBOR	BOR threshold	2.5V nominal
TBOR	BOR extension time	100 μs maximum
TPWRT	Programmable power-up time delay	0-128 ms nominal
Тғасм	Fail-safe Clock Monitor Delay	900 μs maximum

TABLE 5-2: OSCILLATO	R DELAY
----------------------	---------

Note: When the device exits the Reset condition (begins normal operation), the device operating parameters (voltage, frequency, temperature, etc.) must be within their operating ranges, otherwise the device may not function correctly. The user application must ensure that the delay between the time power is first applied, and the time SYSRST becomes inactive, is long enough to get operating parameters all within specification.

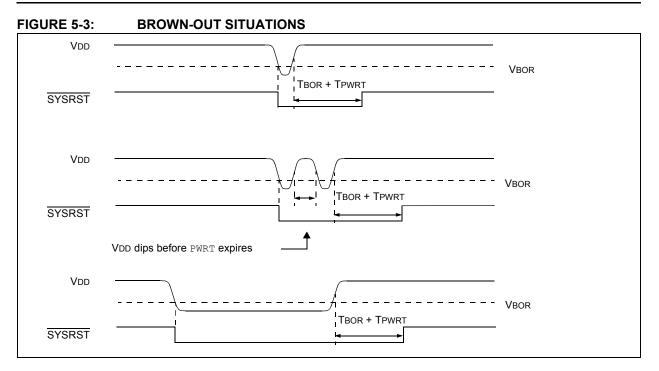
5.2 Power-on Reset (POR)

A Power-on Reset (POR) circuit ensures the device is reset from power-on. The POR circuit is active until VDD crosses the VPOR threshold and the delay TPOR has elapsed. The delay TPOR ensures the internal device bias circuits become stable.

The device supply voltage characteristics must meet the specified starting voltage and rise rate requirements to generate the POR. Refer to **Section 27.0 "Electrical Characteristics"** for details.

The POR status (POR) bit in the Reset Control (RCON<0>) register is set to indicate the Power-on Reset.

5.2.1 Brown-out Reset (BOR) and Power-up timer (PWRT)


The on-chip regulator has a Brown-out Reset (BOR) circuit that resets the device when the VDD is too low (VDD < VBOR) for proper device operation. The BOR circuit keeps the device in Reset until VDD crosses VBOR threshold and the delay TBOR has elapsed. The delay TBOR ensures the voltage regulator output becomes stable.

The BOR status (BOR) bit in the Reset Control (RCON<1>) register is set to indicate the Brown-out Reset.

The device will not run at full speed after a BOR as the VDD should rise to acceptable levels for full-speed operation. The PWRT provides power-up time delay (TPWRT) to ensure that the system power supplies have stabilized at the appropriate levels for full-speed operation before the SYSRST is released.

The power-up timer delay (TPWRT) is programmed by the Power-on Reset Timer Value Select (FPWRT<2:0>) bits in the POR Configuration (FPOR<2:0>) register, which provides eight settings (from 0 ms to 128 ms). Refer to **Section 24.0 "Special Features"** for further details.

Figure 5-3 shows the typical brown-out scenarios. The reset delay (TBOR + TPWRT) is initiated each time VDD rises above the VBOR trip point

5.3 External Reset (EXTR)

The external Reset is generated by driving the MCLR pin low. The MCLR pin is a Schmitt trigger input with an additional glitch filter. Reset pulses that are longer than the minimum pulse width will generate a Reset. Refer to **Section 27.0 "Electrical Characteristics"** for minimum pulse width specifications. The External Reset (MCLR) Pin (EXTR) bit in the Reset Control (RCON) register is set to indicate the MCLR Reset.

5.3.0.1 EXTERNAL SUPERVISORY CIRCUIT

Many systems have external supervisory circuits that generate reset signals to Reset multiple devices in the system. This external Reset signal can be directly connected to the MCLR pin to Reset the device when the rest of system is Reset.

5.3.0.2 INTERNAL SUPERVISORY CIRCUIT

When using the internal power supervisory circuit to Reset the device, the external reset pin (MCLR) should be tied directly or resistively to VDD. In this case, the MCLR pin will not be used to generate a Reset. The external reset pin (MCLR) does not have an internal pull-up and must not be left unconnected.

5.4 Software RESET Instruction (SWR)

Whenever the RESET instruction is executed, the device will assert SYSRST, placing the device in a special Reset state. This Reset state will not re-initialize the clock. The clock source in effect prior to the RESET instruction will remain. SYSRST is released at the next instruction cycle, and the reset vector fetch will commence.

The Software Reset (Instruction) Flag (SWR) bit in the Reset Control (RCON<6>) register is set to indicate the software Reset.

5.5 Watchdog Time-out Reset (WDTO)

Whenever a Watchdog time-out occurs, the device will asynchronously assert SYSRST. The clock source will remain unchanged. A WDT time-out during Sleep or Idle mode will wake-up the processor, but will not reset the processor.

The Watchdog Timer Time-out Flag (WDTO) bit in the Reset Control (RCON<4>) register is set to indicate the Watchdog Reset. Refer to **Section 24.4 "Watchdog Timer (WDT)**" for more information on Watchdog Reset.

5.6 Trap Conflict Reset

If a lower-priority hard trap occurs while a higher-priority trap is being processed, a hard trap conflict Reset occurs. The hard traps include exceptions of priority level 13 through level 15, inclusive. The address error (level 13) and oscillator error (level 14) traps fall into this category.

The Trap Reset Flag (TRAPR) bit in the Reset Control (RCON<15>) register is set to indicate the Trap Conflict Reset. Refer to **Section 6.0 "Interrupt Controller"** for more information on trap conflict Resets.

5.7 Configuration Mismatch Reset

To maintain the integrity of the peripheral pin select control registers, they are constantly monitored with shadow registers in hardware. If an unexpected change in any of the registers occur (such as cell disturbances caused by ESD or other external events), a configuration mismatch Reset occurs.

The Configuration Mismatch Flag (CM) bit in the Reset Control (RCON<9>) register is set to indicate the configuration mismatch Reset. Refer to **Section 10.0 "I/O Ports"** for more information on the configuration mismatch Reset.

Note: The configuration mismatch feature and associated reset flag is not available on all devices.

5.8 Illegal Condition Device Reset

An illegal condition device Reset occurs due to the following sources:

- Illegal Opcode Reset
- Uninitialized W Register Reset
- · Security Reset

TABLE 5-3:

The Illegal Opcode or Uninitialized W Access Reset Flag (IOPUWR) bit in the Reset Control (RCON<14>) register is set to indicate the illegal condition device Reset.

5.8.0.1 ILLEGAL OPCODE RESET

A device Reset is generated if the device attempts to execute an illegal opcode value that is fetched from program memory.

The illegal opcode Reset function can prevent the device from executing program memory sections that are used to store constant data. To take advantage of the illegal opcode Reset, use only the lower 16 bits of

RESET FLAG BIT OPERATION

each program memory section to store the data values. The upper 8 bits should be programmed with 3Fh, which is an illegal opcode value.

5.8.0.2 UNINITIALIZED W REGISTER RESET

Any attempts to use the uninitialized W register as an address pointer will Reset the device. The W register array (with the exception of W15) is cleared during all resets and is considered uninitialized until written to.

5.8.0.3 SECURITY RESET

If a Program Flow Change (PFC) or Vector Flow Change (VFC) targets a restricted location in a protected segment (Boot and Secure Segment), that operation will cause a security Reset.

The PFC occurs when the Program Counter is reloaded as a result of a Call, Jump, Computed Jump, Return, Return from Subroutine, or other form of branch instruction.

The VFC occurs when the Program Counter is reloaded with an Interrupt or Trap vector.

Refer to Section 24.8 "Code Protection and CodeGuard™ Security" for more information on Security Reset.

5.9 Using the RCON Status Bits

The user application can read the Reset Control (RCON) register after any device Reset to determine the cause of the reset.

Note: The status bits in the RCON register should be cleared after they are read so that the next RCON register value after a device Reset will be meaningful.

Table 5-3 provides a summary of the reset flag bit operation.

Flag Bit	Set by:	Cleared by:
TRAPR (RCON<15>)	Trap conflict event	POR,BOR
IOPWR (RCON<14>)	Illegal opcode or uninitialized W register access or Security Reset	POR,BOR
CM (RCON<9>)	Configuration Mismatch	POR,BOR
EXTR (RCON<7>)	MCLR Reset	POR
SWR (RCON<6>)	RESET instruction	POR,BOR
WDTO (RCON<4>)	WDT time-out	PWRSAV instruction, CLRWDT instruction, POR,BOR
SLEEP (RCON<3>)	PWRSAV #SLEEP instruction	POR,BOR
IDLE (RCON<2>)	PWRSAV #IDLE instruction	POR,BOR
BOR (RCON<1>)	POR, BOR	
POR (RCON<0>)	POR	

Note: All Reset flag bits can be set or cleared by user software.

6.0 INTERRUPT CONTROLLER

Note:	This data sheet summarizes the features
	of the PIC24HJ32GP302/304,
	PIC24HJ64GPX02/X04, and
	PIC24HJ128GPX02/X04 families of
	devices. It is not intended to be a
	comprehensive reference source. To
	complement the information in this data
	sheet, refer to the PIC24H Family
	Reference Manual, "Section 6.
	Interrupts" (DS70224), which is
	available from the Microchip website
	(www.microchip.com).

The PIC24HJ32GP302/304, PIC24HJ64GPX02/X04, and PIC24HJ128GPX02/X04 interrupt controller reduces the numerous peripheral interrupt request signals to a single interrupt request signal to the PIC24HJ32GP302/304, PIC24HJ64GPX02/X04, and PIC24HJ128GPX02/X04 CPU.

The interrupt controller has the following features:

- Up to eight processor exceptions and software traps
- · Eight user-selectable priority levels
- Interrupt Vector Table (IVT) with up to 118 vectors
- A unique vector for each interrupt or exception source
- · Fixed priority within a specified user priority level
- Alternate Interrupt Vector Table (AIVT) for debug support
- Fixed interrupt entry and return latencies

6.1 Interrupt Vector Table

The Interrupt Vector Table (IVT), shown in Figure 6-1, resides in program memory, starting at location 000004h. The IVT contains 126 vectors consisting of eight nonmaskable trap vectors plus up to 118 sources of interrupt. In general, each interrupt source has its own vector. Each interrupt vector contains a 24-bit-wide address. The value programmed into each interrupt vector location is the starting address of the associated Interrupt Service Routine (ISR).

Interrupt vectors are prioritized in terms of their natural priority. This priority is linked to their position in the vector table. Lower addresses generally have a higher natural priority. For example, the interrupt associated with vector 0 takes priority over interrupts at any other vector address.

PIC24HJ32GP302/304, PIC24HJ64GPX02/X04, and PIC24HJ128GPX02/X04 devices implement up to 45 unique interrupts and five nonmaskable traps. These are summarized in Table 6-1.

6.1.1 ALTERNATE INTERRUPT VECTOR TABLE

The Alternate Interrupt Vector Table (AIVT) is located after the IVT, as shown in Figure 6-1. Access to the AIVT is provided by the ALTIVT control bit (INTCON2<15>). If the ALTIVT bit is set, all interrupt and exception processes use the alternate vectors instead of the default vectors. The alternate vectors are organized in the same manner as the default vectors.

The AIVT supports debugging by providing a means to switch between an application and a support environment without requiring the interrupt vectors to be reprogrammed. This feature also enables switching between applications for evaluation of different software algorithms at run time. If the AIVT is not needed, the AIVT should be programmed with the same addresses used in the IVT.

6.2 Reset Sequence

A device Reset is not a true exception because the interrupt controller is not involved in the Reset process. The PIC24HJ32GP302/304, PIC24HJ64GPX02/X04, and PIC24HJ128GPX02/X04 device clears its registers in response to a Reset, which forces the PC to zero. The microcontroller then begins program execution at location 0x000000. A GOTO instruction at the Reset address can redirect program execution to the appropriate start-up routine.

Note: Any unimplemented or unused vector locations in the IVT and AIVT should be programmed with the address of a default interrupt handler routine that contains a RESET instruction.

FIGURE 6-1: PIC24HJ32GP302/304, PIC24HJ64GPX02/X04, and PIC24HJ128GPX02/X04 INTERRUPT VECTOR TABLE

Reset - GOTO Instruction Reset - GOTO Address Reserved Oscillator Fail Trap Vector Address Error Trap Vector	0x000000 0x000002 0x000004	
Reserved Oscillator Fail Trap Vector		
Oscillator Fail Trap Vector	0x000004	
Address Error Trap Vector	_	
Stack Error Trap Vector		
Math Error Trap Vector		
DMA Error Trap Vector		
Reserved		
	_	
	0x000014	
Interrupt Vector 1		
~		
~		
~		
	0x00007C	Interrupt Vector Table (IVT) ⁽¹⁾
	0x00007E	
Interrupt Vector 54	0x000080	
~		
~		
~		
Interrupt Vector 116	0x0000FC	
Interrupt Vector 117	0x0000FE	
Reserved	0x000100	
Reserved	0x000102	
Reserved		
Oscillator Fail Trap Vector		
Address Error Trap Vector		
Stack Error Trap Vector		
Math Error Trap Vector		
DMA Error Trap Vector		
Reserved		
Reserved		
Interrupt Vector 0	0x000114	
Interrupt Vector 1		
~		
~]	
~]	Alternate Interrupt Vector Table (AIVT) ⁽¹⁾
Interrupt Vector 52	0x00017C	
Interrupt Vector 53	0x00017E	
Interrupt Vector 54	0x000180	
~		
~		
~		
Interrupt Vector 116]	-
Interrupt Vector 117	0x0001FE	
Start of Code	0x000200	
	-	
Table 6-1 for the list of impleme	ented interrupt v	ectors.
	Reserved Interrupt Vector 0 Interrupt Vector 1 ~ 1 ~ Interrupt Vector 52 Interrupt Vector 53 Interrupt Vector 53 Interrupt Vector 54 ~ ~ Interrupt Vector 116 Interrupt Vector 117 Reserved Reserved Reserved Oscillator Fail Trap Vector Address Error Trap Vector Math Error Trap Vector DMA Error Trap Vector DMA Error Trap Vector Interrupt Vector 0 Interrupt Vector 1 ~ ~ Interrupt Vector 52 Interrupt Vector 53 Interrupt Vector 54 ~ ~ Interrupt Vector 116 Interrupt Vector 117 Start of Code	Reserved0x000014Interrupt Vector 00x000014~~~~~~1nterrupt Vector 520x00007CInterrupt Vector 530x00007EInterrupt Vector 540x000080~~~~~~1nterrupt Vector 1160x0000FCInterrupt Vector 1170x0000FCNotocollator Fail Trap Vector0x000100Reserved0x000100Oscillator Fail Trap Vector0x000102Reserved0x000102Reserved0x000112Reserved0x000114Interrupt Vector 1~~~~~1nterrupt Vector 520x00017C0x00017E0x00017E0x00017E0x00017E0x00017E0x00017E1nterrupt Vector 530x00017E </td

IVT Address	AIVT Address	Interrupt Source		
0x000004	0x000104	Reserved		
0x000006	0x000106	Oscillator Failure		
0x000008	0x000108	Address Error		
0x00000A	0x00010A	Stack Error		
0x00000C	0x00010C	Math Error		
0x00000E	0x00010E	DMA Error		
0x000010	0x000110	Reserved		
0x000012	0x000112	Reserved		
0x000014	0x000114	INT0 – External Interrupt 0		
0x000016	0x000116	IC1 – Input Compare 1		
0x000018	0x000118	OC1 – Output Compare 1		
0x00001A	0x00011A	T1 – Timer1		
0x00001C	0x00011C	DMA0 – DMA Channel 0		
0x00001E	0x00011E	IC2 – Input Capture 2		
0x000020	0x000120	OC2 – Output Compare 2		
0x000022	0x000122	T2 – Timer2		
0x000024	0x000124	T3 – Timer3		
0x000026	0x000126	SPI1E – SPI1 Error		
0x000028	0x000128	SPI1 – SPI1 Transfer Done		
0x00002A	0x00012A	U1RX – UART1 Receiver		
0x00002C	0x00012C	U1TX – UART1 Transmitter		
0x00002E	0x00012E	ADC1 – ADC 1		
0x000030	0x000130	DMA1 – DMA Channel 1		
0x000032	0x000132	Reserved		
0x000034	0x000134	SI2C1 – I2C1 Slave Events		
0x000036	0x000136	MI2C1 – I2C1 Master Events		
0x000038	0x000138	CM – Comparator Interrupt		
0x00003A	0x00013A	CN – Change Notification Interrupt		
0x00003C	0x00013C	INT1 – External Interrupt 1		
0x00003E	0x00013E	Reserved		
0x000040	0x000140	IC7 – Input Capture 7		
0x000042	0x000142	IC8 – Input Capture 8		
0x000044	0x000144	DMA2 – DMA Channel 2		
0x000046	0x000146	OC3 – Output Compare 3		
0x000048	0x000148	OC4 – Output Compare 4		
		T4 – Timer4		
		T5 – Timer5		
		INT2 – External Interrupt 2		
	0x000150	U2RX – UART2 Receiver		
	0x000152	U2TX – UART2 Transmitter		
	0x000154	SPI2E – SPI2 Error		
		SPI2 – SPI2 Transfer Done		
		C1RX – ECAN1 RX Data Ready		
		C1 – ECAN1 Event		
		DMA3 – DMA Channel 3		
		Reserved		
0x000060	0x000160	Reserved		
	IVT Address 0x000004 0x000008 0x00000A 0x00000C 0x00000E 0x00000E 0x000010 0x000012 0x000014 0x000016 0x000017 0x000018 0x000012 0x000012 0x000012 0x000014 0x000012 0x000012 0x000012 0x000012 0x000020 0x000021 0x000022 0x000023 0x000024 0x000025 0x000026 0x000027 0x000028 0x000029 0x000020 0x000021 0x000022 0x000030 0x000031 0x000032 0x000033 0x000034 0x000035 0x000042 0x000042 0x000043 0x000044 0x000045	IVT Address AIVT Address 0x000004 0x000104 0x000006 0x000108 0x000000 0x000100 0x000000 0x000100 0x000000 0x000100 0x000000 0x000100 0x000010 0x000110 0x000011 0x000111 0x000012 0x000114 0x000016 0x000116 0x000017 0x000118 0x000018 0x000117 0x000010 0x0001114 0x0000112 0x0001120 0x000012 0x0001120 0x000012 0x0001120 0x000012 0x0001120 0x000012 0x0001120 0x000026 0x000122 0x000027 0x000128 0x000028 0x000122 0x000020 0x000122 0x000021 0x000122 0x000022 0x000122 0x000023 0x000122 0x000024 0x000122 0x000030 0x000132 0x0000313		

TABLE 6-1:INTERRUPT VECTORS

Vector Number	IVT Address	AIVT Address	Interrupt Source
47	0x000062	0x000162	Reserved
48	0x000064	0x000164	Reserved
49	0x000066	0x000166	Reserved
50	0x000068	0x000168	Reserved
51	0x00006A	0x00016A	Reserved
52	0x00006C	0x00016C	Reserved
53	0x00006E	0x00016E	PMP – Parallel Master Port
54	0x000070	0x000170	DMA – DMA Channel 4
55	0x000072	0x000172	Reserved
56	0x000074	0x000174	Reserved
57	0x000076	0x000176	Reserved
58	0x000078	0x000178	Reserved
59	0x00007A	0x00017A	Reserved
60	0x00007C	0x00017C	Reserved
61	0x00007E	0x00017E	Reserved
62	0x000080	0x000180	Reserved
63	0x000082	0x000182	Reserved
64	0x000084	0x000184	Reserved
65	0x000086	0x000186	Reserved
66	0x000088	0x000188	Reserved
67	0x00008A	0x00018A	Reserved
68	0x00008C	0x00018C	Reserved
69	0x00008E	0x00018E	DMA5 – DMA Channel 5
70	0x000090	0x000190	RTCC – Real Time Clock
71	0x000092	0x000192	Reserved
72	0x000094	0x000194	Reserved
73	0x000096	0x000196	U1E – UART1 Error
74	0x000098	0x000198	U2E – UART2 Error
75	0x00009A	0x00019A	CRC – CRC Generator Interrupt
76	0x00009C	0x00019C	DMA6 – DMA Channel 6
77	0x00009E	0x00019E	DMA7 – DMA Channel 7
78	0x0000A0	0x0001A0	C1TX – ECAN1 TX Data Request
79	0x0000A2	0x0001A2	Reserved
80	0x0000A4	0x0001A4	Reserved
81	0x0000A6	0x0001A6	Reserved
82	0x0000A8	0x0001A8	Reserved
83	0x0000AA	0x0001AA	Reserved
84	0x0000AC	0x0001AC	Reserved
85	0x0000AE	0x0001AE	Reserved
86	0x0000B0	0x0001B0	Reserved
87	0x0000B2	0x0001B2	Reserved
88-126	0x0000B4-0x0000FE	0x0001B4-0x0001FE	Reserved

TABLE 6-1: INTERRUPT VECTORS (CONTINUED)

6.3 Interrupt Control and Status Registers

PIC24HJ32GP302/304, PIC24HJ64GPX02/X04, and PIC24HJ128GPX02/X04 devices implement a total of 30 registers for the interrupt controller:

- INTCON1
- INTCON2
- IFSx
- IECx
- IPCx
- INTTREG

6.3.1 INTCON1 AND INTCON2

Global interrupt control functions are controlled from INTCON1 and INTCON2. INTCON1 contains the Interrupt Nesting Disable (NSTDIS) bit as well as the control and status flags for the processor trap sources. The INTCON2 register controls the external interrupt request signal behavior and the use of the Alternate Interrupt Vector Table.

6.3.2 IFSx

The IFS registers maintain all of the interrupt request flags. Each source of interrupt has a status bit, which is set by the respective peripherals or external signal and is cleared via software.

6.3.3 IECx

The IEC registers maintain all of the interrupt enable bits. These control bits are used to individually enable interrupts from the peripherals or external signals.

6.3.4 IPCx

The IPC registers are used to set the interrupt priority level for each source of interrupt. Each user interrupt source can be assigned to one of eight priority levels.

6.3.5 INTTREG

The INTTREG register contains the associated interrupt vector number and the new CPU interrupt priority level, which are latched into vector number (VECNUM<6:0>) and Interrupt level (ILR<3:0>) bit fields in the INTTREG register. The new interrupt priority level is the priority of the pending interrupt.

The interrupt sources are assigned to the IFSx, IECx and IPCx registers in the same sequence that they are listed in Table 6-1. For example, the INT0 (External Interrupt 0) is shown as having vector number 8 and a natural order priority of 0. Thus, the INT0IF bit is found in IFS0<0>, the INT0IE bit in IEC0<0>, and the INT0IP bits in the first position of IPC0 (IPC0<2:0>).

6.3.6 STATUS/CONTROL REGISTERS

Although they are not specifically part of the interrupt control hardware, two of the CPU Control registers contain bits that control interrupt functionality.

- The CPU STATUS register, SR, contains the IPL<2:0> bits (SR<7:5>). These bits indicate the current CPU interrupt priority level. The user software can change the current CPU priority level by writing to the IPL bits.
- The CORCON register contains the IPL3 bit which, together with IPL<2:0>, also indicates the current CPU priority level. IPL3 is a read-only bit so that trap events cannot be masked by the user software.

All Interrupt registers are described in Register 6-1 through Register 6-29 in the following pages.

REGISTER 6-1: SR:	CPU STATUS REGISTER ⁽¹⁾
-------------------	------------------------------------

Legend: C = Clear only	1.1	R = Readable	1.11		nented bit, read		
bit 7							bit C
	IPL<2:0> ⁽²⁾		RA	Ν	OV	Z	С
R/W-0 ⁽³⁾	R/W-0 ⁽³⁾	R/W-0 ⁽³⁾	R-0	R/W-0	R/W-0	R/W-0	R/W-0
bit 15							bit 8
_	_	_	_	—	_	—	DC
U-0	U-0	U-0	U-0	U-0	U-0	U-0	R/W-0

S = Set only bit	W = Writable bit	-n = Value at POR
'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7-5	IPL<2:0>: CPU Interrupt Priority Level Status bits ⁽²⁾
	111 = CPU Interrupt Priority Level is 7 (15), user interrupts disabled
	110 = CPU Interrupt Priority Level is 6 (14)
	101 = CPU Interrupt Priority Level is 5 (13)
	100 = CPU Interrupt Priority Level is 4 (12)
	011 = CPU Interrupt Priority Level is 3 (11)
	010 = CPU Interrupt Priority Level is 2 (10)
	001 = CPU Interrupt Priority Level is 1 (9)
	000 = CPU Interrupt Priority Level is 0 (8)

Note 1: For complete register details, see Register 2-1: "SR: CPU STATUS Register".

- 2: The IPL<2:0> bits are concatenated with the IPL<3> bit (CORCON<3>) to form the CPU Interrupt Priority Level. The value in parentheses indicates the IPL if IPL<3> = 1. User interrupts are disabled when IPL<3> = 1.
- 3: The IPL<2:0> Status bits are read-only when NSTDIS (INTCON1<15>) = 1.

REGISTER 6-2: CORCON: CORE CONTROL REGISTER⁽¹⁾

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
	-	—		_	_	—	—
bit 15							bit 8
U-0	U-0	U-0	U-0	R/C-0	R/W-0	U-0	U-0
	—	—	—	IPL3 ⁽²⁾	PSV	—	—
bit 7							bit 0
Legend:		C = Clear only	/ bit				
R = Readable bit W = Writable bit		bit	-n = Value at POR '1' = Bit is set				
0' = Bit is cleare	ed	ʻx = Bit is unkr	nown	U = Unimplemented bit, read as '0'			

bit 3

IPL3: CPU Interrupt Priority Level Status bit 3⁽²⁾

1 = CPU interrupt priority level is greater than 7

0 = CPU interrupt priority level is 7 or less

Note 1: For complete register details, see Register 2-2: "CORCON: CORE Control Register".

2: The IPL3 bit is concatenated with the IPL<2:0> bits (SR<7:5>) to form the CPU Interrupt Priority Level.

REGISTER	6-3: INTCO	N1: INTERR	UPT CONTR	ROL REGISTI	ER 1			
R/W-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	
NSTDIS	—	_	—	—	—	—	—	
bit 15							bit	
U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	
	DIV0ERR	DMACERR	MATHERR	ADDRERR	STKERR	OSCFAIL		
bit 7							bit	
Legend:								
R = Readable	e bit	W = Writable	bit	U = Unimplen	nented bit, read	d as '0'		
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unknown		
bit 14-7 bit 6 bit 5	 1 = Interrupt nesting is disabled 0 = Interrupt nesting is enabled Unimplemented: Read as '0'. DIV0ERR: Arithmetic Error Status bit 1 = Math error trap was caused by a divide by zero 0 = Math error trap was not caused by a divide by zero DMACERR: DMA Controller Error Status bit 1 = DMA controller error trap has occurred 0 = DMA controller error trap has not occurred 							
bit 4	1 = Math erro	 MATHERR: Arithmetic Error Status bit 1 = Math error trap has occurred 0 = Math error trap has not occurred 						
bit 3	1 = Address e	ADDRERR: Address Error Trap Status bit 1 = Address error trap has occurred 0 = Address error trap has not occurred						
bit 2	STKERR: Stack Error Trap Status bit 1 = Stack error trap has occurred 0 = Stack error trap has not occurred							
bit 1	OSCFAIL: Oscillator Failure Trap Status bit 1 = Oscillator failure trap has occurred 0 = Oscillator failure trap has not occurred							
bit 0		ted: Read as '						
	•							

REGISTER 6-3: INTCON1: INTERRUPT CONTROL REGISTER 1

REGISTER 6-4	4: INTCC	DN2: INTERR	UPI CONTR	KOL REGIST	ER 2			
R/W-0	R-0	U-0	U-0	U-0	U-0	U-0	U-0	
ALTIVT	DISI	—	_	—	—	_		
bit 15							bit 8	
U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	
—	—	—	—	_	INT2EP	INT1EP	INT0EP	
bit 7							bit 0	
Legend:								
R = Readable b		W = Writable		U = Unimplemented bit, read as '0'				
-n = Value at PO	OR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	Bit is unknown	
	1 = Use alter 0 = Use stand DISI: DISI Ir 1 = DISI inst	ble Alternate Int nate vector tabl dard (default) ve nstruction Status truction is active	e ector table s bit e					
		truction is not a						
	•	nted: Read as '						
bit 2	1 = Interrupt	ernal Interrupt 2 on negative edg on positive edge	ge	Polarity Select	t dit			
bit 1	1 = Interrupt	ernal Interrupt 1 on negative edg on positive edge	ge	Polarity Select	t bit			
bit 0	INT0EP: External Interrupt 0 Edge Detect Polarity Select bit							
	INT0EP: External Interrupt 0 Edge Detect Polarity Select bit							

REGISTER 6-4: INTCON2: INTERRUPT CONTROL REGISTER 2

1 = Interrupt on negative edge0 = Interrupt on positive edge

REGISTER	6-5: IFS0:	: INTERRUPT	FLAG STAT	US REGISTE	ER 0						
U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
—	DMA1IF	AD1IF	U1TXIF	U1RXIF	SPI1IF	SPI1EIF	T3IF				
bit 15							bit 8				
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
T2IF	OC2IF	IC2IF	DMA0IF	T1IF	OC1IF	IC1IF	INTOIF				
bit 7							bit (
Legend:											
R = Readable	e bit	W = Writable	e bit	U = Unimpler	mented bit, rea	d as '0'					
-n = Value at	POR	'1' = Bit is se	t	'0' = Bit is cle	ared	x = Bit is unkn	own				
bit 15	-	ented: Read as									
bit 14		MA Channel 1		Complete Interr	upt Flag Status	s bit					
		t request has or t request has no									
bit 13	-	C1 Conversion (rupt Flag Statu	s bit						
		1 = Interrupt request has occurred									
bit 12	-	0 = Interrupt request has not occurred									
		U1TXIF: UART1 Transmitter Interrupt Flag Status bit 1 = Interrupt request has occurred									
	•	t request has no									
bit 11	U1RXIF: UA	U1RXIF: UART1 Receiver Interrupt Flag Status bit									
		1 = Interrupt request has occurred									
bit 10		 Interrupt request has not occurred SPI1IF: SPI1 Event Interrupt Flag Status bit 									
		t request has or	-	JIL							
		t request has no									
bit 9	SPI1EIF: SI	PI1 Error Interru	pt Flag Status	bit							
		t request has o									
	-	t request has no									
bit 8		T3IF: Timer3 Interrupt Flag Status bit									
	 1 = Interrupt request has occurred 0 = Interrupt request has not occurred 										
bit 7	-	T2IF: Timer2 Interrupt Flag Status bit									
	1 = Interrupt request has occurred										
		t request has no									
bit 6		OC2IF: Output Compare Channel 2 Interrupt Flag Status bit									
	-	 1 = Interrupt request has occurred 0 = Interrupt request has not occurred 									
bit 5		IC2IF: Input Capture Channel 2 Interrupt Flag Status bit									
		1 = Interrupt request has occurred									
		t request has no									
bit 4		MA Channel 0 [Complete Interr	upt Flag Status	s bit					
		t request has or									
bit 3	-	t request has no									
UIL J		1 Interrupt Flag t request has or									
		t request has no									
	T.	·									

REGISTER 6-5: IFS0: INTERRUPT FLAG STATUS REGISTER 0

REGISTER 6-5: IFS0: INTERRUPT FLAG STATUS REGISTER 0 (CONTINUED)

bit 2	OC1IF: Output Compare Channel 1 Interrupt Flag Status bit
	1 = Interrupt request has occurred
	0 = Interrupt request has not occurred
bit 1	IC1IF: Input Capture Channel 1 Interrupt Flag Status bit

- 1 = Interrupt request has occurred
- 0 = Interrupt request has not occurred
- bit 0 INTOIF: External Interrupt 0 Flag Status bit
 - 1 = Interrupt request has occurred
 - 0 = Interrupt request has not occurred

REGISTER 6	-6: IFS1:	INTERRUPT	FLAG STAT	US REGISTE	ER 1					
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
U2TXIF	U2RXIF	INT2IF	T5IF	T4IF	OC4IF	OC3IF	DMA2IF			
bit 15		·					bit 8			
R/W-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
IC8IF	IC7IF	—	INT1IF	CNIF	CMIF	MI2C1IF	SI2C1IF			
bit 7							bit (
Legend:										
R = Readable	bit	W = Writable	bit	U = Unimpler	mented bit, rea	d as '0'				
-n = Value at F	POR	'1' = Bit is se	t	'0' = Bit is cle	ared	x = Bit is unkr	nown			
bit 15	U2TXIF: UA	RT2 Transmitte	r Interrupt Flag	Status bit						
		t request has oc								
	-	t request has no								
bit 14		RT2 Receiver I		tatus bit						
		t request has or t request has no								
bit 13	 Interrupt request has not occurred INT2IF: External Interrupt 2 Flag Status bit 									
	1 = Interrupt request has occurred									
	0 = Interrupt request has not occurred									
bit 12	T5IF: Timer5 Interrupt Flag Status bit									
	1 = Interrupt request has occurred									
	0 = Interrupt request has not occurred									
bit 11		4 Interrupt Flag								
	 1 = Interrupt request has occurred 0 = Interrupt request has not occurred 									
bit 10										
	OC4IF: Output Compare Channel 4 Interrupt Flag Status bit 1 = Interrupt request has occurred									
	0 = Interrupt request has not occurred									
bit 9	OC3IF: Output Compare Channel 3 Interrupt Flag Status bit									
	 1 = Interrupt request has occurred 0 = Interrupt request has not occurred 									
bit 8		DMA2IF: DMA Channel 2 Data Transfer Complete Interrupt Flag Status bit								
	1 = Interrupt	t request has oc	curred	- -						
bit 7	 0 = Interrupt request has not occurred IC8IF: Input Capture Channel 8 Interrupt Flag Status bit 									
	1 = Interrupt request has occurred									
h # 0	0 = Interrupt request has not occurred									
bit 6	IC7IF: Input Capture Channel 7 Interrupt Flag Status bit 1 = Interrupt request has occurred									
	•	t request has of								
bit 5	-	nted: Read as								
bit 4	-	ernal Interrupt 1								
	1 = Interrupt	t request has oc	curred							
	0 = Interrupt	t request has no	ot occurred							
bit 3	-	Change Notifica	-	-lag Status bit						
		t request has oc t request has no								

REGISTER 6-6: IFS1: INTERRUPT FLAG STATUS REGISTER 1

REGISTER 6-6: IFS1: INTERRUPT FLAG STATUS REGISTER 1 (CONTINUED)

bit 2	CMIF: Comparator Interrupt Flag Status bit
	1 = Interrupt request has occurred0 = Interrupt request has not occurred
bit 1	MI2C1IF: I2C1 Master Events Interrupt Flag Status bit
	1 = Interrupt request has occurred
	0 = Interrupt request has not occurred
bit 0	SI2C1IF: I2C1 Slave Events Interrupt Flag Status bit
	1 = Interrupt request has occurred

0 = Interrupt request has not occurred

© 2008 Microchip Technology Inc.

	R/W-0	R/W-0	U-0	U-0	U-0	U-0	U-0		
—	DMA4IF	PMPIF		_	—		_		
oit 15							bit		
U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
	—		DMA3IF	C1IF ⁽¹⁾	C1RXIF ⁽¹⁾	SPI2IF	SPI2EIF		
oit 7							bit		
Legend:									
R = Readabl	e bit	W = Writable	bit	U = Unimpler	mented bit, read	as '0'			
-n = Value at	t POR	'1' = Bit is se	t	'0' = Bit is cle	ared	x = Bit is unkr	nown		
bit 15	Unimplemen	ted: Read as	0'						
oit 14	DMA4IF: DMA Channel 4 Data Transfer Complete Interrupt Flag Status bit								
	1 = Interrupt request has occurred								
	0 = Interrupt request has not occurred								
bit 13	PMPIF: Parallel Master Port Interrupt Flag Status bit								
	 1 = Interrupt request has occurred 0 = Interrupt request has not occurred 								
bit 12-5	•	•							
	Unimplemented: Read as '0' DMA3IF: DMA Channel 3 Data Transfer Complete Interrupt Flag Status bit								
oit 4	1 = Interrupt request has occurred								
	0 = Interrupt request has not occurred								
bit 3	0 = Interrupt r	equest has no		bit ⁽¹⁾					
bit 3	0 = Interrupt r C1IF: ECAN1 1 = Interrupt r	equest has no Event Interru equest has oo	t occurred pt Flag Status I curred	bit ⁽¹⁾					
	0 = Interrupt r C1IF: ECAN1 1 = Interrupt r 0 = Interrupt r	equest has no Event Interru equest has oc equest has no	t occurred pt Flag Status I curred t occurred		(4)				
bit 3 bit 2	0 = Interrupt r C1IF: ECAN1 1 = Interrupt r 0 = Interrupt r C1RXIF: ECA	equest has no Event Interru equest has oc equest has no N1 Receive D	t occurred pt Flag Status I curred t occurred Pata Ready Inte		tus bit ⁽¹⁾				
	0 = Interrupt r C1IF: ECAN1 1 = Interrupt r 0 = Interrupt r C1RXIF: ECA 1 = Interrupt r	equest has no Event Interru equest has oc equest has no N1 Receive D equest has oc	t occurred pt Flag Status I curred t occurred vata Ready Inte curred		tus bit ⁽¹⁾				
bit 2	0 = Interrupt r C1IF: ECAN1 1 = Interrupt r 0 = Interrupt r C1RXIF: ECA 1 = Interrupt r 0 = Interrupt r	equest has no Event Interru equest has oc equest has no N1 Receive D equest has oc equest has no	t occurred ot Flag Status I curred t occurred ata Ready Inte curred t occurred	errupt Flag Sta	tus bit ⁽¹⁾				
	0 = Interrupt r C1IF: ECAN1 1 = Interrupt r 0 = Interrupt r C1RXIF: ECA 1 = Interrupt r 0 = Interrupt r SPI2IF: SPI2	equest has no Event Interru equest has oc equest has no N1 Receive D equest has no Event Interrup	t occurred pt Flag Status I curred t occurred pata Ready Inte curred t occurred of Flag Status b	errupt Flag Sta	tus bit ⁽¹⁾				
bit 2	0 = Interrupt r C1IF: ECAN1 1 = Interrupt r 0 = Interrupt r C1RXIF: ECA 1 = Interrupt r 0 = Interrupt r	equest has no Event Interru equest has no equest has no N1 Receive D equest has no equest has no Event Interrup equest has no	t occurred ot Flag Status I curred t occurred tata Ready Inte curred t occurred ot Flag Status b curred	errupt Flag Sta	tus bit ⁽¹⁾				
bit 2	0 = Interrupt r C1IF: ECAN1 1 = Interrupt r 0 = Interrupt r C1RXIF: ECA 1 = Interrupt r 0 = Interrupt r SPI2IF: SPI2 1 = Interrupt r 0 = Interrupt r	equest has no Event Interru equest has oc equest has no N1 Receive D equest has oc equest has no Event Interrup equest has no equest has no	t occurred ot Flag Status I curred t occurred tata Ready Inte curred t occurred ot Flag Status b curred	errupt Flag Sta it	tus bit ⁽¹⁾				
bit 2 bit 1	0 = Interrupt r C1IF: ECAN1 1 = Interrupt r 0 = Interrupt r C1RXIF: ECA 1 = Interrupt r 0 = Interrupt r SPI2IF: SPI2 1 = Interrupt r 0 = Interrupt r	equest has no Event Interru equest has oc equest has no N1 Receive D equest has no Event Interrup equest has no equest has no 2 Error Interru	t occurred ot Flag Status I curred t occurred ata Ready Inte curred t occurred ot Flag Status b curred t occurred pt Flag Status I	errupt Flag Sta it	tus bit ⁽¹⁾				

REGISTER 6-7: IFS2: INTERRUPT FLAG STATUS REGISTER 2

Note 1: Interrupts disabled on devices without ECAN™ modules

U-0	R/W-0	R/W-0	U-0	U-0	U-0	U-0	U-0	
_	RTCIF	DMA5IF		—	—	—	—	
bit 15							bit 8	
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	
—	—	—	_	_	—	—	—	
bit 7							bit 0	
Legend:								
R = Readable	e bit	W = Writable I	bit	U = Unimplemented bit, read as '0'				
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cleared x = Bit is unknown				
bit 15	Unimplemen	ted: Read as ')'					
bit 14	RTCIF: Real-	Time Clock/Cal	endar Interru	pt Flag Status I	bit			
	1 = Interrupt	request has occ	curred					
	0 = Interrupt I	request has not	occurred					

DMA5IF: DMA Channel 5 Data Transfer Complete Interrupt Flag Status bit

REGISTER 6-8: IFS3: INTERRUPT FLAG STATUS REGISTER 3

1 = Interrupt request has occurred0 = Interrupt request has not occurred

Unimplemented: Read as '0'

bit 13

bit 12-0

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0			
_	—	_	—	—	—	—	—			
bit 15							bit 8			
U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0			
_	C1TXIF ⁽¹⁾	DMA7IF	DMA6IF	CRCIF	U2EIF	U1EIF	_			
bit 7		•	•	· · · · · · · · · · · · · · · · · · ·			bit (
Legend:										
R = Readab	le bit	W = Writable	bit	U = Unimplen	nented bit, read	1 as '0'				
-n = Value a	It POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkno	own			
bit 15-7	Unimplomon	tod: Road as '	o '							
bit 6	=	Unimplemented: Read as '0'								
	C1TXIF: ECAN1 Receive Data Ready Interrupt Flag Status bit ⁽¹⁾ 1 = Interrupt request has occurred									
	0 = Interrupt request has not occurred									
bit 5		DMA7IF: DMA Channel 7 Data Transfer Complete Interrupt Flag Status bit								
	1 = Interrupt request has occurred									
	0 = Interrupt request has not occurred									
bit 4	DMA6IF: DMA Channel 6 Data Transfer Complete Interrupt Flag Status bit									
	1 = Interrupt request has occurred									
	0 = Interrupt request has not occurred									
bit 3	CRCIF: CRC Generator Interrupt Flag Status bit									
	1 = Interrupt request has occurred									
bit 2		0 = Interrupt request has not occurred								
		U2EIF: UART2 Error Interrupt Flag Status bit 1 = Interrupt request has occurred								
	0 = Interrupt request has not occurred									
bit 1	U1EIF: UART	1 Error Interru	pt Flag Status	bit						
		equest has oc	•							
	0 = Interrupt r	equest has no	t occurred							
bit 0	Unimplemen	ted: Read as '	0'							

REGISTER 6-9: IFS4: INTERRUPT FLAG STATUS REGISTER 4

Note 1: Interrupts disabled on devices without ECAN[™] modules.

REGISTER 6-10: IEC0: INTERRUPT ENABLE CONTROL REGISTER 0										
U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
_	DMA1IE	AD1IE	U1TXIE	U1RXIE	SPI1IE	SPI1EIE	T3IE			
bit 15	·	·			•	·	bit 8			
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
T2IE	OC2IE	IC2IE	DMA0IE	T1IE	OC1IE	IC1IE	INTOIE			
bit 7							bit C			
Legend:										
R = Readable	bit	W = Writable	bit	U = Unimpler	mented bit, rea	ad as '0'				
-n = Value at I		'1' = Bit is se		'0' = Bit is cle		x = Bit is unkn	own			
			·							
bit 15	Unimplemer	ted: Read as	0'							
bit 14	DMA1IE: DM	1A Channel 1 D	ata Transfer C	omplete Interi	rupt Enable bit	:				
		request enable request not en								
bit 13	AD1IE: ADC	1 Conversion C	Complete Interr	upt Enable bit						
		request enable request not en								
bit 12	U1TXIE: UART1 Transmitter Interrupt Enable bit									
	•	request enable request not en								
bit 11	U1RXIE: UART1 Receiver Interrupt Enable bit									
	•	request enable request not en								
bit 10	-	SPI1IE: SPI1 Event Interrupt Enable bit								
		request enable request not en								
bit 9	SPI1EIE: SP	SPI1EIE: SPI1 Error Interrupt Enable bit								
		request enable request not en								
bit 8	T3IE: Timer3 Interrupt Enable bit									
	1 = Interrupt request enabled 0 = Interrupt request not enabled									
bit 7	T2IE: Timer2	Interrupt Enab	le bit							
		request enable request not en								
bit 6	OC2IE: Outp	ut Compare Cl	nannel 2 Interru	upt Enable bit						
	1 = Interrupt	request enable request not en	d							
bit 5	•	Capture Chanr		Enable bit						
	1 = Interrupt	request enable request not en	d							
bit 4	-	-		omplete Interi	rupt Enable bit					
DIL 4	1 = Interrupt	DMA0IE: DMA Channel 0 Data Transfer Complete Interrupt Enable bit 1 = Interrupt request enabled								
	0 = Interrupt request enabled									
bit 3	-	Interrupt Enab								

REGISTER 6-10: IEC0: INTERRUPT ENABLE CONTROL REGISTER 0

REGISTER 6-10: IEC0: INTERRUPT ENABLE CONTROL REGISTER 0 (CONTINUED)

bit 2	OC1IE: Output Compare Channel 1 Interrupt Enable bit 1 = Interrupt request enabled
	0 = Interrupt request not enabled
bit 1	IC1IE: Input Capture Channel 1 Interrupt Enable bit
	1 = Interrupt request enabled0 = Interrupt request not enabled
bit 0	INTOIE: External Interrupt 0 Flag Status bit
	1 = Interrupt request enabled0 = Interrupt request not enabled

REGISTER	6-11: IEC1:	INTERRUPT	ENABLE C	ONTROL RE	GISTER 1					
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
U2TXIE	U2RXIE	INT2IE	T5IE	T4IE	OC4IE	OC3IE	DMA2IE			
bit 15							bit 8			
R/W-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
IC8IE	IC7IE		INT1IE	CNIE	CMIE	MI2C1IE	SI2C1IE			
bit 7							bit 0			
Legend:										
R = Readable	e bit	W = Writable	bit	U = Unimpler	mented bit, rea	d as '0'				
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle		x = Bit is unkr	nown			
bit 15	U2TXIE: UA	RT2 Transmitte	r Interrupt Ena	able bit						
		request enable								
	•	request not ena								
bit 14		RT2 Receiver I		le bit						
		request enable								
bit 13	-	0 = Interrupt request not enabled								
		INT2IE: External Interrupt 2 Enable bit 1 = Interrupt request enabled								
	0 = Interrupt request on abled									
bit 12	T5IE: Timer5 Interrupt Enable bit									
		request enable request not ena								
bit 11	T4IE: Timer4	T4IE: Timer4 Interrupt Enable bit								
	 1 = Interrupt request enabled 0 = Interrupt request not enabled 									
1 11 4 0	•	•								
bit 10	-	OC4IE: Output Compare Channel 4 Interrupt Enable bit								
	 1 = Interrupt request enabled 0 = Interrupt request not enabled 									
bit 9	OC3IE: Outp	OC3IE: Output Compare Channel 3 Interrupt Enable bit								
	•	request enable request not ena								
bit 8	DMA2IE: DN	DMA2IE: DMA Channel 2 Data Transfer Complete Interrupt Enable bit								
	1 = Interrupt request enabled									
1.11.7	•	0 = Interrupt request not enabled								
bit 7	•	IC8IE: Input Capture Channel 8 Interrupt Enable bit								
	•	 1 = Interrupt request enabled 0 = Interrupt request not enabled 								
bit 6	•	Capture Chann		Enable bit						
		request enable request not enable								
bit 5	-	nted: Read as '								
bit 4	-	ernal Interrupt 1								
		request enable								
	-	request not ena								
bit 3	-	Change Notifica	-	Enable bit						
	•	request enable request not enable								
		request not ena								

REGISTER 6-11: IEC1: INTERRUPT ENABLE CONTROL REGISTER 1

REGISTER 6-11: IEC1: INTERRUPT ENABLE CONTROL REGISTER 1 (CONTINUED)

bit 2	CMIE: Comparator Interrupt Enable bit
	1 = Interrupt request enabled
	0 = Interrupt request not enabled
bit 1	MI2C1IE: I2C1 Master Events Interrupt Enable bit
	1 = Interrupt request enabled
	0 = Interrupt request not enabled
bit 0	SI2C1IE: I2C1 Slave Events Interrupt Enable bit
	1 = Interrupt request enabled
	0 = Interrupt request not enabled

REGISTER 6-12: IEC2: INTERRUPT ENABLE CONTROL REGISTER 2									
U-0	R/W-0	R/W-0	U-0	U-0	U-0	U-0	U-0		
—	DMA4IE	PMPIE	—	—	—	—	—		
bit 15							bit		
U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
_	_	_	DMA3IE	C1IE ⁽¹⁾	C1RXIE ⁽¹⁾	SPI2IE	SPI2EIE		
bit 7							bit		
Legend:									
R = Readable	e bit	W = Writable	bit	U = Unimpler	mented bit, read	as '0'			
-n = Value at I	POR	'1' = Bit is se	t	'0' = Bit is cle	ared	x = Bit is unk	nown		
bit 13 bit 12-5	DMA4IE: DMA Channel 4 Data Transfer Complete Interrupt Enable bit I = Interrupt request enabled Interrupt request not enabled PMPIE: Parallel Master Port Interrupt Enable bit I = Interrupt request enabled I = Interrupt request not enabled 								
bit 4	Unimplemented: Read as '0'								
bit 3	 DMA3IE: DMA Channel 3 Data Transfer Complete Interrupt Enable bit 1 = Interrupt request enabled 0 = Interrupt request has enabled C1IE: ECAN1 Event Interrupt Enable bit⁽¹⁾ 								
	1 = Interrupt request enabled 0 = Interrupt request not enabled								
bit 2	C1RXIE: EC/	AN1 Receive D	ata Ready Inte	errupt Enable I	oit ⁽¹⁾				
		request enable request not en							
bit 1	1 = Interrupt 0 = Interrupt	Event Interrup request enable request not en	d abled						
bit 0	1 = Interrupt	I2 Error Interru request enable request not en	d						

REGISTER 6-12: IEC2: INTERRUPT ENABLE CONTROL REGISTER 2

Note 1: Interrupts disabled on devices without ECAN™ modules

© 2008 Microchip Technology Inc.

R/W-0 RTCIE	R/W-0 DMA5IE	U-0	U-0	U-0	U-0	U-0
RTCIE	DMA5IE					
			—	—	—	—
						bit 8
U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	-	—	_		—
						bit 0
R = Readable bit W = Writable b		bit	U = Unimplemented bit, read as '0'			
-n = Value at POR '1' = Bit is set			'0' = Bit is cle	ared	x = Bit is unknown	
Unimplemen	ted: Read as ')'				
RTCIE: Real-	Time Clock/Ca	lendar Interrup	ot Enable bit			
1 = Interrupt request enabled						
		 — — — bit W = Writable I DR '1' = Bit is set Unimplemented: Read as '0 RTCIE: Real-Time Clock/Cal 1 = Interrupt request enabled 	— — — bit W = Writable bit DR '1' = Bit is set Unimplemented: Read as '0' RTCIE: Real-Time Clock/Calendar Interrup	— — — — bit W = Writable bit U = Unimpler DR '1' = Bit is set '0' = Bit is cle Unimplemented: Read as '0' RTCIE: Real-Time Clock/Calendar Interrupt Enable bit 1 = Interrupt request enabled	— … …	

bit 13 DMA5IE: DMA Channel 5 Data Transfer Complete Interrupt Enable bit

1 =	Interrupt re	quest enabled
-----	--------------	---------------

0 = Interrupt request not enabled

bit 12-0 Unimplemented: Read as '0'

REGISTER 6-14:	IEC4: INTERRUPT ENABLE CONTROL REGISTER 4
----------------	---

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0				
_	—	—	—	_	—	—					
bit 15							bit 8				
U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0				
	C1TXIE ⁽¹⁾	DMA7IE	DMA6IE	CRCIE	U2EIE	U1EIE	_				
bit 7							bit (
Legend:											
R = Readabl	le bit	W = Writable	bit	U = Unimpler	nented bit, read	as '0'					
-n = Value at	t POR	'1' = Bit is set		'0' = Bit is cleared		x = Bit is unknown					
bit 15-7	Unimplemen	ted: Read as '	0'								
bit 6	•			rrupt Enable b	_{iit} (1)						
	C1TXIE: ECAN1 Receive Data Ready Interrupt Enable bit ⁽¹⁾ 1 = Interrupt request occurred 0 = Interrupt request not occurred										
bit 5	DMA7IE: DM	A Channel 7 D	ata Transfer C	omplete Interr	upt Enable bit						
		equest enable									
	0 = Interrupt r	equest not ena	abled								
bit 4	DMA6IE: DM	A6IE: DMA Channel 6 Data Transfer Complete Interrupt Enable bit									
	 1 = Interrupt request enabled 0 = Interrupt request not enabled 										
	•	•									
bit 3		Generator Inte	•	oit							
	 I = Interrupt request enabled Interrupt request not enabled 										
		•									
	UZEIE. UARI	U2EIE: UART2 Error Interrupt Enable bit									
bit 2	1 – Interrupt r	oquest enable	 I = Interrupt request enabled 0 = Interrupt request not enabled 								
DIT 2											
	0 = Interrupt r	equest not ena	abled								
bit 2 bit 1	0 = Interrupt r U1EIE: UART	equest not ena 1 Error Interru	abled pt Enable bit								
	0 = Interrupt r U1EIE: UART 1 = Interrupt r	equest not ena	abled pt Enable bit d								

Note 1: Interrupts disabled on devices without ECAN[™] modules.

© 2008 Microchip Technology Inc.

		D (1)(2)	D # * * *		D		D			
U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0			
		T1IP<2:0>				OC1IP<2:0>				
bit 15							bit			
U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0			
		IC1IP<2:0>		—		INT0IP<2:0>				
bit 7							bit			
Legend:										
R = Readabl	e bit	W = Writable b	oit	U = Unimple	mented bit, rea	ad as '0'				
-n = Value at		'1' = Bit is set		'0' = Bit is cle		x = Bit is unkn	own			
bit 15	Unimpleme	ented: Read as '0)'							
bit 14-12	T1IP<2:0>:	Timer1 Interrupt	Priority bits							
	111 = Interr	111 = Interrupt is priority 7 (highest priority interrupt)								
	•									
	•									
	001 = Interr	upt is priority 1								
		upt source is disa	abled							
bit 11	Unimpleme	Unimplemented: Read as '0'								
bit 10-8	OC1IP<2:0	DC1IP<2:0>: Output Compare Channel 1 Interrupt Priority bits								
	111 = Interr	rupt is priority 7 (h	nighest priori	ty interrupt)						
	•									
	•									
		upt is priority 1 upt source is disa	abled							
bit 7	Unimpleme	ented: Read as 'o)'							
bit 6-4	IC1IP<2:0>	: Input Capture C	hannel 1 Int	errupt Priority b	oits					
	111 = Interrupt is priority 7 (highest priority interrupt)									
	•									
	•									
		upt is priority 1 upt source is disa	abled							
bit 3		ented: Read as '0								
bit 2-0	-	>: External Interr		/ bits						
		rupt is priority 7 (h								
	•									
	•									
	• 001 = Interr	upt is priority 1								
		Secto priority 1								

- -_ _

REGISTER 6-16:	IPC1: INTERRUPT PRIORITY CONTROL REGISTER 1

U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0			
_		T2IP<2:0>				OC2IP<2:0>				
bit 15							bit			
U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0			
_		IC2IP<2:0>	1011 0	_		DMA0IP<2:0>	10110			
bit 7					I		bit			
Legend:										
R = Readable bit		W = Writable bit		U = Unimplei						
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unkn	own			
bit 15	Unimplomo	nted: Read as 'o	,							
bit 14-12	-	Timer2 Interrupt								
		upt is priority 7 (h	-	tv interrupt)						
	•		5	5						
	•									
	• 001 = Interr	01 = Interrupt is priority 1								
		upt source is disa	abled							
bit 11	Unimpleme	nted: Read as '0)'							
bit 10-8	OC2IP<2:0>	OC2IP<2:0>: Output Compare Channel 2 Interrupt Priority bits								
	111 = Interr	upt is priority 7 (h	nighest priori	ty interrupt)						
	•									
	•									
		upt is priority 1 upt source is disa	abled							
bit 7	Unimpleme	nted: Read as '0)'							
bit 6-4	IC2IP<2:0>	: Input Capture C	hannel 2 Int	errupt Priority b	oits					
	111 = Interrupt is priority 7 (highest priority interrupt)									
	•									
	•									
		upt is priority 1 upt source is disa	abled							
bit 3		nted: Read as '0								
bit 2-0	-	0>: DMA Channe		Insfer Complete	e Interrupt Prior	ity bits				
		upt is priority 7 (r			·	2				
	•									
	•									
	001 = Interr	upt is priority 1								

U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0		
_		U1RXIP<2:0>		_		SPI1IP<2:0>			
bit 15						2.0	bit		
U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0		
		SPI1EIP<2:0>		_		T3IP<2:0>			
bit 7							bit		
Legend:									
R = Readable	e bit	W = Writable b	oit	U = Unimple	mented bit, rea	ad as '0'			
-n = Value at		'1' = Bit is set		'0' = Bit is cle		x = Bit is unkn	own		
bit 15	Unimpleme	ented: Read as '0)'						
bit 14-12	U1RXIP<2:	0>: UART1 Rece	iver Interrup	t Priority bits					
	111 = Interi	rupt is priority 7 (h	nighest priori	ty interrupt)					
	•								
	•								
		rupt is priority 1							
	000 = Inter	rupt source is disa	abled						
bit 11	Unimplemented: Read as '0'								
bit 10-8		PI1IP<2:0>: SPI1 Event Interrupt Priority bits 11 = Interrupt is priority 7 (highest priority interrupt)							
	111 = Interi	rupt is priority 7 (h	nighest priori	ty interrupt)					
	•								
	•								
		rupt is priority 1	blod						
hit 7		rupt source is disa							
bit 7 bit 6-4	-	ented: Read as '0		ity hito					
DIL 0-4		SPI1EIP<2:0>: SPI1 Error Interrupt Priority bits 111 = Interrupt is priority 7 (highest priority interrupt)							
	•		lightest phon	ty interrupt)					
	•								
	• 001 – Inter	rupt is priority 1							
		rupt source is disa	abled						
bit 3		ented: Read as '0							
bit 2-0	T3IP<2:0>:	Timer3 Interrupt	Priority bits						
	111 = Interi	rupt is priority 7 (h	nighest priori	ty interrupt)					
	•								
	•								
	001 = Inter i	rupt is priority 1							
		rupt source is disa	hlad						

- -

REGISTER 6-18: IPC3: INTERRUPT PRIORITY CONTROL REGISTER 3

U-0	U-0	U-0	U-0	U-0	R/W-1	R/W-0	R/W-0	
—	—	—		—		DMA1IP<2:0>		
oit 15							bit 8	
U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0	
—		AD1IP<2:0>		—		U1TXIP<2:0>		
bit 7							bit (
Legend:								
R = Readat	ole bit	W = Writable b	oit	U = Unimpler	nented bit, re	ad as '0'		
-n = Value a	at POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown	
bit 15 11	Unimplomon	tad: Dood on to	,					
bit 15-11	-	ted: Read as '0						
bit 10-8		>: DMA Channe		•	Interrupt Pric	ority bits		
	111 = Interru	pt is priority 7 (h	ighest priority	y interrupt)				
	•							
	•							
	001 = Interru	pt is priority 1						
		pt source is disa	bled					
bit 7	Unimplemen	ted: Read as '0	,					
bit 6-4	AD1IP<2:0>:	ADC1 Conversi	ion Complete	e Interrupt Prior	rity bits			
			-	AD1IP<2:0>: ADC1 Conversion Complete Interrupt Priority bits 111 = Interrupt is priority 7 (highest priority interrupt)				
	•		• •					
				y meen apty				
	•			, monapt)				
	•	at in a single of the d		y monapty				
	• 001 = Interru		bled	,				
hit 2	000 = Interru	pt source is disa		, monopt)				
	000 = Interru Unimplemen	pt source is disanted: Read as '0	,					
bit 3 bit 2-0	000 = Interru Unimplemen U1TXIP<2:0>	pt source is disa ted: Read as '0 •: UART1 Trans	, mitter Interru	pt Priority bits				
	000 = Interru Unimplemen U1TXIP<2:0>	pt source is disanted: Read as '0	, mitter Interru	pt Priority bits				
	000 = Interru Unimplemen U1TXIP<2:0>	pt source is disa ted: Read as '0 •: UART1 Trans	, mitter Interru	pt Priority bits				
	000 = Interru Unimplemen U1TXIP<2:0>	pt source is disa ted: Read as '0 •: UART1 Trans	, mitter Interru	pt Priority bits				
	000 = Interru Unimplemen U1TXIP<2:0> 111 = Interru • • • 001 = Interru	pt source is disa ited: Read as '0 : UART1 Transi pt is priority 7 (h	, mitter Interru ighest priorit	pt Priority bits				

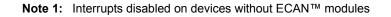
U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0			
		CNIP<2:0>	1011 0			CMIP<2:0>				
bit 15		2.0				0 2.0	bit			
U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0			
		MI2C1IP<2:0>				SI2C1IP<2:0>				
bit 7							bit			
Legend:										
R = Readab	le bit	W = Writable b	oit	U = Unimpler	mented bit, rea	ad as '0'				
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkn	own			
bit 15	Unimplem	ented: Read as '0)'							
bit 14-12	CNIP<2:0>	CNIP<2:0>: Change Notification Interrupt Priority bits								
	111 = Inter	11 = Interrupt is priority 7 (highest priority interrupt)								
	•									
	•									
	001 = Inter	rrupt is priority 1								
		rrupt source is disa	abled							
bit 11	Unimplem	Unimplemented: Read as '0'								
bit 10-8	CMIP<2:0	MIP<2:0>: Comparator Interrupt Priority bits								
	111 = Inter	rrupt is priority 7 (h	nighest priori	ty interrupt)						
	•									
	•									
	001 = Inter	rrupt is priority 1								
		rrupt source is disa	abled							
bit 7	Unimplem	ented: Read as '0)'							
bit 6-4	MI2C1IP<2	2:0>: I2C1 Master	Events Inter	rupt Priority bits	3					
	111 = Inter	111 = Interrupt is priority 7 (highest priority interrupt)								
	•									
	•									
	001 = Inter	rrupt is priority 1								
		rrupt source is disa	abled							
bit 3	Unimplem	ented: Read as '0)'							
bit 2-0	SI2C1IP<2	::0>: I2C1 Slave E	vents Interru	upt Priority bits						
	111 = Inte	rrupt is priority 7 (h	nighest priori	ity interrupt)						
	•									
	•									
	001 = Inte	rrupt is priority 1								
		rrupt source is disa								

~ 10 18.1

REGISTER 0-20. IFCS. INTERRUFT FRIORITT CONTROL REGISTER 3	REGISTER 6-20:	IPC5: INTERRUPT PRIORITY CONTROL REGISTER 5
--	----------------	--

U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0
_		IC8IP<2:0>		—		IC7IP<2:0>	
pit 15							bit 8
U-0	U-1	U-0	U-0	U-0	R/W-1	R/W-0	R/W-0
_			_	_		INT1IP<2:0>	
bit 7				•			bit (
Legend:							
R = Readab	le bit	W = Writable	bit	U = Unimpler	mented bit, re	ad as '0'	
-n = Value a	n = Value at POR '1' = Bit is set			'0' = Bit is cle	ared	x = Bit is unkn	own
bit 11	• • 001 = Interru 000 = Interru	upt is priority 7 (upt is priority 1 upt source is dis nted: Read as 'i	abled	y interrupt)			
bit 10-8	111 = Interru • • 001 = Interru	Input Capture C upt is priority 7 (I upt is priority 1 upt source is dis	highest priorit	• •	its		
bit 7-3	Unimpleme	nted: Read as '	כי				
bit 2-0		: External Interr upt is priority 7 (I					

REGISTER	6-21: IPC	6: INTERRUPT	PRIORITY	CONTROL R	EGISTER 6		
U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0
_		T4IP<2:0>		—		OC4IP<2:0>	
bit 15							bit 8
U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0
_		OC3IP<2:0>	1011 0	-		DMA2IP<2:0>	
bit 7							bit (
Legend:							
R = Readabl	e bit	W = Writable I	bit	U = Unimplei	mented bit, rea	ad as '0'	
-n = Value at	= Value at POR '1' = Bit is set				eared	x = Bit is unkno	own
bit 15	Unimplem	ented: Read as ')'				
bit 14-12	T4IP<2:0>	: Timer4 Interrupt	Priority bits				
	111 = Inte	rrupt is priority 7 (h	nighest priori	ity interrupt)			
	•						
	•						
	001 = Inte	rrupt is priority 1					
	000 = Inte	rrupt source is disa	abled				
bit 11	Unimplem	ented: Read as '0)'				
bit 10-8		D>: Output Compa		=	rity bits		
	111 = Inte	rrupt is priority 7 (h	nighest priori	ity interrupt)			
	•						
	•						
		rrupt is priority 1 rrupt source is disa	abled				
bit 7	Unimplem	ented: Read as ')'				
bit 6-4	OC3IP<2:0)>: Output Compa	re Channel	3 Interrupt Prior	rity bits		
	111 = Inte	rrupt is priority 7 (ł	nighest priori	ity interrupt)			
	•						
	•						
		rrupt is priority 1 rrupt source is disa	abled				
bit 3	Unimplem	ented: Read as ')'				
bit 2-0	DMA2IP<2	2:0>: DMA Channe	el 2 Data Tra	ansfer Complete	e Interrupt Prio	rity bits	
	111 = Inte	rrupt is priority 7 (h	nighest priori	ity interrupt)			
	•						
	•						
		rrupt is priority 1					
	000 = Inte	rrupt source is disa	abled				


DECISTED 6-21. IDCA. INTERDURT DRIADITY CONTROL DECISTED A

REGISTER 6-22: IPC7: INTERRUPT PRIORITY CONTROL REGISTER 7

U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0					
_		U2TXIP<2:0>		—		U2RXIP<2:0>						
bit 15	•						bit 8					
U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0					
_		INT2IP<2:0>				T5IP<2:0>						
bit 7							bit (
Legend:												
R = Readabl	le bit	W = Writable	bit	U = Unimpler	mented bit, rea	d as '0'						
-n = Value at	t POR	'1' = Bit is set		'0' = Bit is cle		x = Bit is unkr	iown					
bit 15	-	ented: Read as '										
bit 14-12		0>: UART2 Trans rupt is priority 7 (I										
	•											
	•	•										
		001 = Interrupt is priority 1 000 = Interrupt source is disabled										
L:1 44		-										
bit 11	Unimplemented: Read as '0'											
bit 10-8		U2RXIP<2:0>: UART2 Receiver Interrupt Priority bits 111 = Interrupt is priority 7 (highest priority interrupt)										
		rupt is priority 7 (i	nignest priori	ty interrupt)								
	•											
	•											
		rupt is priority 1										
		rupt source is dis										
bit 7	-	ented: Read as '										
bit 6-4		>: External Interr	-									
	111 = Interr	rupt is priority 7 (I	nighest priori	ty interrupt)								
	•											
	•											
		rupt is priority 1 rupt source is dis	abled									
bit 3	Unimpleme	ented: Read as ')'									
bit 2-0	T5IP<2:0>:	Timer5 Interrupt	Priority bits									
		rupt is priority 7 (I	-	ty interrupt)								
	•											
	• 001 = Interr	rupt is priority 1										

R/W-1						
	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0
	C1IP<2:0> ⁽¹⁾				C1RXIP<2:0> ⁽¹⁾	
						bit
R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0
	SPI2IP<2:0>		—		SPI2EIP<2:0>	
						bit
bit	W = Writable b	it	U = Unimple	mented bit, re	ead as '0'	
POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unknov	wn
Unimpleme	ented: Read as '0'	,				
-			ity bits ⁽¹⁾			
•			- • /			
•						
• 001 = Interr	runt is priority 1					
		bled				
	-					
-			ady Interrupt Pi	riority bits ⁽¹⁾		
•						
•						
• 001 = Interr	rupt is priority 1					
		bled				
Unimpleme	ented: Read as '0'					
SPI2IP<2:0	>: SPI2 Event Inte	errupt Priorit	ty bits			
111 = Interr	rupt is priority 7 (hi	ighest priori	ty interrupt)			
•						
•						
• 001 = Interr	rupt is priority 1					
		bled				
Unimpleme	ented: Read as '0'	,				
-			ity bits			
		-	-			
•		-				
•						
• 001 = Interr	rupt is priority 1					
		bled				
	bit POR Unimpleme C1IP<2:0>: 111 = Intern 001 = Intern 000 = Intern Unimpleme C1RXIP<2: 111 = Intern 001 = Intern 000 = Intern Unimpleme SPI2IP<2:0 111 = Intern 001 = Intern 000 = Intern Unimpleme SPI2EIP<2: 111 = Intern 001 = Intern 000 = Intern 001 = Intern	SPI2IP<2:0> bit W = Writable b POR '1' = Bit is set Unimplemented: Read as '0 C1IP<2:0>: ECAN1 Event Int 111 = Interrupt is priority 7 (h	SPI2IP<2:0> bit W = Writable bit 'OR '1' = Bit is set Unimplemented: Read as '0' C1IP<2:0>: ECAN1 Event Interrupt Priori 111 = Interrupt is priority 1 001 = Interrupt is priority 1 000 = Interrupt source is disabled Unimplemented: Read as '0' C1RXIP<2:0>: ECAN1 Receive Data Reation 111 = Interrupt is priority 1 000 = Interrupt source is disabled Unimplemented: Read as '0' SPI2IP<2:0>: SPI2 Event Interrupt Priori 111 = Interrupt is priority 1 000 = Interrupt is priority 7 (highest priori 001 = Interrupt is priority 7 (highest priori 001 = Interrupt is priority 7 (highest priori 001 = Interrupt is priority 1 000 = Interrupt source is disabled Unimplemented: Read as '0' SPI2EIP<2:0>: SPI2 Event Interrupt Priori <t< td=""><td>SPI2IP<2:0> — bit W = Writable bit U = Unimple 'OR '1' = Bit is set '0' = Bit is cle Unimplemented: Read as '0' C1IP<2:0>: ECAN1 Event Interrupt Priority bits⁽¹⁾ 111 = Interrupt is priority 7 (highest priority interrupt) . 001 = Interrupt is priority 1 000 = Interrupt source is disabled Unimplemented: Read as '0' C1RXIP<2:0>: ECAN1 Receive Data Ready Interrupt Pri 111 = Interrupt is priority 7 (highest priority interrupt) . 001 = Interrupt source is disabled Unimplemented: Read as '0' SPI2IP<2:0>: SPI2 Event Interrupt Priority bits 111 = Interrupt is priority 7 (highest priority interrupt) . .</td><td>SPI2IP<2:0> </td><td>SPI2IP<2:0> </td></t<>	SPI2IP<2:0> — bit W = Writable bit U = Unimple 'OR '1' = Bit is set '0' = Bit is cle Unimplemented: Read as '0' C1IP<2:0>: ECAN1 Event Interrupt Priority bits ⁽¹⁾ 111 = Interrupt is priority 7 (highest priority interrupt) . 001 = Interrupt is priority 1 000 = Interrupt source is disabled Unimplemented: Read as '0' C1RXIP<2:0>: ECAN1 Receive Data Ready Interrupt Pri 111 = Interrupt is priority 7 (highest priority interrupt) . 001 = Interrupt source is disabled Unimplemented: Read as '0' SPI2IP<2:0>: SPI2 Event Interrupt Priority bits 111 = Interrupt is priority 7 (highest priority interrupt) . .	SPI2IP<2:0>	SPI2IP<2:0>

REGISTER 6-23: IPC8: INTERRUPT PRIORITY CONTROL REGISTER 8

REGISTER 6-24: IPC9: INTERRUPT PRIORITY CONTROL REGISTER 9

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
	—	—			—	—	—
bit 15							bit 8
U-0	U-0	U-0	U-0	U-0	R/W-1	R/W-0	R/W-0
_	—	—	_	_		DMA3IP<2:0>	
bit 7		·					bit 0
Legend:							
R = Readable bit W = Writable bit			bit	U = Unimplemented bit, read as '0'			
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is cle	•		

bit 15-3 Unimplemented: Read as '0'

bit 2-0 DMA3IP<2:0>: DMA Channel 3 Data Transfer Complete Interrupt Priority bits

111 = Interrupt is priority 7 (highest priority interrupt)

•

.

001 = Interrupt is priority 1

000 = Interrupt source is disabled

U-0	U-0	U-0	U-0	U-0	R/W-1	R/W-0	R/W-0
	—			—	DMA4IP<2:0>		
bit 15							bit
U-0	R/W-1	R/W-0	R/W-0	U-0	U-0	U-0	U-0
		PMPIP<2:0>	1011 0		_		_
bit 7							bit
Legend:							
R = Readable bit W = Writable bit			U = Unimplemented bit, read as '0'				
-n = Value a	-n = Value at POR '1' = Bit is set		:	'0' = Bit is cleared		x = Bit is unknown	
bit 10-8	111 = Intern • • • • •	DMA Chann upt is priority 7 (upt is priority 1 upt source is dis	highest priori	•	interrupt Phon	iy dits	
bit 7	Unimpleme	nted: Read as '	0'				
bit 6-4		 Parallel Master upt is priority 7 (

REGISTER 6-25: IPC11: INTERRUPT PRIORITY CONTROL REGISTER 11

bit 3-0

Unimplemented: Read as '0'

REGISTER 6-26: IPC15: INTERRUPT PRIORITY CONTROL REGISTER 15

U-0	U-0	U-0	U-0	U-0	R/W-1	R/W-0	R/W-0
_	_	_		_		RTCIP<2:0>	
bit 15		•					bit 8
U-0	R/W-1	R/W-0	R/W-0	U-0	U-0	U-0	U-0
_		DMA5IP<2:0>		—	<u> </u>	<u> </u>	
bit 7							bit C
Legend:							
R = Readabl	e bit	W = Writable	bit	U = Unimple	mented bit, rea	id as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cl	eared	x = Bit is unkn	own
	• • 001 = Interr	upt is priority 7 (upt is priority 1 upt source is dis		ty interrupt)			
bit 7	Unimpleme	ented: Read as '	0'				
bit 6-4	111 = Interr • • 001 = Interr	0>: DMA Chann upt is priority 7 (upt is priority 1 upt source is dis	highest prioril	-	e Interrupt Prio	rity bits	
bit 3-0		ented: Read as '					

U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0				
—		CRCIP<2:0>				U2EIP<2:0>					
bit 15							bit				
U-0	R/W-1	R/W-0	R/W-0	U-0	U-0	U-0	U-0				
		U1EIP<2:0>		—		—	_				
bit 7							bit				
Legend:											
R = Readab	ole bit	W = Writable b	oit	U = Unimpler	nented bit, read	d as '0'					
-n = Value a	It POR	'1' = Bit is set		'0' = Bit is cle		x = Bit is unkn	own				
bit 15	Unimpleme	Unimplemented: Read as '0'									
bit 14-12	CRCIP<2:0>	CRC Generator	or Error Inter	rupt Flag Priorit	y bits						
	111 = Interro	111 = Interrupt is priority 7 (highest priority interrupt)									
	•										
	•										
	• • • 001 = Intern	unt is priority 1									
		upt is priority 1 upt source is disa	abled								
bit 11	000 = Interro	upt source is disa									
	000 = Intern Unimpleme	upt source is disa nted: Read as '0)'	itv bits							
bit 11 bit 10-8	000 = Intern Unimpleme U2EIP<2:0>	upt source is disa nted: Read as '0 : UART2 Error Ir)' nterrupt Prior	•							
	000 = Intern Unimpleme U2EIP<2:0>	upt source is disa nted: Read as '0)' nterrupt Prior	•							
	000 = Intern Unimpleme U2EIP<2:0>	upt source is disa nted: Read as '0 : UART2 Error Ir)' nterrupt Prior	•							
	000 = Intern Unimpleme U2EIP<2:0> 111 = Intern • •	upt source is disa nted: Read as 'o UART2 Error Ir upt is priority 7 (h)' nterrupt Prior	•							
	000 = Intern Unimpleme U2EIP<2:0> 111 = Intern • • • 001 = Intern	upt source is disa nted: Read as 'co UART2 Error Ir upt is priority 7 (h upt is priority 1	₎ ' nterrupt Prior nighest priori	•							
bit 10-8	000 = Intern Unimpleme U2EIP<2:0> 111 = Intern	upt source is disa inted: Read as 'C : UART2 Error Ir upt is priority 7 (h upt is priority 1 upt source is disa	₎ , nterrupt Prior nighest priori abled	•							
bit 10-8 bit 7	000 = Intern Unimpleme U2EIP<2:0> 111 = Intern	upt source is disa nted: Read as '0 : UART2 Error Ir upt is priority 7 (h upt is priority 1 upt source is disa inted: Read as '0)' hterrupt Prior highest priori abled	ty interrupt)							
	000 = Intern Unimpleme U2EIP<2:0> 111 = Intern • • 001 = Intern 000 = Intern Unimpleme U1EIP<2:0>	upt source is disa inted: Read as '0 : UART2 Error Ir upt is priority 7 (f upt is priority 1 upt source is disa inted: Read as '0 : UART1 Error Ir)' hterrupt Prior highest priori abled)' hterrupt Prior	ty interrupt)							
bit 10-8 bit 7	000 = Intern Unimpleme U2EIP<2:0> 111 = Intern • • 001 = Intern 000 = Intern Unimpleme U1EIP<2:0>	upt source is disa nted: Read as '0 : UART2 Error Ir upt is priority 7 (h upt is priority 1 upt source is disa inted: Read as '0)' hterrupt Prior highest priori abled)' hterrupt Prior	ty interrupt)							
bit 10-8 bit 7	000 = Intern Unimpleme U2EIP<2:0> 111 = Intern • • 001 = Intern 000 = Intern Unimpleme U1EIP<2:0>	upt source is disa inted: Read as '0 : UART2 Error Ir upt is priority 7 (f upt is priority 1 upt source is disa inted: Read as '0 : UART1 Error Ir)' hterrupt Prior highest priori abled)' hterrupt Prior	ty interrupt)							
bit 10-8 bit 7	000 = Intern Unimpleme U2EIP<2:0> 111 = Intern • • 001 = Intern 000 = Intern Unimpleme U1EIP<2:0>	upt source is disa inted: Read as '0 : UART2 Error Ir upt is priority 7 (f upt is priority 1 upt source is disa inted: Read as '0 : UART1 Error Ir)' hterrupt Prior highest priori abled)' hterrupt Prior	ty interrupt)							
bit 10-8 bit 7	000 = Intern Unimpleme U2EIP<2:0> 111 = Intern 001 = Intern 000 = Intern Unimpleme U1EIP<2:0> 111 = Intern 001 = Intern	upt source is disa inted: Read as '0 : UART2 Error Ir upt is priority 7 (f upt is priority 1 upt source is disa inted: Read as '0 : UART1 Error Ir	^{)'} nterrupt Prior nighest priori abled ^{)'} nterrupt Prior nighest priori	ty interrupt)							

~ . D 40

Unimplemented: Read as '0' bit 3-0

REGISTER 6-28: IPC17: I	NTERRUPT PRIORITY CONTROL REGISTER 17
-------------------------	---------------------------------------

U-0	U-0	U-0	U-0	U-0	R/W-1	R/W-0	R/W-0
_	—	—	_	—		C1TXIP<2:0> ⁽¹⁾	
bit 15							bit
U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0
_		DMA7IP<2:0>				DMA6IP<2:0>	
bit 7							bit
Legend:							
R = Readab	ole bit	W = Writable I	oit	U = Unimpler	mented bit, read	d as '0'	
-n = Value a	n = Value at POR '1' = Bit is set			'0' = Bit is cle		x = Bit is unkr	nown
bit 15-11	Unimplemer	ited: Read as ')'				
bit 10-8	C1TXIP<2:0	-: ECAN1 Trans	smit Data Re	quest Interrupt	Priority bits ⁽¹⁾		
	111 = Interru	pt is priority 7 (ł	nighest priori	ty interrupt)			
	•						
	•						
	001 = Interru	pt is priority 1					
	000 = Interru	pt source is disa	abled				
hit 7							
	Unimplemer	ited: Read as ')'				
	-	ited: Read as 'd >: DMA Channe		Insfer Complete	e Interrupt Priori	ty bits	
	DMA7IP<2:0		el 7 Data Tra	•	e Interrupt Priori	ty bits	
	DMA7IP<2:0	>: DMA Channe	el 7 Data Tra	•	Interrupt Priori	ty bits	
bit 7 bit 6-4	DMA7IP<2:0	>: DMA Channe	el 7 Data Tra	•	e Interrupt Priori	ty bits	
	DMA7IP<2:0 111 = Interru •	>: DMA Channe	el 7 Data Tra	•	Interrupt Priori	ty bits	
	DMA7IP<2:0 111 = Interru	>: DMA Channe pt is priority 7 (f	el 7 Data Tra nighest priori	•	Interrupt Priori	ty bits	
bit 6-4	DMA7IP<2:0 111 = Interru • • • • 001 = Interru 000 = Interru	>: DMA Channe pt is priority 7 (f pt is priority 1	el 7 Data Tra highest priori abled	•	e Interrupt Priori	ty bits	
	DMA7IP<2:0 111 = Interru • • • • • • • • • • • • • • • • • •	>: DMA Channe pt is priority 7 (I pt is priority 1 pt source is disa	el 7 Data Tra nighest priori abled	ty interrupt)			
bit 6-4 bit 3	DMA7IP<2:0 111 = Interru • • • • • • • • • • • • • • • • • •	>: DMA Channe pt is priority 7 (f pt is priority 1 pt source is disa ited: Read as (c	el 7 Data Tra nighest priori abled o' el 6 Data Tra	ty interrupt) Insfer Complete			
bit 6-4 bit 3	DMA7IP<2:0 111 = Interru • • • • • • • • • • • • • • • • • •	>: DMA Channe pt is priority 7 (f pt is priority 1 pt source is disa ited: Read as '(>: DMA Channe	el 7 Data Tra nighest priori abled o' el 6 Data Tra	ty interrupt) Insfer Complete			
bit 6-4 bit 3	DMA7IP<2:0 111 = Interru • • • • • • • • • • • • • • • • • •	>: DMA Channe pt is priority 7 (f pt is priority 1 pt source is disa ited: Read as '(>: DMA Channe	el 7 Data Tra nighest priori abled o' el 6 Data Tra	ty interrupt) Insfer Complete			
bit 6-4 bit 3	DMA7IP<2:0 111 = Interru 001 = Interru 000 = Interru Unimplemen DMA6IP<2:0 111 = Interru	>: DMA Channe pt is priority 7 (f pt is priority 1 pt source is disa ited: Read as '(>: DMA Channe	el 7 Data Tra nighest priori abled o' el 6 Data Tra	ty interrupt) Insfer Complete			

Note 1: Interrupts disabled on devices without ECAN[™] modules

© 2008 Microchip Technology Inc.

U-0	U-0	U-0	U-0	R-0	R-0	R-0	R-0
_		_			ILR·	<3:0>	
bit 15	·						bit 8
				.		.	
U-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0
				VECNUM<6:0	>		
bit 7							bit C
Legend:							
R = Readable bit W = Writable b		it	U = Unimplen	nented bit, read	d as '0'		
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is cleared x = Bit is unknown			nown
bit 15-12	Unimplemen	ted: Read as '0					
bit 11-8	ILR: New CP	U Interrupt Prior	ity Level bit	s			
	1111 = CPU	Interrupt Priority	Level is 15				
	•						
	•						
	0001 = CPU	Interrupt Priority	l evel is 1				
		Interrupt Priority					
bit 7	Unimplemen	ted: Read as '0	,				
bit 6-0	VECNUM: Ve	ctor Number of	Pending Int	errupt bits			
		nterrupt Vector p	-	-			
	•		-				

C. INTERDURT CONTROL AND STATUS DECISTED Ы CISTED 6-20 INT

•

0000001 = Interrupt Vector pending is number 9 0000000 = Interrupt Vector pending is number 8

6.4 Interrupt Setup Procedures

6.4.1 INITIALIZATION

To configure an interrupt source at initialization:

- 1. Set the NSTDIS bit (INTCON1<15>) if nested interrupts are not desired.
- Select the user-assigned priority level for the interrupt source by writing the control bits in the appropriate IPCx register. The priority level depends on the specific application and type of interrupt source. If multiple priority levels are not desired, the IPCx register control bits for all enabled interrupt sources can be programmed to the same non-zero value.

Note: At a device Reset, the IPCx registers are initialized such that all user interrupt sources are assigned to priority level 4.

- 3. Clear the interrupt flag status bit associated with the peripheral in the associated IFSx register.
- 4. Enable the interrupt source by setting the interrupt enable control bit associated with the source in the appropriate IECx register.

6.4.2 INTERRUPT SERVICE ROUTINE

The method used to declare an ISR and initialize the IVT with the correct vector address depends on the programming language (C or assembler) and the language development tool suite used to develop the application.

In general, the user application must clear the interrupt flag in the appropriate IFSx register for the source of interrupt that the ISR handles. Otherwise, the program re-enters the ISR immediately after exiting the routine. If the ISR is coded in assembly language, it must be terminated using a RETFIE instruction to unstack the saved PC value, SRL value and old CPU priority level.

6.4.3 TRAP SERVICE ROUTINE

A Trap Service Routine (TSR) is coded like an ISR, except that the appropriate trap status flag in the INTCON1 register must be cleared to avoid re-entry into the TSR.

6.4.4 INTERRUPT DISABLE

All user interrupts can be disabled using this procedure:

- 1. Push the current SR value onto the software stack using the PUSH instruction.
- 2. Force the CPU to priority level 7 by inclusive ORing the value OEh with SRL.

To enable user interrupts, the POP instruction can be used to restore the previous SR value.

Note:	Only user interrupts with a priority level of
	7 or lower can be disabled. Trap sources
	(level 8-level 15) cannot be disabled.

The DISI instruction provides a convenient way to disable interrupts of priority levels 1-6 for a fixed period of time. Level 7 interrupt sources are not disabled by the DISI instruction.

NOTES:

7.0 DIRECT MEMORY ACCESS (DMA)

Note: This data sheet summarizes the features of the PIC24HJ32GP302/304, PIC24HJ64GPX02/X04. and PIC24HJ128GPX02/X04 families of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to the PIC24H Family Reference Manual, "Section 22. Direct Memory Access (DMA)" (DS70223), which is available from the Microchip website (www.microchip.com).

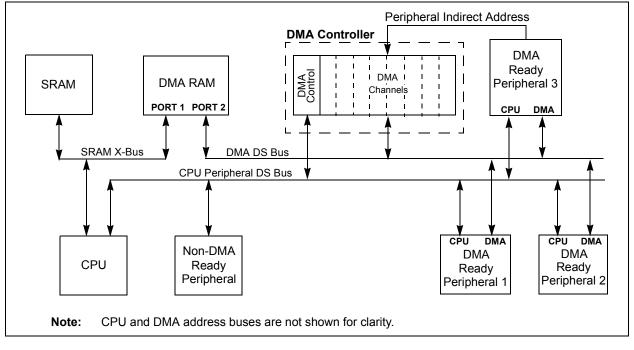
Direct Memory Access (DMA) is a very efficient mechanism of copying data between peripheral SFRs (e.g., UART Receive register, Input Capture 1 buffer), and buffers or variables stored in RAM, with minimal CPU intervention. The DMA controller can automatically copy entire blocks of data without requiring the user software to read or write the peripheral Special Function Registers (SFRs) every time a peripheral interrupt occurs. The DMA controller uses a dedicated bus for data transfers and therefore, does not steal cycles from the code execution flow of the CPU. To exploit the DMA capability, the corresponding user buffers or variables must be located in DMA RAM.

The PIC24HJ32GP302/304, PIC24HJ64GPX02/X04, and PIC24HJ128GPX02/X04 peripherals that can utilize DMA are listed in Table 7-1.

Peripheral to DMA Association	DMAxREQ Register IRQSEL<6:0> Bits	DMAxPAD Register Values to Read From Peripheral	DMAxPAD Register Values to Write to Peripheral	
INT0 – External Interrupt 0	0000000	—	—	
IC1 – Input Capture 1	0000001	0x0140 (IC1BUF)	—	
OC1 – Output Compare 1 Data	0000010	—	0x0182 (OC1R)	
OC1 – Output Compare 1 Secondary Data	0000010	—	0x0180 (OC1RS)	
IC2 – Input Capture 2	0000101	0x0144 (IC2BUF)	—	
OC2 – Output Compare 2 Data	0000110	—	0x0188 (OC2R)	
OC2 – Output Compare 2 Secondary Data	0000110	—	0x0186 (OC2RS)	
TMR2 – Timer2	0000111	—	—	
TMR3 – Timer3	0001000	—	—	
SPI1 – Transfer Done	0001010	0x0248 (SPI1BUF)	0x0248 (SPI1BUF)	
UART1RX – UART1 Receiver	0001011	0x0226 (U1RXREG)	—	
UART1TX – UART1 Transmitter	0001100	—	0x0224 (U1TXREG)	
ADC1 – ADC1 Convert Done	0001101	0x0300 (ADC1BUF0)	—	
UART2RX – UART2 Receiver	0011110	0x0236 (U2RXREG)	—	
UART2TX – UART2 Transmitter	0011111	—	0x0234 (U2TXREG)	
SPI2 – Transfer Done	0100001	0x0268 (SPI2BUF)	0x0268 (SPI2BUF)	
ECAN1 – RX Data Ready	0100010	0x0440 (C1RXD)	—	
PMP – Master Data Transfer	0101101	0x0608 (PMDIN1)	0x0608 (PMDIN1)	
ECAN1 – TX Data Request	1000110	—	0x0442 (C1TXD)	

TABLE 7-1: DMA CHANNEL TO PERIPHERAL ASSOCIATIONS

The DMA controller features eight identical data transfer channels.


Each channel has its own set of control and status registers. Each DMA channel can be configured to copy data either from buffers stored in dual port DMA RAM to peripheral SFRs, or from peripheral SFRs to buffers in DMA RAM.

The DMA controller supports the following features:

- Eight DMA channels
- Register Indirect With Post-increment Addressing mode
- Register Indirect Without Post-increment Addressing mode
- Peripheral Indirect Addressing mode (peripheral generates destination address)
- CPU interrupt after half or full block transfer complete

- Byte or word transfers
- · Fixed priority channel arbitration
- Manual (software) or Automatic (peripheral DMA requests) transfer initiation
- One-Shot or Auto-Repeat block transfer modes
- Ping-Pong mode (automatic switch between two DPSRAM start addresses after each block transfer complete)
- DMA request for each channel can be selected from any supported interrupt source
- · Debug support features

For each DMA channel, a DMA interrupt request is generated when a block transfer is complete. Alternatively, an interrupt can be generated when half of the block has been filled.

FIGURE 7-1: TOP LEVEL SYSTEM ARCHITECTURE USING A DEDICATED TRANSACTION BUS

7.1 DMAC Registers

Each DMAC Channel x (x = 0, 1, 2, 3, 4, 5, 6 or 7) contains the following registers:

- A 16-bit DMA Channel Control register (DMAxCON)
- A 16-bit DMA Channel IRQ Select register (DMAxREQ)
- A 16-bit DMA RAM Primary Start Address register (DMAxSTA)
- A 16-bit DMA RAM Secondary Start Address register (DMAxSTB)
- A 16-bit DMA Peripheral Address register (DMAxPAD)
- A 10-bit DMA Transfer Count register (DMAx-CNT)

An additional pair of status registers, DMACS0 and DMACS1, are common to all DMAC channels. DMACS0 contains the DMA RAM and SFR write collision flags, XWCOLx and PWCOLx, respectively. DMACS1 indicates DMA channel and Ping-Pong mode status.

The DMAxCON, DMAxREQ, DMAxPAD and DMAxCNT are all conventional read/write registers. Reads of DMAxSTA or DMAxSTB reads the contents of the DMA RAM Address register. Writes to DMAx-STA or DMAxSTB write to the registers. This allows the user to determine the DMA buffer pointer value (address) at any time.

The interrupt flags (DMAxIF) are located in an IFSx register in the interrupt controller. The corresponding interrupt enable control bits (DMAxIE) are located in an IECx register in the interrupt controller, and the corresponding interrupt priority control bits (DMAxIP) are located in an IPCx register in the interrupt controller.

CHEN SIZE DIR HALF NULLW — MODE<1:0> Image: Display: Di	REGISTER	7-1: DMAx	CON: DMA C	HANNEL X		EGISTER					
bit 15 U-0 U-0 R/W-0 R/W	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	U-0	U-0			
U-0 R/W-0 R/W-0 U-0 R/W-0 R/W-0 AMODE<1:0> MODE<1:0> bit 7 MODE<1:0> MODE<1:0> Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' MODE<1:0> value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 15 CHEN: Channel Enable bit 1 = Channel enabled 0 = Channel disabled 0 = Channel disabled bit 14 SIZE: Data Transfer Size bit 1 = Byte 0 = Word 0 = Word bit 13 DIR: Transfer Direction bit (source/destination bus select) 1 = Read from DMA RAM address, write to peripheral address 0 = Read from peripheral address, write to DMA RAM address bit 13 DIR: Transfer Complete Interrupt When half of the data has been moved 0 = Initiate block transfer complete interrupt When half of the data has been moved 0 = Initiate block transfer complete interrupt When half of the data has been moved 0 = Initiate block transfer complete interrupt When all of the data has been moved bit 10-6 Unimplemented: Read as '0' 0 = Normal operation 0 = Normal operation 0 = Normal operation	CHEN	SIZE	DIR	HALF	NULLW		—	_			
— AMODE<1:0> — — MODE<1:0> bit 7 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' -n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 15 CHEN: Channel Enable bit 1 = Channel enabled 0 = Channel disabled 0 = Channel and enabled 0 = Channel disabled 0 = Word 1 = Byte 0 = Word 1 = Read from DMA RAM address, write to peripheral address 0 = Read from peripheral address, write to DMA RAM address bit 13 DIR: Transfer Direction bit (source/destination bus select) 1 = Read from peripheral address, write to DMA RAM address bit 12 HALF: Early Block Transfer Complete Interrupt Select bit 1 = Initiate block transfer complete interrupt when all of the data has been moved 0 = Initiate block transfer complete interrupt when all of the data has been moved 0 = Initiate block transfer complete interrupt when all of the data has been moved bit 11 NULLW: Null Data Peripheral Write Mode Select bit 1 = Null data write to peripheral in addition to DMA RAM write (DIR bit must also be clear) 0 = Normal operation 0 = Normal operation 0 = Register Indirect Addressing mode 11 = Reserved (acts as Peripheral Indirect Addressing m	bit 15							bit 8			
bit 7 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' -n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 15 CHEN: Channel Enable bit 1 = Channel enabled 0 = Channel disabled bit 14 SIZE: Data Transfer Direction bit (source/destination bus select) 1 = Read from Deripheral address, write to peripheral address 0 = Read from peripheral address, write to DMA RAM address bit 12 HALF: Early Block Transfer Complete Interrupt Select bit 1 = Initiate block transfer complete interrupt When half of the data has been moved 0 = Initiate block transfer complete interrupt when half of the data has been moved 0 = Initiate block transfer complete interrupt when all of the data has been moved bit 11 NULLW: Null Data Peripheral address to IDMA RAM write (DIR bit must also be clear) 0 = Normal operation bit 10-6 Unimplemented: Read as '0' bit 5-4 AMODE<1:0>: DMA Channel Operating Mode Select bits 11 = Reserved (acts as Peripheral Indirect Addressing mode) 10 = Peripheral Indirect With Post-Increment mode 01 = Register Indirect with Post-Increment mode 01 = Register Indirect with Post-Increment mode 01 = Continuous, Ping-Pong modes enabled (one block transfer from/to each DMA RAM buffer) 10 = Continuous, Ping-Pong modes enabled 01 = One-Shot, Ping-Po	U-0	U-0	R/W-0	R/W-0	U-0	U-0	R/W-0	R/W-0			
Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' '0' = Bit is cleared -n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 15 CHEN: Channel Enable bit 1 = Channel enabled 0 = Channel disabled 1 = Channel enabled 0 = Channel disabled bit 14 SIZE: Data Transfer Size bit 1 = Byte 0 = Word 1 = Byte 0 = Word bit 13 DIR: Transfer Direction bit (source/destination bus select) 1 = Read from peripheral address, write to peripheral address 0 = Read from peripheral address, write to DMA RAM address bit 12 HALF: Early Block Transfer Complete Interrupt Select bit 1 = Initiate block transfer complete interrupt when half of the data has been moved 0 = Initiate block transfer complete interrupt when all of the data has been moved bit 11 NULLW: Null Data Peripheral Write Mode Select bit 1 = Null data write to peripheral in addition to DMA RAM write (DIR bit must also be clear) 0 = Normal operation bit 5-4 AMODE AMODE 10 = Peripheral Indirect Addressing mode 10 = Register Indirect with Post-Increment mode 00 = Register Indirect with Post-Increment mode 00 = Register Indirect with Post-Increment mode bit 3-2 Unimplemented: Read as '0' bit 1-0 MODE bit 3-2 Unimplemented: Read as '0' bit 1-0 bit 3-2 Unimplemented: Read as '0' bit 1-0 bit 3-2	_	—	AMOD	E<1:0>	—	_	MODE	<1:0>			
R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' -n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 15 CHEN: Channel Enable bit 1 = Channel enabled 0 = Channel disabled 0 = Channel disabled 0 = Channel disabled 0 = Channel disabled bit 14 SIZE: Data Transfer Size bit 1 = Byte 0 = Word 0 = Word 0 = Word bit 13 DIR: Transfer Direction bit (source/destination bus select) 1 = Read from DMA RAM address, write to peripheral address 0 = Read from peripheral address, write to DMA RAM address 0 = Read from peripheral address 0 = Read from peripheral bock transfer Complete Interrupt Select bit 1 = Initiate block transfer complete interrupt when half of the data has been moved 0 = Initiate block transfer complete interrupt when all of the data has been moved bit 11 NULLW: Null Data Peripheral in addition to DMA RAM write (DIR bit must also be clear) 0 = Normal operation bit 5-4 AMODE NomeNeenton 1 = Reserved (acts as Peripheral Indirect Addressing mode) 10 = Peripheral Indirect without Post-Increment mode 0 = Register Indirect without Post-Increment mode 10 = Register Indirect without Post-Increment mode 0 = Register Indirect without Post-Increment mode	bit 7							bit			
-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 15 CHEN: Channel Enable bit 1 = Channel enabled 0 0 = Channel disabled 0 = Channel disabled 0 = Channel enabled 0 bit 14 SIZE: Data Transfer Size bit 1 = Byte 0 Word bit 13 DIR: Transfer Direction bit (source/destination bus select) 1 = Read from DMA RAM address, write to peripheral address 0 = Read from peripheral address, write to DMA RAM address bit 12 HALF: Early Block Transfer Complete Interrupt Select bit 1 = Initiate block transfer complete interrupt when half of the data has been moved 0 = Initiate block transfer complete interrupt when half of the data has been moved 0 = Initiate block transfer complete interrupt when half of the data has been moved 0 = Initiate block transfer complete interrupt when half of the data has been moved 0 = Initiate block transfer complete interrupt when half of the data has been moved 0 = Initiate block transfer Complete interrupt when half of the data has been moved 0 = Initiate block transfer Complete interrupt when half of the data has been moved 0 = Initiate block transfer Complete interrupt when half of the data has been moved 0 = Initiate block transfer Complete interrupt when half of the data has been m	Legend:										
bit 15 CHEN: Channel Enable bit 1 = Channel enabled 0 = Channel disabled bit 14 SIZE: Data Transfer Size bit 1 = Byte 0 = Word bit 13 DIR: Transfer Direction bit (source/destination bus select) 1 = Read from DMA RAM address, write to peripheral address 0 = Read from peripheral address, write to DMA RAM address bit 12 HALF: Early Block Transfer Complete Interrupt Select bit 1 = Initiate block transfer complete Interrupt Select bit 1 = Initiate block transfer complete Interrupt when half of the data has been moved 0 = Initiate block transfer complete Interrupt when all of the data has been moved 0 = Initiate block transfer complete Interrupt when all of the data has been moved 1 = Null Data Peripheral Write Mode Select bit 1 = Null data write to peripheral in addition to DMA RAM write (DIR bit must also be clear) 0 = Normal operation bit 10-6 Unimplemented: Read as '0' bit 5-4 AMODE<1:0>: DMA Channel Operating Mode Select bits 11 = Reserved (acts as Peripheral Indirect Addressing mode) 10 = Peripheral Indirect without Post-Increment mode 01 = Register Indirect with Post-Increment mode 02 = Register Indirect with Post-Increment mode bit 3-2 Unimplemented: Read as '0' bit 1-0 MODE<1:0>: DMA Channel Operating Mode Select bits 11 = One-Shot, Ping-Pong modes enabled (one block transfer from/to each DMA RAM buffer) 10 = Continuous, Ping-Pong modes enabled 01 = One-Shot, Ping-Pong modes disabled	R = Readabl	le bit	W = Writable	bit	U = Unimpler	nented bit, rea	id as '0'				
1 = Channel enabled 0 = Channel disabled bit 14 SIZE: Data Transfer Size bit 1 = Byte 0 0 = Word bit 13 DIR: Transfer Direction bit (source/destination bus select) 1 = Read from DMA RAM address, write to peripheral address 0 = Read from peripheral address, write to DMA RAM address bit 12 HALF: Early Block Transfer Complete Interrupt Select bit 1 = Initiate block transfer complete Interrupt When half of the data has been moved 0 = Initiate block transfer complete interrupt when all of the data has been moved 0 = Initiate block transfer complete interrupt when all of the data has been moved 0 = Initiate block transfer complete interrupt when all of the data has been moved bit 11 NULLW: Null Data Peripheral Write Mode Select bit 1 = Null data write to peripheral in addition to DMA RAM write (DIR bit must also be clear) 0 = Normal operation bit 10-6 Unimplemented: Read as '0' bit 5-4 AMODE AMODE Peripheral Indirect Addressing mode 0 = Register Indirect with Post-Increment mode 0 0 = Register Indirect with Post-Increment mode 0 0 = Register Indirect with Post-Increment mode 0 0 = Register I	-n = Value at	t POR	'1' = Bit is se	t	'0' = Bit is cle	ared	x = Bit is unkr	nown			
0 = Channel disabled bit 14 SIZE: Data Transfer Size bit 1 = Byte 0 = Word bit 13 DIR: Transfer Direction bit (source/destination bus select) 1 = Read from DMA RAM address, write to peripheral address 0 = Read from peripheral address, write to DMA RAM address bit 12 HALF: Early Block Transfer Complete Interrupt Select bit 1 = Initiate block transfer complete interrupt when half of the data has been moved 0 = Initiate block transfer complete interrupt when all of the data has been moved 0 = Initiate block transfer complete interrupt when all of the data has been moved bit 11 NULLW: Null Data Peripheral Write Mode Select bit 1 = Null data write to peripheral in addition to DMA RAM write (DIR bit must also be clear) 0 = Normal operation 0 = Normal operation 0 bit 10-6 Unimplemented: Read as '0' bit 5-4 AMODE<1:0>: DMA Channel Operating Mode Select bits 11 = Reserved (acts as Peripheral Indirect Addressing mode) 10 = Peripheral Indirect without Post-Increment mode 00 = Register Indirect with Post-Increment mode 00 = Register Indirect with Post-Increment mode bit 3-2 Unimplemented: Read as '0' bit 1-0 MODE<1:0>: DMA Channel Operating Mode Select bits 11 = One-Shot, Ping-Pong modes enabled (one block transfer from/to each DMA RAM buffer	bit 15	CHEN: Chan	nel Enable bit								
 1 = Byte 0 = Word bit 13 DIR: Transfer Direction bit (source/destination bus select) 1 = Read from DMA RAM address, write to peripheral address 0 = Read from peripheral address, write to DMA RAM address bit 12 HALF: Early Block Transfer Complete Interrupt Select bit 1 = Initiate block transfer complete interrupt when half of the data has been moved 0 = Initiate block transfer complete interrupt when all of the data has been moved bit 11 NULLW: Null Data Peripheral Write Mode Select bit 1 = Null data write to peripheral in addition to DMA RAM write (DIR bit must also be clear) 0 = Normal operation bit 10-6 Unimplemented: Read as '0' bit 5-4 AMODE<1:0>: DMA Channel Operating Mode Select bits 11 = Reserved (acts as Peripheral Indirect Addressing mode) 10 = Peripheral Indirect with Post-Increment mode 00 = Register Indirect with Post-Increment mode 00 = Register Indirect with Post-Increment mode bit 3-2 Unimplemented: Read as '0' bit 1-0 MODE<1:0>: DMA Channel Operating Mode Select bits 11 = One-Shot, Ping-Pong modes enabled (one block transfer from/to each DMA RAM buffer) 10 = Continuous, Ping-Pong modes enabled 01 = One-Shot, Ping-Pong modes enabled 											
0 = Word bit 13 DIR: Transfer Direction bit (source/destination bus select) 1 = Read from DMA RAM address, write to peripheral address 0 = Read from peripheral address, write to DMA RAM address bit 12 HALF: Early Block Transfer Complete Interrupt Select bit 1 = Initiate block transfer complete interrupt when half of the data has been moved 0 = Initiate block transfer complete interrupt when all of the data has been moved 0 = Initiate block transfer complete interrupt when all of the data has been moved bit 11 NULLW: Null Data Peripheral Write Mode Select bit 1 = Null data write to peripheral in addition to DMA RAM write (DIR bit must also be clear) 0 = Normal operation bit 10-6 Unimplemented: Read as '0' bit 5-4 AMODE<1:0>: DMA Channel Operating Mode Select bits 11 = Reserved (acts as Peripheral Indirect Addressing mode) 10 = Peripheral Indirect Addressing mode 01 = Register Indirect without Post-Increment mode 00 = Register Indirect with Post-Increment mode 00 = Register Indirect with Post-Increment mode 01 = Register Indirect with Post-Increment mode 01 = Register Indirect with Post-Increment mode 01 = One-Shot, Ping-Pong modes enabled (one block transfer from/to each DMA RAM buffer)	bit 14	SIZE: Data T	ransfer Size bi	t							
1 = Read from DMA RAM address, write to peripheral address 0 = Read from peripheral address, write to DMA RAM address bit 12 HALF: Early Block Transfer Complete Interrupt Select bit 1 = Initiate block transfer complete interrupt when half of the data has been moved 0 = Initiate block transfer complete interrupt when all of the data has been moved bit 11 NULLW: Null Data Peripheral Write Mode Select bit 1 = Null data write to peripheral in addition to DMA RAM write (DIR bit must also be clear) 0 = Normal operation bit 10-6 Unimplemented: Read as '0' bit 5-4 AMODE<1:0>: DMA Channel Operating Mode Select bits 11 = Reserved (acts as Peripheral Indirect Addressing mode) 10 = Peripheral Indirect Addressing mode 01 = Register Indirect with Post-Increment mode 00 = Register Indirect with Post-Increment mode bit 3-2 Unimplemented: Read as '0' bit 1-0 MODE<1:0>: DMA Channel Operating Mode Select bits 11 = One-Shot, Ping-Pong modes enabled (one block transfer from/to each DMA RAM buffer) 10 = Continuous, Ping-Pong modes enabled 11 = One-Shot, Ping-Pong m		•									
0 = Read from peripheral address, write to DMA RAM address bit 12 HALF: Early Block Transfer Complete Interrupt Select bit 1 = Initiate block transfer complete interrupt when half of the data has been moved 0 = Initiate block transfer complete interrupt when all of the data has been moved bit 11 NULLW: Null Data Peripheral Write Mode Select bit 1 = Null data write to peripheral in addition to DMA RAM write (DIR bit must also be clear) 0 = Normal operation bit 10-6 Unimplemented: Read as '0' bit 5-4 AMODE<1:0>: DMA Channel Operating Mode Select bits 11 = Reserved (acts as Peripheral Indirect Addressing mode) 10 = Peripheral Indirect Addressing mode 01 = Register Indirect without Post-Increment mode 00 = Register Indirect with Post-Increment mode 00 = Register Indirect With Post-Increment mode 01 = Register Indirect with Post-Increment mode 02 = Register Indirect with Post-Increment mode 03 = Register Indirect with Post-Increment mode 04 = Continuous, Ping-Pong modes enabled (one block transfer from/to each DMA RAM buffer) 10 = Continuous, Ping-Pong modes enabled 11 = One-Shot, Ping-Pong modes enabled 01 = One-Shot, Ping-Pong modes enabled 01 = One-Shot, Ping-Pong modes disabled	bit 13	DIR: Transfer Direction bit (source/destination bus select)									
 1 = Initiate block transfer complete interrupt when half of the data has been moved 0 = Initiate block transfer complete interrupt when all of the data has been moved bit 11 NULLW: Null Data Peripheral Write Mode Select bit 1 = Null data write to peripheral in addition to DMA RAM write (DIR bit must also be clear) 0 = Normal operation bit 10-6 Unimplemented: Read as '0' bit 5-4 AMODE<1:0>: DMA Channel Operating Mode Select bits 11 = Reserved (acts as Peripheral Indirect Addressing mode) 10 = Peripheral Indirect Addressing mode 01 = Register Indirect without Post-Increment mode 00 = Register Indirect with Post-Increment mode bit 3-2 Unimplemented: Read as '0' bit 1-0 MODE<1:0>: DMA Channel Operating Mode Select bits 11 = One-Shot, Ping-Pong modes enabled (one block transfer from/to each DMA RAM buffer) 10 = Continuous, Ping-Pong modes disabled 											
 bit 11 NULLW: Null Data Peripheral Write Mode Select bit = Null data write to peripheral in addition to DMA RAM write (DIR bit must also be clear)	bit 12	HALF: Early									
 1 = Null data write to peripheral in addition to DMA RAM write (DIR bit must also be clear) 0 = Normal operation bit 10-6 Unimplemented: Read as '0' bit 5-4 AMODE<1:0>: DMA Channel Operating Mode Select bits 11 = Reserved (acts as Peripheral Indirect Addressing mode) 10 = Peripheral Indirect Addressing mode 01 = Register Indirect without Post-Increment mode 00 = Register Indirect with Post-Increment mode bit 3-2 Unimplemented: Read as '0' bit 1-0 MODE<1:0>: DMA Channel Operating Mode Select bits 11 = One-Shot, Ping-Pong modes enabled (one block transfer from/to each DMA RAM buffer) 10 = Continuous, Ping-Pong modes enabled 01 = One-Shot, Ping-Pong modes disabled 											
 0 = Normal operation bit 10-6 Unimplemented: Read as '0' bit 5-4 AMODE<1:0>: DMA Channel Operating Mode Select bits 11 = Reserved (acts as Peripheral Indirect Addressing mode) 10 = Peripheral Indirect Addressing mode 01 = Register Indirect without Post-Increment mode 00 = Register Indirect with Post-Increment mode bit 3-2 Unimplemented: Read as '0' bit 1-0 MODE<1:0>: DMA Channel Operating Mode Select bits 11 = One-Shot, Ping-Pong modes enabled (one block transfer from/to each DMA RAM buffer) 10 = Continuous, Ping-Pong modes enabled 01 = One-Shot, Ping-Pong modes disabled 	bit 11	NULLW: Null	l Data Peripher	al Write Mode	e Select bit						
 bit 5-4 AMODE<1:0>: DMA Channel Operating Mode Select bits 11 = Reserved (acts as Peripheral Indirect Addressing mode) 10 = Peripheral Indirect Addressing mode 01 = Register Indirect without Post-Increment mode 00 = Register Indirect with Post-Increment mode bit 3-2 Unimplemented: Read as '0' bit 1-0 MODE<1:0>: DMA Channel Operating Mode Select bits 11 = One-Shot, Ping-Pong modes enabled (one block transfer from/to each DMA RAM buffer) 10 = Continuous, Ping-Pong modes enabled 01 = One-Shot, Ping-Pong modes disabled 				eral in additic	on to DMA RAM	write (DIR bit	must also be cle	ear)			
11 = Reserved (acts as Peripheral Indirect Addressing mode) 10 = Peripheral Indirect Addressing mode 01 = Register Indirect without Post-Increment mode 00 = Register Indirect with Post-Increment mode 00 = Register Indirect with Post-Increment mode bit 3-2 Unimplemented: Read as '0' bit 1-0 MODE<1:0>: DMA Channel Operating Mode Select bits 11 = One-Shot, Ping-Pong modes enabled (one block transfer from/to each DMA RAM buffer) 10 = Continuous, Ping-Pong modes enabled 01 = One-Shot, Ping-Pong modes disabled	bit 10-6	Unimplemer	nted: Read as	0'							
 10 = Peripheral Indirect Addressing mode 01 = Register Indirect without Post-Increment mode 00 = Register Indirect with Post-Increment mode bit 3-2 Unimplemented: Read as '0' bit 1-0 MODE<1:0>: DMA Channel Operating Mode Select bits 11 = One-Shot, Ping-Pong modes enabled (one block transfer from/to each DMA RAM buffer) 10 = Continuous, Ping-Pong modes enabled 01 = One-Shot, Ping-Pong modes disabled 	bit 5-4	AMODE<1:0	>: DMA Chanr	el Operating	Mode Select bit	S					
bit 3-2 Unimplemented: Read as '0' bit 1-0 MODE<1:0>: DMA Channel Operating Mode Select bits 11 = One-Shot, Ping-Pong modes enabled (one block transfer from/to each DMA RAM buffer) 10 = Continuous, Ping-Pong modes enabled 01 = One-Shot, Ping-Pong modes disabled		10 = Periphe 01 = Registe	ral Indirect Add r Indirect witho	Iressing mode ut Post-Incre	e ment mode	node)					
 11 = One-Shot, Ping-Pong modes enabled (one block transfer from/to each DMA RAM buffer) 10 = Continuous, Ping-Pong modes enabled 01 = One-Shot, Ping-Pong modes disabled 	bit 3-2	Unimplemen	ted: Read as	0'							
10 = Continuous, Ping-Pong modes enabled01 = One-Shot, Ping-Pong modes disabled		-			lode Select bits						
		11 = One-Sh 10 = Continu 01 = One-Sh	ot, Ping-Pong ous, Ping-Pong ot, Ping-Pong	modes enable g modes enab modes disabl	ed (one block tra bled ed	ansfer from/to	each DMA RAM	buffer)			

REGISTER 7-1: DMAxCON: DMA CHANNEL x CONTROL REGISTER

PIC24HJ32GP302/304, PIC24HJ64GPX02/X04, AND PIC24HJ128GPX02/X04

R/W-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0		
FORCE ⁽¹⁾		_	—	—	—	—	—		
bit 15							bit 8		
U-0	R/W-0	R/W-0	R/W-0	U-0	U-0	R/W-0	R/W-0		
			I	RQSEL6<6:0>	(2)				
bit 7							bit 0		
Legend:									
R = Readable	e bit	W = Writable	bit	U = Unimpler	nented bit, read	as '0'			
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unknown			
bit 15	FORCE: Force	e DMA Transfe	er bit ⁽¹⁾						
	1 = Force a single DMA transfer (Manual mode)								
	0 = Automatic	DMA transfer	initiation by D	MA request					
bit 14-7	Unimplemented: Read as '0'								
bit 6-0	IRQSEL<6:0	: DMA Periphe	eral IRQ Numl	ber Select bits	(2)				
	0000000-111	1111 = DMAI	RQ0-DMAIRC	127 selected t	to be Channel D	MAREQ			

REGISTER 7-2: DMAxREQ: DMA CHANNEL x IRQ SELECT REGISTER

Note 1: The FORCE bit cannot be cleared by the user. The FORCE bit is cleared by hardware when the forced DMA transfer is complete.

2: Refer to Table 6-1 for a complete listing of IRQ numbers for all interrupt sources.

REGISTER 7-3	: DMAx	STA: DMA CI	HANNEL x F	RAM START	ADDRESS RI	EGISTER A ⁽¹⁾)
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			STA	<15:8>			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			STA	<7:0>			
bit 7							bit 0
Legend:							
R = Readable I	bit	W = Writable I	bit	U = Unimplen	nented bit, read	d as '0'	
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown

bit 15-0 STA<15:0>: Primary DMA RAM Start Address bits (source or destination)

Note 1: A read of this address register returns the current contents of the DMA RAM Address register, not the contents written to STA<15:0>. If the channel is enabled (i.e., active), writes to this register may result in unpredictable behavior of the DMA channel and should be avoided.

REGISTER 7-4: DMAxSTB: DMA CHANNEL x RAM START ADDRESS REGISTER B⁽¹⁾

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			STE	<15:8>			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			STI	3<7:0>			
bit 7							bit 0
Legend:							
R = Readable I	bit	W = Writable	bit	U = Unimplen	nented bit, rea	id as '0'	
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unknown	

bit 15-0 STB<15:0>: Secondary DMA RAM Start Address bits (source or destination)

Note 1: A read of this address register returns the current contents of the DMA RAM Address register, not the contents written to STB<15:0>. If the channel is enabled (i.e., active), writes to this register may result in unpredictable behavior of the DMA channel and should be avoided.

REGISTER 7-5:	DMAxPAD: DMA CHANNEL x PERIPHERAL ADDRESS REGISTER ⁽¹⁾
---------------	---

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			PAD	<15:8>			
bit 15							bit 8
DAM 0	DAMO	D/M/ 0	DAMO	DAMA	DAMO	D/M/ O	DAMO
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			PAD)<7:0>			
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable b	bit	U = Unimpler	nented bit, rea	d as '0'	
-n = Value at P	POR	'1' = Bit is set		'0' = Bit is cleared x = Bit is unknown			nown

bit 15-0 **PAD<15:0>:** Peripheral Address Register bits

Note 1: If the channel is enabled (i.e., active), writes to this register may result in unpredictable behavior of the DMA channel and should be avoided.

REGISTER 7-6: DMAxCNT: DMA CHANNEL x TRANSFER COUNT REGISTER⁽¹⁾

U-0	U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0
—	—	—	_			CNT<9:8> ⁽²⁾	
bit 15							bit 8

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
CNT<7:0> ⁽²⁾										
bit 7							bit 0			

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit,	read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-10 Unimplemented: Read as '0'

bit 9-0 CNT<9:0>: DMA Transfer Count Register bits⁽²⁾

- **Note 1:** If the channel is enabled (i.e., active), writes to this register may result in unpredictable behavior of the DMA channel and should be avoided.
 - 2: Number of DMA transfers = CNT<9:0> + 1.

REGISTER 7-	-7: DMAC	S0: DMA CO	NTROLLER	STATUS RE	GISTER 0		
R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0
PWCOL7	PWCOL6	PWCOL5	PWCOL4	PWCOL3	PWCOL2	PWCOL1	PWCOL0
bit 15							bit a
R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0
XWCOL7	XWCOL6	XWCOL5	XWCOL4	XWCOL3	XWCOL2	XWCOL1	XWCOL0
bit 7	X1100E0	X1100E0		X1100E0	XWOOLZ	XWOOLI	bit
Legend:							
R = Readable	bit	W = Writable	hit	II – I Inimpler	mented bit, rea	d as '0'	
-n = Value at P		'1' = Bit is set		'0' = Bit is cle			2014/2
-n = value at P	UR	I = BILIS SEL		0 = Bit is cie	ared	x = Bit is unkr	IOWI
bit 15	1 = Write colli	nannel 7 Periph ision detected collision detecte		llision Flag bit			
bit 14	1 = Write colli	nannel 6 Periph ision detected collision detecte		llision Flag bit			
bit 13	1 = Write colli	nannel 5 Periph ision detected collision detecte		llision Flag bit			
bit 12	1 = Write colli	nannel 4 Periph ision detected		llision Flag bit			
		collision detecte					
bit 11	1 = Write colli	nannel 3 Periph ision detected collision detecte		llision Flag bit			
bit 10		nannel 2 Periph		llision Flag bit			
	1 = Write colli	ision detected					
bit 9	1 = Write colli	nannel 1 Periph ision detected collision detecte		llision Flag bit			
bit 8	1 = Write colli	nannel 0 Periph ision detected collision detecte		llision Flag bit			
bit 7	XWCOL7: Ch 1 = Write colli	nannel 7 DMA I ision detected	RAM Write Co	llision Flag bit			
bit 6	XWCOL6: Ch 1 = Write colli	collision detecte nannel 6 DMA I ision detected	RAM Write Co	llision Flag bit			
bit 5	XWCOL5: Ch 1 = Write colli	collision detecte nannel 5 DMA f ision detected	RAM Write Co	llision Flag bit			
bit 4	XWCOL4: Ch 1 = Write colli	collision detecte nannel 4 DMA I ision detected collision detecte	RAM Write Co	Ilision Flag bit			

REGISTER 7-7: DMACS0: DMA CONTROLLER STATUS REGISTER 0

REGISTER 7-7: DMACS0: DMA CONTROLLER STATUS REGISTER 0 (CONTINUED)

bit 3	XWCOL3: Channel 3 DMA RAM Write Collision Flag bit
	1 = Write collision detected
	0 = No write collision detected
bit 2	XWCOL2: Channel 2 DMA RAM Write Collision Flag bit
	1 = Write collision detected
	0 = No write collision detected
bit 1	XWCOL1: Channel 1 DMA RAM Write Collision Flag bit
	1 = Write collision detected
	0 = No write collision detected
bit 0	XWCOL0: Channel 0 DMA RAM Write Collision Flag bit
	1 = Write collision detected
	0 = No write collision detected

U-0	U-0	U-0	U-0	R-1	R-1	R-1	R-1				
_	—		_		LSTCH	H<3:0>					
pit 15							bit				
R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0				
PPST7	PPST6	PPST5	PPST4	PPST3	PPST2	PPST1	PPST0				
pit 7	11010	11010	11011	11010	11012	11011	bit				
egend:											
R = Readab		W = Writable		-	nented bit, read						
n = Value a	t POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown				
oit 15-12	Unimplemen	ted: Read as '	0'								
oit 11-8	-	: Last DMA Ch		oits							
			s occurred sin	ce system Res	et						
	1110-1000 =		as by DMA Ch	annel 7							
	0111 = Last data transfer was by DMA Channel 7 0110 = Last data transfer was by DMA Channel 6										
	0110 = Last data transfer was by DMA Channel 6 0101 = Last data transfer was by DMA Channel 5										
	0100 = Last data transfer was by DMA Channel 4										
	0011 = Last data transfer was by DMA Channel 3										
	0010 = Last data transfer was by DMA Channel 2										
	0001 = Last data transfer was by DMA Channel 1 0000 = Last data transfer was by DMA Channel 0										
oit 7		inel 7 Ping-Por	•								
	1 = DMA7STI	B register seled	cted	ST lag bit							
		A register selec									
oit 6		inel 6 Ping-Por	-	s Flag bit							
		B register seleo A register seleo									
oit 5		inel 5 Ping-Por		s Flag bit							
		B register sele	-	o 1 10g 210							
		A register selec									
oit 4	PPST4: Char	nel 4 Ping-Por	ng Mode Statu	s Flag bit							
	1 = DMA4STI	B register seled	cted								
	0 = DMA4STA	A register seled	cted								
oit 3	PPST3: Char	inel 3 Ping-Por	ng Mode Statu	s Flag bit							
		B register selec									
		A register selec		o Flog bit							
bit 2		nel 2 Ping-Por	•	s Flag bit							
		B register seled A register seled									
oit 1		inel 1 Ping-Por		s Elag bit							
		B register selec	-								
		A register selec									
oit 0		inel 0 Ping-Por		s Flag bit							
	1 = DMA0STI	B register seled	-	C C							

REGISTER 7-9: DSADR: MOST RECENT DMA RAM ADDRESS

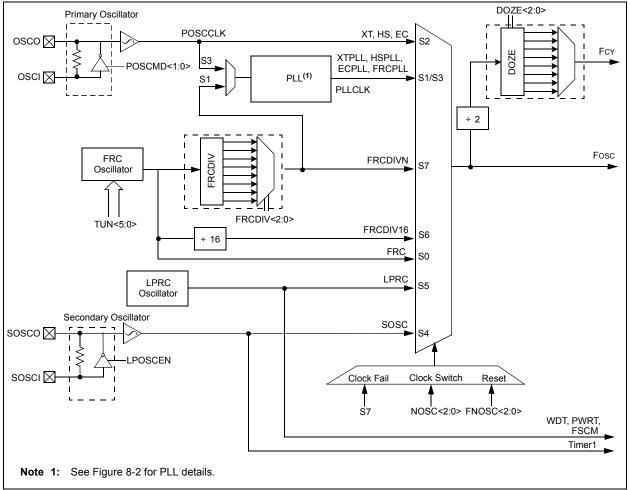
R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0
			DSAD	R<15:8>			
bit 15							bit 8
R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0
			DSAE)R<7:0>			
bit 7							bit 0
Logondy							
Legend:							
R = Readable	bit	W = Writable b	it	U = Unimplemen	ited bit, rea	ad as '0'	
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is cleared x = Bit is unkr		nown	

bit 15-0 DSADR<15:0>: Most Recent DMA RAM Address Accessed by DMA Controller bits

NOTES:

8.0 OSCILLATOR CONFIGURATION

Note: This data sheet summarizes the features of the PIC24HJ32GP302/304, PIC24HJ64GPX02/X04. and PIC24HJ128GPX02/X04 families of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to the PIC24H Family Reference Manual, **"Section** 7. Oscillator" (DS70227), which is available from the Microchip website (www.microchip.com).


The PIC24HJ32GP302/304, PIC24HJ64GPX02/X04, and PIC24HJ128GPX02/X04 oscillator system provides:

External and internal oscillator options as clock sources

- An on-chip Phase-Locked Loop (PLL) to scale the internal operating frequency to the required system clock frequency
- An internal FRC oscillator that can also be used with the PLL, thereby allowing full-speed operation without any external clock generation hardware
- · Clock switching between various clock sources
- Programmable clock postscaler for system power savings
- A Fail-Safe Clock Monitor (FSCM) that detects clock failure and takes fail-safe measures
- A Clock Control register (OSCCON)
- Nonvolatile Configuration bits for main oscillator selection.

A simplified diagram of the oscillator system is shown in Figure 8-1.

8.1 CPU Clocking System

The PIC24HJ32GP302/304, PIC24HJ64GPX02/X04, and PIC24HJ128GPX02/X04 devices provide seven system clock options:

- Fast RC (FRC) Oscillator
- FRC Oscillator with Phase Locked Loop (PLL)
- Primary (XT, HS or EC) Oscillator
- Primary Oscillator with PLL
- Secondary (LP) Oscillator
- · Low-Power RC (LPRC) Oscillator
- · FRC Oscillator with postscaler

8.1.1 SYSTEM CLOCK SOURCES

The Fast RC (FRC) internal oscillator runs at a nominal frequency of 7.37 MHz. User software can tune the FRC frequency. User software can optionally specify a factor (ranging from 1:2 to 1:256) by which the FRC clock frequency is divided. This factor is selected using the FRCDIV<2:0> (CLKDIV<10:8>) bits.

The primary oscillator can use one of the following as its clock source:

- Crystal (XT): Crystals and ceramic resonators in the range of 3 MHz to 10 MHz. The crystal is connected to the OSC1 and OSC2 pins.
- High-Speed Crystal (HS): Crystals in the range of 10 MHz to 40 MHz. The crystal is connected to the OSC1 and OSC2 pins.
- External Clock (EC): External clock signal is directly applied to the OSC1 pin.

The secondary (LP) oscillator is designed for low power and uses a 32.768 kHz crystal or ceramic resonator. The LP oscillator uses the SOSCI and SOSCO pins.

The Low-Power RC (LPRC) internal oscIllator runs at a nominal frequency of 32.768 kHz. It is also used as a reference clock by the Watchdog Timer (WDT) and Fail-Safe Clock Monitor (FSCM).

The clock signals generated by the FRC and primary oscillators can be optionally applied to an on-chip PLL to provide a wide range of output frequencies for device operation. PLL configuration is described in **Section 8.1.3 "PLL Configuration"**.

8.1.2 SYSTEM CLOCK SELECTION

The oscillator source used at a device Power-on Reset event is selected using Configuration bit settings. The oscillator Configuration bit settings are located in the Configuration registers in the program memory. (Refer to Section 24.1 "Configuration Bits" for further details.) The Initial Oscillator Selection Configuration bits. FNOSC<2:0> (FOSCSEL<2:0>), and the Primary Oscillator Mode Select Configuration bits. POSCMD<1:0> (FOSC<1:0>), select the oscillator source that is used at a Power-on Reset. The FRC primary oscillator is the default (unprogrammed) selection.

The Configuration bits allow users to choose among 12 different clock modes, shown in Table 8-1.

The output of the oscillator (or the output of the PLL if a PLL mode has been selected) FOSC is divided by 2 to generate the device instruction clock (FCY). FCY defines the operating speed of the device, and speeds up to 40 MHz are supported by the PIC24HJ32GP302/ 304, PIC24HJ64GPX02/X04, and PIC24HJ128GPX02/X04 architecture.

Instruction execution speed or device operating frequency, FCY, is given by:

EQUATION 8-1: DEVICE OPERATING FREQUENCY

FCY = FOSC/2

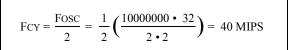
8.1.3 PLL CONFIGURATION

The primary oscillator and internal FRC oscillator can optionally use an on-chip PLL to obtain higher speeds of operation. The PLL provides significant flexibility in selecting the device operating speed. A block diagram of the PLL is shown in Figure 8-2.

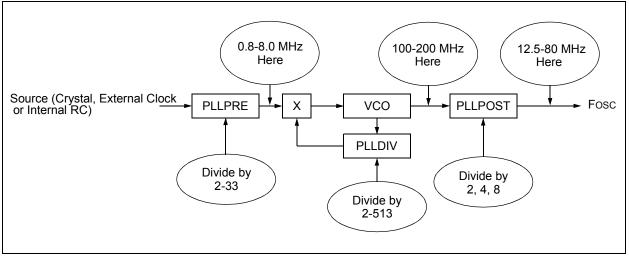
The output of the primary oscillator or FRC, denoted as 'FIN', is divided down by a prescale factor (N1) of 2, 3, ... or 33 before being provided to the PLL's Voltage Controlled Oscillator (VCO). The input to the VCO must be selected in the range of 0.8 MHz to 8 MHz. The prescale factor 'N1' is selected using the PLLPRE<4:0> bits (CLKDIV<4:0>).

The PLL Feedback Divisor, selected using the PLLDIV<8:0> bits (PLLFBD<8:0>), provides a factor 'M,' by which the input to the VCO is multiplied. This factor must be selected such that the resulting VCO output frequency is in the range of 100 MHz to 200 MHz.

The VCO output is further divided by a postscale factor 'N2.' This factor is selected using the PLLPOST<1:0> bits (CLKDIV<7:6>). 'N2' can be either 2, 4 or 8, and must be selected such that the PLL output frequency (Fosc) is in the range of 12.5 MHz to 80 MHz, which generates device operating speeds of 6.25-40 MIPS. For a primary oscillator or FRC oscillator, output 'FIN', the PLL output 'FOSC' is given by:


EQUATION 8-2: Fosc CALCULATION

$$FOSC = FIN \cdot \left(\frac{M}{N1 \cdot N2}\right)$$


For example, suppose a 10 MHz crystal is being used with the selected oscillator mode of XT with PLL.

- If PLLPRE<4:0> = 0, then N1 = 2. This yields a VCO input of 10/2 = 5 MHz, which is within the acceptable range of 0.8-8 MHz.
- If PLLDIV<8:0> = 0x1E, then M = 32. This yields a VCO output of 5 x 32 = 160 MHz, which is within the 100-200 MHz ranged needed.
- If PLLPOST<1:0> = 0, then N2 = 2. This provides a Fosc of 160/2 = 80 MHz. The resultant device operating speed is 80/2 = 40 MIPS.

EQUATION 8-3: XT WITH PLL MODE EXAMPLE

FIGURE 8-2: PIC24HJ32GP302/304, PIC24HJ64GPX02/X04, AND PIC24HJ128GPX02/X04 PLL BLOCK DIAGRAM

Oscillator Mode	Oscillator Source	POSCMD<1:0>	FNOSC<2:0>	Note
Fast RC Oscillator with Divide-by-N (FRCDIVN)	Internal	XX	111	1, 2
Fast RC Oscillator with Divide-by-16 (FRCDIV16)	Internal	XX	110	1
Low-Power RC Oscillator (LPRC)	Internal	XX	101	1
Secondary (Timer1) Oscillator (SOSC)	Secondary	XX	100	1
Primary Oscillator (HS) with PLL (HSPLL)	Primary	10	011	
Primary Oscillator (XT) with PLL (XTPLL)	Primary	01	011	
Primary Oscillator (EC) with PLL (ECPLL)	Primary	00	011	1
Primary Oscillator (HS)	Primary	10	010	
Primary Oscillator (XT)	Primary	01	010	
Primary Oscillator (EC)	Primary	00	010	1
Fast RC Oscillator with PLL (FRCPLL)	Internal	XX	001	1
Fast RC Oscillator (FRC)	Internal	XX	000	1

TABLE 8-1: CONFIGURATION BIT VALUES FOR CLOCK SELECTION

Note 1: OSC2 pin function is determined by the OSCIOFNC Configuration bit.

2: This is the default oscillator mode for an unprogrammed (erased) device.

	REGISTER 8-1:	OSCCON: OSCILLATOR CONTROL REGISTER
--	---------------	-------------------------------------

U-0	R-0	R-0	R-0	U-0	R/W-y	R/W-y	R/W-y
_		COSC<2:0>		—		NOSC<2:0>	
bit 15	·						bit 8
DAMA	DAMA			D /Q Q		DAM 0	DAA/ O
R/W-0	R/W-0	R-0	U-0	R/C-0	U-0	R/W-0	R/W-0
CLKLOCK	IOLOCK	LOCK	—	CF	_	LPOSCEN	OSWEN
bit 7							bit C
Legend:		y = Value set	from Configu	ration bits on P	OR		
R = Readable	bit	W = Writable	bit	U = Unimplen	nented bit, rea	id as '0'	
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkn	own
bit 15	Unimplemen	ted: Read as ')'				
bit 14-12	COSC<2:0>:	Current Oscilla	tor Selection	bits (read-only)	1		
	001 = Fast R 010 = Primar 011 = Primar 100 = Second 101 = Low-Pe 110 = Fast R	C oscillator (FR C oscillator (FR y oscillator (XT, y oscillator (XT, dary oscillator (ower RC oscillator C oscillator (FR	C) with PLL HS, EC) HS, EC) wit SOSC) tor (LPRC) C) with Divic	le-by-16			
bit 11		C oscillator (FF ted: Read as '(-	ie-by-n			
bit 10-8	-	New Oscillator		e			
	000 = Fast R 001 = Fast R 010 = Primar 011 = Primar 100 = Second 101 = Low-Pd 110 = Fast R	C oscillator (FF C oscillator (FF y oscillator (XT, y oscillator (XT, dary oscillator (ower RC oscillator C oscillator (FF C oscillator (FF	C) HS, EC) with PLL HS, EC) HS, EC) wit SOSC) tor (LPRC) C) with Divic	h PLL le-by-16			
bit 7	<u>If clock switch</u> 1 = Clock sw	itching is disab	and FSCM is led, system o	<u>s disabled, (FOS</u> clock source is le lock source can	ocked	<u>= 0b01)</u> by clock switching	9
bit 6	1 = Peripheri		locked, write	to peripheral pi rrite to periphera			
bit 5	LOCK: PLL L	ock Status bit (read-only)				
				start-up timer is t-up timer is in p		L is disabled	
bit 4	Unimplemen	ted: Read as ')'				
bit 3	CF: Clock Fa	il Detect bit (rea	ad/clear by a	pplication)			
	1 = FSCM ha	as detected clo					
		as not detected					

REGISTER 8-1: OSCCON: OSCILLATOR CONTROL REGISTER (CONTINUED)

- bit 1 LPOSCEN: Secondary (LP) Oscillator Enable bit
 - 1 = Enable secondary oscillator
 - 0 = Disable secondary oscillator

bit 0 OSWEN: Oscillator Switch Enable bit

- 1 = Request oscillator switch to selection specified by NOSC<2:0> bits
- 0 = Oscillator switch is complete

REGISTER 8-2: CLKDIV: CLOCK DIVISOR REGISTER

REGISTER 8	-2: CLKDI	V: CLOCK D		GISTER			
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-1	R/W-0	R/W-0
ROI		DOZE<2:0>		DOZEN ⁽¹⁾		FRCDIV<2:0>	
bit 15							bit 8
R/W-0	R/W-1	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
PLLPOS	ST<1:0>	—			PLLPRE<4:0	>	
bit 7							bit (
Legend:		y = Value set	from Configu	ration bits on P	OR		
R = Readable	bit	W = Writable	bit	U = Unimpler	mented bit, rea	d as '0'	
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown
bit 15	1 = Interrupts	on Interrupt bi clears the DO have no effec	ZEN bit and		lock/periphera	l clock ratio is s	et to 1:1
bit 14-12	DOZE<2:0>: 000 = FCY/1 001 = FCY/2 010 = FCY/4 011 = FCY/8 (100 = FCY/16 101 = FCY/32 110 = FCY/64 111 = FCY/12		k Reduction	Select bits			
bit 11	DOZEN: DOZE Mode Enable bit ⁽¹⁾ 1 = DOZE<2:0> field specifies the ratio between the peripheral clocks and the processor clocks 0 = Processor clock/peripheral clock ratio forced to 1:1				or clocks		
bit 10-8		ivide by 1 (defa ivide by 2 ivide by 4 ivide by 8 ivide by 16 ivide by 32 ivide by 64		r Postscaler bit	S		
bit 7-6	PLLPOST<1:0>: PLL VCO Output Divider Select bits (also denoted as 'N2', PLL postscaler) 00 = Output/2 01 = Output/4 (default) 10 = Reserved 11 = Output/8						
bit 5	Unimplemen	ted: Read as '	כ'				
bit 4-0	PLLPRE<4:0 00000 = Inpu 00001 = Inpu	t/2 (default)	Detector Inpu	t Divider bits (a	lso denoted as	s 'N1', PLL pres	caler)
	• • 11111 = Inpu	t/33					

Note 1: This bit is cleared when the ROI bit is set and an interrupt occurs.

REGISTER 8-3	: PLLF	BD: PLL FEEI	JBACK DI	ISUR REGIS	IER		
U-0	U-0	U-0	U-0	U-0	U-0	U-0	R/W-0
_	_	—	_	—	_	—	PLLDIV<8>
bit 15							bit 8
D 844 A							
R/W-0	R/W-0	R/W-1	R/W-1	R/W-0	R/W-0	R/W-0	R/W-0
			PLLC	0IV<7:0>			
bit 7							bit (
Legend:							
R = Readable bit		W = Writable bit		U = Unimplemented bit, read as '0'			
-n = Value at POR '1' = Bit is		'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unl	known

REGISTER 8-3: PLLFBD: PLL FEEDBACK DIVISOR REGISTER

bit 8-0

PLLDIV<8:0>: PLL Feedback Divisor bits (also denoted as 'M', PLL multiplier) 000000000 = 2 000000001 = 3 000000010 = 4

• • • 000110000 = 50 (default) • •

111111111 **= 513**

REGISTER 8-4: OSCTUN: FRC OSCILLATOR TUNING REGISTER

	• ••••			••••••			
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
	—	—	_	_	—		—
bit 15							bit 8
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_				TUN	N<5:0>		
bit 7							bit 0
Legend:							
R = Readabl	e bit	W = Writable	bit	U = Unimplemented bit, read as '0'			
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cleared x = Bit is unknown		nown	
bit 15-6	Unimplemented: Read as '0'						
bit 5-0	TUN<5:0>: FI	RC Oscillator T	uning bits				
	011111 = Ce	nter frequency	+11.625% (8	.23 MHz)			
	011110 = Ce	nter frequency	+11.25% (8.2	0 MHz)			
	•						
	•						
• $0.0001 - Center frequency (0.2759/ (7.40 MHz))$							
	000001 = Center frequency +0.375% (7.40 MHz) 000000 = Center frequency (7.37 MHz nominal)						
	111111 = Center frequency -0.375% (7.345 MHz)						
	•						
	•						
	•						

100001 = Center frequency -11.625% (6.52 MHz) 100000 = Center frequency -12% (6.49 MHz)

8.2 Clock Switching Operation

Applications are free to switch among any of the four clock sources (Primary, LP, FRC and LPRC) under software control at any time. To limit the possible side effects of this flexibility, PIC24HJ32GP302/304, PIC24HJ64GPX02/X04, and PIC24HJ128GPX02/X04 devices have a safeguard lock built into the switch process.

Note: Primary Oscillator mode has three different submodes (XT, HS and EC), which are determined by the POSCMD<1:0> Configuration bits. While an application can switch to and from Primary Oscillator mode in software, it cannot switch among the different primary submodes without reprogramming the device.

8.2.1 ENABLING CLOCK SWITCHING

To enable clock switching, the FCKSM1 Configuration bit in the Configuration register must be programmed to '0'. (Refer to **Section 24.1 "Configuration Bits"** for further details.) If the FCKSM1 Configuration bit is unprogrammed ('1'), the clock switching function and Fail-Safe Clock Monitor function are disabled. This is the default setting.

The NOSC control bits (OSCCON<10:8>) do not control the clock selection when clock switching is disabled. However, the COSC bits (OSCCON<14:12>) reflect the clock source selected by the FNOSC Configuration bits.

The OSWEN control bit (OSCCON<0>) has no effect when clock switching is disabled. It is held at '0' at all times.

8.2.2 OSCILLATOR SWITCHING SEQUENCE

Performing a clock switch requires this basic sequence:

- 1. If desired, read the COSC bits (OSCCON<14:12>) to determine the current oscillator source.
- 2. Perform the unlock sequence to allow a write to the OSCCON register high byte.
- Write the appropriate value to the NOSC control bits (OSCCON<10:8>) for the new oscillator source.
- 4. Perform the unlock sequence to allow a write to the OSCCON register low byte.
- 5. Set the OSWEN bit (OSCCON<0>) to initiate the oscillator switch.

Once the basic sequence is completed, the system clock hardware responds automatically as follows:

- The clock switching hardware compares the COSC status bits with the new value of the NOSC control bits. If they are the same, the clock switch is a redundant operation. In this case, the OSWEN bit is cleared automatically and the clock switch is aborted.
- If a valid clock switch has been initiated, the LOCK (OSCCON<5>) and the CF (OSCCON<3>) status bits are cleared.
- 3. The new oscillator is turned on by the hardware if it is not currently running. If a crystal oscillator must be turned on, the hardware waits until the Oscillator Start-up Timer (OST) expires. If the new source is using the PLL, the hardware waits until a PLL lock is detected (LOCK = 1).
- 4. The hardware waits for 10 clock cycles from the new clock source and then performs the clock switch.
- 5. The hardware clears the OSWEN bit to indicate a successful clock transition. In addition, the NOSC bit values are transferred to the COSC status bits.
- The old clock source is turned off at this time, with the exception of LPRC (if WDT or FSCM are enabled) or LP (if LPOSCEN remains set).
 - Note 1: The processor continues to execute code throughout the clock switching sequence. Timing-sensitive code should not be executed during this time.
 - 2: Direct clock switches between any primary oscillator mode with PLL and FRCPLL mode are not permitted. This applies to clock switches in either direction. In these instances, the application must switch to FRC mode as a transition clock source between the two PLL modes.

8.3 Fail-Safe Clock Monitor (FSCM)

The Fail-Safe Clock Monitor (FSCM) allows the device to continue to operate even in the event of an oscillator failure. The FSCM function is enabled by programming. If the FSCM function is enabled, the LPRC internal oscillator runs at all times (except during Sleep mode) and is not subject to control by the Watchdog Timer.

In the event of an oscillator failure, the FSCM generates a clock failure trap event and switches the system clock over to the FRC oscillator. Then the application program can either attempt to restart the oscillator or execute a controlled shutdown. The trap can be treated as a warm Reset by simply loading the Reset address into the oscillator fail trap vector.

If the PLL multiplier is used to scale the system clock, the internal FRC is also multiplied by the same factor on clock failure. Essentially, the device switches to FRC with PLL on a clock failure.

9.0 POWER-SAVING FEATURES

Note:	This data sheet summarizes the feature	es
	of the PIC24HJ32GP302/30	4,
	PIC24HJ64GPX02/X04, ai	nd
	PIC24HJ128GPX02/X04 families	of
	devices. It is not intended to be a compr	e-
	hensive reference source. To compleme	nt
	the information in this data sheet, refer	
	the PIC24H Family Reference Manua	
	"Section 9. Watchdog Timer and Pow	er
	Savings Modes" (DS70236), which	
	available from the Microchip webs	te
	(www.microchip.com).	

The PIC24HJ32GP302/304, PIC24HJ64GPX02/X04, and PIC24HJ128GPX02/X04 devices provide the ability to manage power consumption by selectively managing clocking to the CPU and the peripherals. In general, a lower clock frequency and a reduction in the number of circuits being clocked constitutes lower consumed power. PIC24HJ32GP302/304, PIC24HJ64GPX02/X04, and PIC24HJ128GPX02/X04 devices can manage power consumption in four ways:

- · Clock frequency
- Instruction-based Sleep and Idle modes
- · Software-controlled Doze mode
- Selective peripheral control in software

Combinations of these methods can be used to selectively tailor an application's power consumption while still maintaining critical application features, such as timing-sensitive communications.

9.1 Clock Frequency and Clock Switching

PIC24HJ32GP302/304, PIC24HJ64GPX02/X04, and PIC24HJ128GPX02/X04 devices allow a wide range of clock frequencies to be selected under application control. If the system clock configuration is not locked, users can choose low-power or high-precision oscillators by simply changing the NOSC bits (OSCCON<10:8>). The process of changing a system clock during operation, as well as limitations to the process, are discussed in more detail in **Section 8.0 "Oscillator Configuration"**.

9.2 Instruction-Based Power-Saving Modes

PIC24HJ32GP302/304, PIC24HJ64GPX02/X04, and PIC24HJ128GPX02/X04 devices have two special power-saving modes that are entered through the execution of a special PWRSAV instruction. Sleep mode stops clock operation and halts all code execution. Idle mode halts the CPU and code execution, but allows peripheral modules to continue operation. The assembler syntax of the PWRSAV instruction is shown in Example 9-1.

Note: SLEEP_MODE and IDLE_MODE are constants defined in the assembler include file for the selected device.

Sleep and Idle modes can be exited as a result of an enabled interrupt, WDT time-out or a device Reset. When the device exits these modes, it is said to wake up.

9.2.1 SLEEP MODE

The following occur in Sleep mode:

- The system clock source is shut down. If an on-chip oscillator is used, it is turned off.
- The device current consumption is reduced to a minimum, provided that no I/O pin is sourcing current.
- The Fail-Safe Clock Monitor does not operate, since the system clock source is disabled.
- The LPRC clock continues to run in Sleep mode if the WDT is enabled.
- The WDT, if enabled, is automatically cleared prior to entering Sleep mode.
- Some device features or peripherals can continue to operate. This includes items such as the input change notification on the I/O ports, or peripherals that use an external clock input.
- Any peripheral that requires the system clock source for its operation is disabled.

The device wakes up from Sleep mode on any of the these events:

- · Any interrupt source that is individually enabled
- Any form of device Reset
- A WDT time-out

On wake-up from Sleep mode, the processor restarts with the same clock source that was active when Sleep mode was entered.

EXAMPLE 9-1: PWRSAV INSTRUCTION SYNTAX

 PWRSAV
 #SLEEP_MODE
 ; Put the device into SLEEP mode

 PWRSAV
 #IDLE MODE
 ; Put the device into IDLE mode

9.2.2 IDLE MODE

The following occur in Idle mode:

- The CPU stops executing instructions.
- The WDT is automatically cleared.
- The system clock source remains active. By default, all peripheral modules continue to operate normally from the system clock source, but can also be selectively disabled (see Section 9.4 "Peripheral Module Disable").
- If the WDT or FSCM is enabled, the LPRC also remains active.

The device wakes from Idle mode on any of these events:

- Any interrupt that is individually enabled
- Any device Reset
- A WDT time-out

On wake-up from Idle mode, the clock is reapplied to the CPU and instruction execution begins immediately, starting with the instruction following the PWRSAV instruction, or the first instruction in the ISR.

9.2.3 INTERRUPTS COINCIDENT WITH POWER SAVE INSTRUCTIONS

Any interrupt that coincides with the execution of a PWRSAV instruction is held off until entry into Sleep or Idle mode has completed. The device then wakes up from Sleep or Idle mode.

9.3 Doze Mode

The preferred strategies for reducing power consumption are changing clock speed and invoking one of the power-saving modes. In some circumstances, this cannot be practical. For example, it may be necessary for an application to maintain uninterrupted synchronous communication, even while it is doing nothing else. Reducing system clock speed can introduce communication errors, while using a power-saving mode can stop communications completely.

Doze mode is a simple and effective alternative method to reduce power consumption while the device is still executing code. In this mode, the system clock continues to operate from the same source and at the same speed. Peripheral modules continue to be clocked at the same speed, while the CPU clock speed is reduced. Synchronization between the two clock domains is maintained, allowing the peripherals to access the SFRs while the CPU executes code at a slower rate. Doze mode is enabled by setting the DOZEN bit (CLKDIV<11>). The ratio between peripheral and core clock speed is determined by the DOZE<2:0> bits (CLKDIV<14:12>). There are eight possible configurations, from 1:1 to 1:128, with 1:1 being the default setting.

Programs can use Doze mode to selectively reduce power consumption in event-driven applications. This allows clock-sensitive functions, such as synchronous communications, to continue without interruption while the CPU idles, waiting for something to invoke an interrupt routine. An automatic return to full-speed CPU operation on interrupts can be enabled by setting the ROI bit (CLKDIV<15>). By default, interrupt events have no effect on Doze mode operation.

For example, suppose the device is operating at 20 MIPS and the ECAN module has been configured for 500 kbps based on this device operating speed. If the device is placed in Doze mode with a clock frequency ratio of 1:4, the ECAN module continues to communicate at the required bit rate of 500 kbps, but the CPU now starts executing instructions at a frequency of 5 MIPS.

9.4 Peripheral Module Disable

The Peripheral Module Disable (PMD) registers provide a method to disable a peripheral module by stopping all clock sources supplied to that module. When a peripheral is disabled using the appropriate PMD control bit, the peripheral is in a minimum power consumption state. The control and status registers associated with the peripheral are also disabled, so writes to those registers do not have effect and read values are invalid.

A peripheral module is enabled only if both the associated bit in the PMD register is cleared and the peripheral is supported by the specific PIC MCU variant. If the peripheral is present in the device, it is enabled in the PMD register by default.

Note: If a PMD bit is set, the corresponding module is disabled after a delay of one instruction cycle. Similarly, if a PMD bit is cleared, the corresponding module is enabled after a delay of one instruction cycle (assuming the module control registers are already configured to enable module operation).

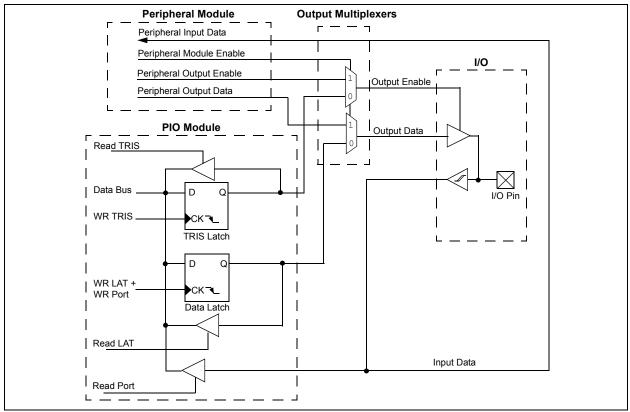
10.0 I/O PORTS

Note:	This data sheet summarizes the features
	of the PIC24HJ32GP302/304,
	PIC24HJ64GPX02/X04, and
	PIC24HJ128GPX02/X04 families of
	devices. It is not intended to be a
	comprehensive reference source. To
	complement the information in this data
	sheet, refer to the PIC24H Family
	Reference Manual, "Section 10. I/O
	Ports" (DS70230), which is available
	from the Microchip website
	(www.microchip.com).

All of the device pins (except VDD, VSS, MCLR and OSC1/CLKI) are shared among the peripherals and the parallel I/O ports. All I/O input ports feature Schmitt Trigger inputs for improved noise immunity.

10.1 Parallel I/O (PIO) Ports

Generally a parallel I/O port that shares a pin with a peripheral is subservient to the peripheral. The peripheral's output buffer data and control signals are provided to a pair of multiplexers. The multiplexers select whether the peripheral or the associated port has ownership of the output data and control signals of the I/O pin. The logic also prevents "loop through," in which a port's digital output can drive the input of a peripheral that shares the same pin. Figure 10-1 shows how ports are shared with other peripherals and the associated I/O pin to which they are connected.


When a peripheral is enabled and the peripheral is actively driving an associated pin, the use of the pin as a general purpose output pin is disabled. The I/O pin can be read, but the output driver for the parallel port bit is disabled. If a peripheral is enabled, but the peripheral is not actively driving a pin, that pin can be driven by a port.

All port pins have three registers directly associated with their operation as digital I/O. The data direction register (TRISx) determines whether the pin is an input or an output. If the data direction bit is a '1', then the pin is an input. All port pins are defined as inputs after a Reset. Reads from the latch (LATx) read the latch. Writes to the latch write the latch. Reads from the port (PORTx) read the port pins, while writes to the port pins write the latch.

Any bit and its associated data and control registers that are not valid for a particular device is disabled. This means the corresponding LATx and TRISx registers and the port pin are read as zeros.

When a pin is shared with another peripheral or function that is defined as an input only, it is nevertheless regarded as a dedicated port because there is no other competing source of outputs.

FIGURE 10-1: BLOCK DIAGRAM OF A TYPICAL SHARED PORT STRUCTURE

© 2008 Microchip Technology Inc.

10.1.1 OPEN-DRAIN CONFIGURATION

In addition to the PORT, LAT and TRIS registers for data control, some port pins can also be individually configured for either digital or open-drain output. This is controlled by the Open-Drain Control register, ODCx, associated with each port. Setting any of the bits configures the corresponding pin to act as an open-drain output. The open-drain feature allows the generation of outputs higher than VDD (e.g., 5V) on any desired digital-only pins by using external pull-up resistors. The maximum open-drain voltage allowed is the same as the maximum VIH specification.

Some I/O pins may have internal analog functionality that will not be shown on the device pin diagram. These pins must be treated as analog pins. Table 10-1 lists all available pins and their functionality.

I/O Pin	Digital Only/5V Tolerant	I/O Pin	Digital Only/5V Tolerant
RA0	No	RB9	Yes
RA1	No	RB10	Yes
RA2	No	RB11	Yes
RA3	No	RB12	No
RA4	No	RB13	No
RA7	Yes	RB14	No
RA8	Yes	RB15	No
RA9	Yes	RC0	No
RA10	Yes	RC1	No
RB0	No	RC2	No
RB1	No	RC3	Yes
RB2	No	RC4	Yes
RB3	No	RC5	Yes
RB4	No	RC6	Yes
RB5	Yes	RC7	Yes
RB6	Yes	RC8	Yes
RB7	Yes	RC9	Yes
RB8	Yes		

10.2 Configuring Analog Port Pins

The AD1PCFGL and TRIS registers control the operation of the analog-to-digital (A/D) port pins. The port pins that are to function as analog inputs must have their corresponding TRIS bit set (input). If the TRIS bit is cleared (output), the digital output level (VOH or VOL) is converted.

When the PORT register is read, all pins configured as analog input channels are read as cleared (a low level).

Pins configured as digital inputs do not convert an analog input. Analog levels on any pin defined as a digital input (including the ANx pins) can cause the input buffer to consume current that exceeds the device specifications.

10.2.1 I/O PORT WRITE/READ TIMING

One instruction cycle is required between a port direction change or port write operation and a read operation of the same port. Typically this instruction would be an NOP, as shown in Example 10-1.

10.3 Input Change Notification

The input change notification function of the I/O ports allows the PIC24HJ32GP302/304, PIC24HJ64GPX02/ X04, and PIC24HJ128GPX02/X04 devices to generate interrupt requests to the processor in response to a change-of-state on selected input pins. This feature can detect input change-of-states even in Sleep mode, when the clocks are disabled. Depending on the device pin count, up to 21 external signals (CNx pin) can be selected (enabled) for generating an interrupt request on a change-of-state.

Four control registers are associated with the CN module. The CNEN1 and CNEN2 registers contain the interrupt enable control bits for each of the CN input pins. Setting any of these bits enables a CN interrupt for the corresponding pins. Each CN pin also has a weak pull-up connected to it. The pull-ups act as a current source connected to the pin, and eliminate the need for external resistors when push-button or keypad devices are connected. The pull-ups are enabled separately using the CNPU1 and CNPU2 registers, which contain the control bits for each of the CN pins. Setting any of the control bits enables the weak pull-ups for the corresponding pins.

Note: Pull-ups on change notification pins should always be disabled when the port pin is configured as a digital output.

EXAMPLE 10-1: PORT WRITE/READ EXAMPLE

MOV	OxFFOO, WO	; Configure PORTB<15:8> as inputs
MOV	WO, TRISBB	; and PORTB<7:0> as outputs
NOP		; Delay 1 cycle
btss	PORTB, #13	; Next Instruction

10.4 Peripheral Pin Select

Peripheral pin select configuration enables peripheral set selection and placement on a wide range of I/O pins. By increasing the pinout options available on a particular device, programmers can better tailor the microcontroller to their entire application, rather than trimming the application to fit the device.

The peripheral pin select configuration feature operates over a fixed subset of digital I/O pins. Programmers can independently map the input and/or output of most digital peripherals to any one of these I/O pins. Peripheral pin select is performed in software, and generally does not require the device to be reprogrammed. Hardware safeguards are included that prevent accidental or spurious changes to the peripheral mapping, once it has been established.

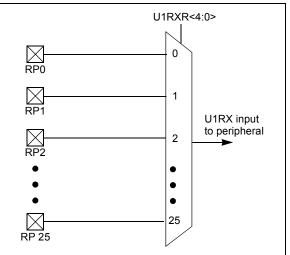
10.4.1 AVAILABLE PINS

The peripheral pin select feature is used with a range of up to 26 pins. The number of available pins depends on the particular device and its pin count. Pins that support the peripheral pin select feature include the designation "RPn" in their full pin designation, where "RP" designates a remappable peripheral and "n" is the remappable pin number.

10.4.2 CONTROLLING PERIPHERAL PIN SELECT


Peripheral pin select features are controlled through two sets of special function registers: one to map peripheral inputs, and one to map outputs. Because they are separately controlled, a particular peripheral's input and output (if the peripheral has both) can be placed on any selectable function pin without constraint.

The association of a peripheral to a peripheral selectable pin is handled in two different ways, depending on whether an input or output is being mapped.


10.4.2.1 Input Mapping

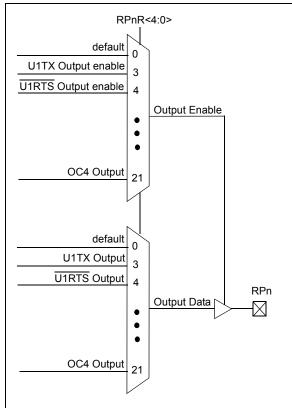
The inputs of the peripheral pin select options are mapped on the basis of the peripheral. A control register associated with a peripheral dictates the pin it is mapped to. The RPINRx registers are used to configure peripheral input mapping (see Register 10-1 through Register 10-14). Each register contains sets of 5-bit fields, with each set associated with one of the remappable peripherals. Programming a given peripheral's bit field with an appropriate 5-bit value maps the RPn pin with that value to that peripheral. For any given device, the valid range of values for any bit field corresponds to the maximum number of peripheral pin selections supported by the device.

Figure 10-2 Illustrates remappable pin selection for U1RX input.

REMAPPABLE MUX INPUT FOR U1RX

Input Name	Function Name	Register	Configuration Bits
External Interrupt 1	INT1	RPINR0	INT1R<4:0>
External Interrupt 2	INT2	RPINR1	INT2R<4:0>
Timer2 External Clock	T2CK	RPINR3	T2CKR<4:0>
Timer3 External Clock	T3CK	RPINR3	T3CKR<4:0>
Timer4 External Clock	T4CK	RPINR4	T4CKR<4:0>
Timer5 External Clock	T5CK	RPINR4	T5CKR<4:0>
Input Capture 1	IC1	RPINR7	IC1R<4:0>
Input Capture 2	IC2	RPINR7	IC2R<4:0>
Input Capture 7	IC7	RPINR10	IC7R<4:0>
Input Capture 8	IC8	RPINR10	IC8R<4:0>
Output Compare Fault A	OCFA	RPINR11	OCFAR<4:0>
UART1 Receive	U1RX	RPINR18	U1RXR<4:0>
UART1 Clear To Send	U1CTS	RPINR18	U1CTSR<4:0>
UART2 Receive	U2RX	RPINR19	U2RXR<4:0>
UART2 Clear To Send	U2CTS	RPINR19	U2CTSR<4:0>
SPI1 Data Input	SDI1	RPINR20	SDI1R<4:0>
SPI1 Clock Input	SCK1	RPINR20	SCK1R<4:0>
SPI1 Slave Select Input	SS1	RPINR21	SS1R<4:0>
SPI2 Data Input	SDI2	RPINR22	SDI2R<4:0>
SPI2 Clock Input	SCK2	RPINR22	SCK2R<4:0>
SPI2 Slave Select Input	SS2	RPINR23	SS2R<4:0>
ECAN1 Receive	CIRX	RPINR26	CIRXR<4:0>

TABLE 10-2: SELECTABLE INPUT SOURCES (MAPS INPUT TO FUNCTION)⁽¹⁾


Note 1: Unless otherwise noted, all inputs use Schmitt input buffers.

10.4.2.2 Output Mapping

In contrast to inputs, the outputs of the peripheral pin select options are mapped on the basis of the pin. In this case, a control register associated with a particular pin dictates the peripheral output to be mapped. The RPORx registers are used to control output mapping. Like the RPINRx registers, each register contains sets of 5-bit fields, with each set associated with one RPn pin (see Register 10-15 through Register). The value of the bit field corresponds to one of the peripherals, and that peripheral's output is mapped to the pin (see Table 10-3 and Figure 10-3).

The list of peripherals for output mapping also includes a null value of '00000' because of the mapping technique. This permits any given pin to remain unconnected from the output of any of the pin selectable peripherals.

FIGURE 10-3: MULTIPLEXING OF REMAPPABLE OUTPUT FOR RPn

TABLE 10-3: OUTPUT SELECTION FOR REMAPPABLE PIN (RPn)

Function	RPnR<4:0>	Output Name
NULL	00000	RPn tied to default port pin
C1OUT	00001	RPn tied to Comparator1 Output
C2OUT	00010	RPn tied to Comparator2 Output
U1TX	00011	RPn tied to UART1 Transmit
U1RTS	00100	RPn tied to UART1 Ready To Send
U2TX	00101	RPn tied to UART2 Transmit
U2RTS	00110	RPn tied to UART2 Ready To Send
SDO1	00111	RPn tied to SPI1 Data Output
SCK10UT	01000	RPn tied to SPI1 Clock Output
SS1OUT	01001	RPn tied to SPI1 Slave Select Output
SDO2	01010	RPn tied to SPI2 Data Output
SCK2OUT	01011	RPn tied to SPI2 Clock Output
SS2OUT	01100	RPn tied to SPI2 Slave Select Output
C1TX	10000	RPn tied to ECAN1 Transmit
OC1	10010	RPn tied to Output Compare 1
OC2	10011	RPn tied to Output Compare 2
OC3	10100	RPn tied to Output Compare 3
OC4	10101	RPn tied to Output Compare 4

10.4.3 CONTROLLING CONFIGURATION CHANGES

Because peripheral remapping can be changed during run time, some restrictions on peripheral remapping are needed to prevent accidental configuration changes. PIC24H devices include three features to prevent alterations to the peripheral map:

- · Control register lock sequence
- Continuous state monitoring
- Configuration bit pin select lock

10.4.3.1 Control Register Lock

Under normal operation, writes to the RPINRx and RPORx registers are not allowed. Attempted writes appear to execute normally, but the contents of the registers remain unchanged. To change these registers, they must be unlocked in hardware. The register lock is controlled by the IOLOCK bit (OSCCON<6>). Setting IOLOCK prevents writes to the control registers; clearing IOLOCK allows writes.

To set or clear IOLOCK, a specific command sequence must be executed:

- 1. Write 0x46 to OSCCON<7:0>.
- 2. Write 0x57 to OSCCON<7:0>.
- 3. Clear (or set) IOLOCK as a single operation.

```
Note: MPLAB<sup>®</sup> C30 provides built-in C language
functions for unlocking the OSCCON
register:
__builtin_write_OSCCONL(value)
__builtin_write_OSCCONH(value)
See MPLAB Help for more information.
```

Unlike the similar sequence with the oscillator's LOCK bit, IOLOCK remains in one state until changed. This allows all of the peripheral pin selects to be configured with a single unlock sequence followed by an update to all control registers, then locked with a second lock sequence.

10.4.3.2 Continuous State Monitoring

In addition to being protected from direct writes, the contents of the RPINRx and RPORx registers are constantly monitored in hardware by shadow registers. If an unexpected change in any of the registers occurs (such as cell disturbances caused by ESD or other external events), a configuration mismatch Reset is triggered.

10.4.3.3 Configuration Bit Pin Select Lock

As an additional level of safety, the device can be configured to prevent more than one write session to the RPINRx and RPORx registers. The IOL1WAY (FOSC<5>) configuration bit blocks the IOLOCK bit from being cleared after it has been set once. If IOLOCK remains set, the register unlock procedure does not execute, and the peripheral pin select control registers cannot be written to. The only way to clear the bit and re-enable peripheral remapping is to perform a device Reset.

In the default (unprogrammed) state, IOL1WAY is set, restricting users to one write session. Programming IOL1WAY allows user applications unlimited access (with the proper use of the unlock sequence) to the peripheral pin select registers.

10.5 Peripheral Pin Select Registers

The PIC24HJ32GP302/304, PIC24HJ64GPX02/X04, and PIC24HJ128GPX02/X04 family of devices implement 27 registers for remappable peripheral configuration:

- 14 Input Remappable Peripheral Registers:
 - RPINR0-RPINR1, RPINR3-RPINR4, RPINR7, RPINR10-RPINR11, RPINR18-RPINR23, and PRINR26
- 13 Output Remappable Peripheral Registers:
 - RPOR0-RPOR12

Note:	Input and Output Register values can only								
	be changed if the IOLOCK bit								
	(OS	CCON<6>)	is	set	to	'0'.	See		
	Section 10.4.3.1 "Control Register								
	Loc	k" for a spec	cific	comm	and	seque	nce.		

REGISTER 10-1: RPINR0: PERIPHERAL PIN SELECT INPUT REGISTER 0

U-0	U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
—	—	-			INT1R<4:0>		
bit 15							bit 8

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	_	—	—	—	—
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit,	, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-13	Unimplemented: Read as '0'
bit 12-8	INT1R<4:0>: Assign External Int

bit 12-8	INT1R<4:0>: Assign External Interrupt 1 (INTR1) to the corresponding RPn pin 11111 = Input tied to Vss
	11001 = Input tied to VSS
	•
	•
	•
	00001 = Input tied to RP1
	00000 = Input tied to RP0
bit 7-0	Unimplemented: Read as '0'

REGISTER 10-2: RPINR1: PERIPHERAL PIN SELECT INPUT REGISTER 1

11.0	11.0	11.0	11.0	11.0	11.0	11.0	11.0	
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	
	—	—	—		—	—	—	
bit 15							bit 8	
U-0	U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	
_	_		INT2R<4:0>					
bit 7							bit 0	
Legend:								
R = Readable	bit	W = Writable	bit	U = Unimplemented bit, read as '0'				
-n = Value at POR '1' = Bit is set				0° = Bit is cleared x = Bit is unknown				
bit 15-5	Unimplemen	ted: Read as '	D'					

bit 4-0 INTR2R<4:0>: Assign External Interrupt 2 (INTR2) to the corresponding RPn pin 11111 = Input tied to Vss 11001 = Input tied to RP25 •

> • 00001 = Input tied to RP1 00000 = Input tied to RP0

© 2008 Microchip Technology Inc.

REGISTER	10-3: RPINF	R3: PERIPHE	RAL PIN SE			3			
U-0	U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1		
_		_			T3CKR<4:0>				
bit 15							bit 8		
U-0	U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1		
—	—	_			T2CKR<4:0>				
bit 7		I					bit 0		
Legend:									
R = Readabl	e bit	W = Writable	e bit	U = Unimpler	mented bit, read	d as '0'			
-n = Value at	POR	'1' = Bit is se	t	'0' = Bit is cleared			x = Bit is unknown		
bit 15-13	-	ited: Read as							
bit 12-8		•	r3 External Clo	ock (T3CK) to t	he correspondi	ng RPn pin			
	11111 = Inpu 11001 = Inpu	it fied to VSS it fied to RP25							
	•								
	•								
	•								
	00001 = Inpu 00000 = Inpu								

T2CKR<4:0>: Assign Timer2 External Clock (T2CK) to the corresponding RPn pin

bit 4-0

11111 = Input tied to Vss 11001 = Input tied to RP25

00001 = Input tied to RP1 00000 = Input tied to RP0

.

U-0	U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1			
	_	_			T5CKR<4:0	>				
bit 15							bit 8			
U-0	U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1			
_	_	_			T4CKR<4:0	>				
bit 7							bit C			
Legend:										
R = Readab	le bit	W = Writable	bit	U = Unimpler	mented bit, rea	ad as '0'				
-n = Value at POR '1' = Bit is set		t	'0' = Bit is cleared x = Bit			nown				
	11111 = Inpu 11001 = Inpu •	it fied to VSS it fied to RP25								
	• 00001 = Inp u 00000 = Inp u									
bit 7-5	Unimplemen	ted: Read as '	0'							
bit 4-0	11111 = Inp u	T4CKR<4:0>: Assign Timer4 External Clock (T4CK) to the corresponding RPn pin 11111 = Input tied to Vss 11001 = Input tied to RP25								
	• •									

U-0	U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
_	_	_			IC2R<4:0>		
bit 15							bit 8
U-0	U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
_	—	—			IC1R<4:0>		
bit 7		L					bit (
Legend:							
R = Readab	le bit	W = Writable	bit	U = Unimpler	mented bit, read	d as '0'	
-n = Value a	t POR	'1' = Bit is set	t	'0' = Bit is cleared x = Bit is unknown			nown
bit 15-13	Unimplemen	ted: Read as '	0'				
bit 12-8	IC2R<4:0>: A	ssign Input Ca	apture 2 (IC2)	to the correspo	onding RPn pin		
	11111 = Inpu 11001 = Inpu	t tied to Vss t tied to RP25					
	•						
	•						
	•						
	00001 = Inpu 00000 = Inpu						
bit 7-5	Unimplemen	ted: Read as '	0'				
bit 4-0	IC1R<4:0>: A 11111 = Inpu	•	apture 1 (IC1)	to the correspo	onding RPn pin		

11001 = Input tied to RP25.

U-0	U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	
_	—	_			IC8R<4:0>			
bit 15							bit 8	
U-0	U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	
_					IC7R<4:0>			
bit 7	·						bit C	
Legend:								
R = Readab	le bit	W = Writable	bit	U = Unimplemented bit, read as '0'				
-n = Value at POR (1' = Bit is se		'1' = Bit is set		'0' = Bit is cleared		x = Bit is unknown		
bit 12-8	11111 = Inp 11001 = Inp • • • • • • • • • • • • • • • • • • •	Assign Input Ca ut tied to Vss ut tied to RP25 ut tied to RP1 ut tied to RP0		to the correspo	onding pin RPn	pin		
bit 7-5	Unimpleme	nted: Read as ')'					
bit 4-0	11111 = Inp	Assign Input Ca ut tied to Vss ut tied to RP25	pture 7 (IC7)	to the correspo	onding pin RPn	pin		

00000 = Input tied to RP0

© 2008 Microchip Technology Inc.

REGISTER 10-7: RPINR11: PERIPHERAL PIN SELECT INPUT REGISTER 11

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	_	—	—	—	—
bit 15							bit 8
U-0	U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
—		—			OCFAR<4:0>		
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	e bit U = Unimplemented bit, read as '0'				
-n = Value at P	POR	'1' = Bit is set					

bit 15-5 Unimplemented: Read as '0'

bit 4-0 OCFAR<4:0>: Assign Output Compare A (OCFA) to the corresponding RPn pin

- 11111 = Input tied to Vss
 11001 = Input tied to RP25
 .
- •

U-0	U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1		
—	_	_	U1CTSR<4:0>						
bit 15							bit		
U-0	U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1		
_	_	_	U1RXR<4:0>						
bit 7							bit		
<u> </u>									
Legend: R = Readable bit W = Wr		W = Writable	bit U = Unimplemented bit, read as '0'						
-n = Value at POR		'1' = Bit is set				x = Bit is unknown			
bit 15-13	Unimplemented: Read as '0'								
bit 12-8	U1CTSR<4:0>: Assign UART1 Clear to Send (U1CTS) to the corresponding RPn pin								
	11111 = Input tied to Vss 11001 = Input tied to RP25								
	• •	Dut tied to RP25							
	•								
	•								
		out tied to RP1							
	00000 = Input tied to RP0								
bit 7-5	Unimplemented: Read as '0'								
bit 4-0	U1RXR<4:0>: Assign UART1 Receive (U1RX) to the corresponding RPn pin								
	11111 = Input tied to Vss 11001 = Input tied to RP25								
	• 11001 – III								
	•								
	•								
	00001 = Ing	out tied to RP1							

REGISTER 10-8: RPINR18: PERIPHERAL PIN SELECT INPUT REGISTER 18

U-0	U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1		
_	_	_			U2CTSR<4:0)>			
bit 15							bit 8		
U-0	U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1		
_			U2RXR<4:0>						
bit 7							bit C		
Legend:									
R = Readab	le bit	W = Writable b	it	U = Unimpler	nented bit, rea	ad as '0'			
-n = Value at POR		'1' = Bit is set	t '0' = Bit is cleared		ared	x = Bit is unknown			
bit 12-8	11111 = Inpu 11001 = Inpu •	it tied to RP25							
	00001 = Input tied to RP1 00000 = Input tied to RP0								
bit 7-5	Unimplemented: Read as '0'								
bit 7-5	Unimplemen	ted: Read as '0	,						

U-0	U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1		
_			SCK1R<4:0>						
bit 15							bit 8		
U-0	U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1		
		_	SDI1R<4:0>						
bit 7							bit 0		
Legend:									
R = Readable	e bit	W = Writable I	bit U = Unimplemented bit, read as '0'						
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cleared		x = Bit is unknown			
	•	ut tied to RP25							
	00001 = Input tied to RP1 00000 = Input tied to RP0								
bit 7-5	Unimplemented: Read as '0'								
bit 4-0	11111 = Inpu	Assign SPI1 D ut tied to Vss ut tied to RP25	ata Input (SD	I1) to the corre	sponding RPr	ו pin			
	•								

REGISTER 10-11: RPINR21: PERIPHERAL PIN SELECT INPUT REGISTER 21

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	_	—	—	—	—
bit 15							bit 8
U-0	U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
—	—	—	SS1R<4:0>				
bit 7							bit 0
Legend:							
R = Readable bit W = Writable b			bit U = Unimplemented bit, read as '0'				
-n = Value at POR (1' = Bit is set			'0' = Bit is cleared x = Bit is unknown			nown	

bit 15-5 Unimplemented: Read as '0'

bit 4-0 SS1R<4:0>: Assign SPI1 Slave Select Input (SS1) to the corresponding RPn pin

	Input tied to Vss Input tied to RP25
•	
•	

•

REGISTER 10-12: RPINR22: PERIPHERAL PIN SELECT INPUT REGISTER 22

	-									
U-0	U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1			
_		_			SCK2R<4:0	>				
bit 15			•				bit 8			
U-0	U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1			
_		_			SDI2R<4:0	>				
bit 7							bit (
Legend:										
R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'										
-n = Value at POR '1' = Bit is s				'0' = Bit is cle	ared	x = Bit is unki	nown			
		ut tied to Vss ut tied to RP25								
		00001 = Input tied to RP1 00000 = Input tied to RP0								
bit 7-5	Unimpleme	nted: Read as '	0'							
bit 4-0	11111 = Inp 11001 = Inp •	: Assign SPI2 D ut tied to Vss ut tied to RP25 ut tied to RP1	ata Input (SD	I2) to the corre	sponding RPr	n pin				
		ut tied to RP1 ut tied to RP0								

REGISTER 10-13: RPINR23: PERIPHERAL PIN SELECT INPUT REGISTER 23

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	_	—	—	—	—
bit 15							bit 8
U-0	U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
—	—	—	SS2R<4:0>				
bit 7	•						bit 0
Legend:							
R = Readable bit W = Writable bit			bit	U = Unimplemented bit, read as '0'			
-n = Value at POR '1' = Bit is set '0' = Bit is cleared			x = Bit is unkr	nown			

bit 15-5 Unimplemented: Read as '0'

bit 4-0 **SS2R<4:0>:** Assign SPI2 Slave Select Input (SS2) to the corresponding RPn pin

11111 = Input tied to Vss 11001 = Input tied to RP25 • • • 00001 = Input tied to RP1

00000 = Input tied to RP0

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	
—	—		_	_	—	—		
bit 15							bit 8	
U-0	U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	
—	—	—			C1RXR<4:0>			
bit 7 bit 0							bit 0	
Legend:								
R = Readable	e bit	W = Writable	bit	U = Unimpler	mented bit, read	as '0'		
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	eared x = Bit is unki		nown	
bit 15-5	Unimplemen	ted: Read as ') `					
bit 4-0	C1RXR<4:0>	: Assign ECAN	1Receive (C1	RX) to the cor	responding RPr	n pin		
	11111 = Inpu	t tied to Vss						
	11001 = Inpu	it tied to RP25						
•								
	•							
	•							
	00001 = Input tied to RP1							

REGISTER 10-14: RPINR26: PERIPHERAL PIN SELECT INPUT REGISTER 26⁽¹⁾

Note 1: This register is disabled on devices without ECAN™.

00000 = Input tied to RP0

REGISTER 10-15: RPOR0: PERIPHERAL PIN SELECT OUTPUT REGISTERS 0

U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	—			RP1R<4:0>		
bit 15							bit 8
U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	—	RP0R<4:0>				
bit 7							bit 0
Legend:							
R = Readable bit W = Writable b			bit U = Unimplemented bit, read as '0'				
-n = Value at POR '1' = Bit is set		'0' = Bit is cleared x = Bit is unknown			nown		

bit 15-13	Unimplemented: Read as '0'
bit 12-8	RP1R<4:0>: Peripheral Output Function is Assigned to RP1 Output Pin bits (see Table 10-3 for peripheral function numbers)
bit 7-5	Unimplemented: Read as '0'
hit 4-0	PDOR<4:0>: Perinheral Output Eurotion is Assigned to RPO Output Pin hits (see Table 10-3 for

bit 4-0 **RP0R<4:0>:** Peripheral Output Function is Assigned to RP0 Output Pin bits (see Table 10-3 for peripheral function numbers)

REGISTER 10-16: RPOR1: PERIPHERAL PIN SELECT OUTPUT REGISTERS 1

U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	—			RP3R<4:0>		
bit 15							bit 8

U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	—			RP2R<4:0>		
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit,	read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-13 Unimplemented: Read as '0'

bit 12-8 **RP3R<4:0>:** Peripheral Output Function is Assigned to RP3 Output Pin bits (see Table 10-3 for peripheral function numbers)

bit 7-5 Unimplemented: Read as '0'

bit 4-0 **RP2R<4:0>:** Peripheral Output Function is Assigned to RP2 Output Pin bits (see Table 10-3 for peripheral function numbers)

© 2008 Microchip Technology Inc.

REGISTER 10-17: RPOR2: PERIPHERAL PIN SELECT OUTPUT REGISTERS 2

-n = Value at F	YUR	'1' = Bit is set		ʻ0' = Bit is cle	area	x = Bit is unkr	IOWN
R = Readable		W = Writable I	oit	•	nented bit, rea		
Legend:							
bit 7							bit 0
bit 7					111 411-4.02	-	bit 0
	<u> </u>	_			RP4R<4:0>	•	
U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
bit 15							bit 8
_					RP5R<4:0>	•	
U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0

- bit 12-8 **RP5R<4:0>:** Peripheral Output Function is Assigned to RP5 Output Pin bits (see Table 10-3 for peripheral function numbers)
- bit 7-5 Unimplemented: Read as '0'
- bit 4-0 **RP4R<4:0>:** Peripheral Output Function is Assigned to RP4 Output Pin bits (see Table 10-3 for peripheral function numbers)

REGISTER 10-18: RPOR3: PERIPHERAL PIN SELECT OUTPUT REGISTERS 3

U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	—			RP7R<4:0>		
bit 15							bit 8

U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	—			RP6R<4:0>		
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	l as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-13 Unimplemented: Read as '0'

bit 12-8 **RP7R<4:0>:** Peripheral Output Function is Assigned to RP7 Output Pin bits (see Table 10-3 for peripheral function numbers)

bit 7-5 Unimplemented: Read as '0'

bit 4-0 **RP6R<4:0>:** Peripheral Output Function is Assigned to RP6 Output Pin bits (see Table 10-3 for peripheral function numbers)

REGISTER 10-19: RPOR4: PERIPHERAL PIN SELECT OUTPUT REGISTERS 0

U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
	—	_			RP9R<4:0>		
bit 15							bit 8
U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
	—	—			RP8R<4:0>		
bit 7							bit 0
Legend:							
R = Readable bit W = Writable bit		bit	it U = Unimplemented bit, read as '0'				
-n = Value at POR '1' = Bit is set			'0' = Bit is cleared x = Bit is unknown			nown	

bit 15-13	Unimplemented: Read as '0'
bit 12-8	RP9R<4:0>: Peripheral Output Function is Assigned to RP9 Output Pin bits (see Table 10-3 for peripheral function numbers)
bit 7-5	Unimplemented: Read as '0'
bit 4-0	RP8R<4:0>: Peripheral Output Function is Assigned to RP8 Output Pin bits (see Table 10-3 for peripheral function numbers)

REGISTER 10-20: RPOR5: PERIPHERAL PIN SELECT OUTPUT REGISTERS 5

U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
—	—	—	RP11R<4:0>					
bit 15							bit 8	

U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	—			RP10R<4:0>		
bit 7							bit 0

Legend:					
R = Readable bit	W = Writable bit	U = Unimplemented bit,	U = Unimplemented bit, read as '0'		
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown		

bit 15-13 Unimplemented: Read as '0'

bit 12-8 **RP11R<4:0>:** Peripheral Output Function is Assigned to RP11 Output Pin bits (see Table 10-3 for peripheral function numbers)

bit 7-5 Unimplemented: Read as '0'

bit 4-0 **RP10R<4:0>:** Peripheral Output Function is Assigned to RP10 Output Pin bits (see Table 10-3 for peripheral function numbers)

U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
—	—	—			RP13R<4:0	>		
bit 15							bit 8	
U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
—	_	—	RP12R<4:0>					
bit 7							bit 0	
Legend:								
R = Readable	bit	W = Writable b	bit	U = Unimplemented bit, read as '0'				
-n = Value at POR '1' = Bit is set			'0' = Bit is cleared x = Bit is unknown			nown		

DIL 15-15	ommplemented. Read as 0
bit 12-8	RP13R<4:0>: Peripheral Output Function is Assigned to RP13 Output Pin bits (see Table 10-3 for peripheral function numbers)
bit 7-5	Unimplemented: Read as '0'
bit 4-0	RP12R<4:0>: Peripheral Output Function is Assigned to RP12 Output Pin bits (see Table 10-3 for

REGISTER 10-22: RPOR7: PERIPHERAL PIN SELECT OUTPUT REGISTERS 7

peripheral function numbers)

U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
—	—	—	RP15R<4:0>					
bit 15							bit 8	

U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	—			RP14R<4:0>		
bit 7							bit 0

Legend:					
R = Readable bit	W = Writable bit	le bit U = Unimplemented bit, read as '0'			
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown		

bit 15-13 Unimplemented: Read as '0'

bit 12-8 **RP15R<4:0>:** Peripheral Output Function is Assigned to RP15 Output Pin bits (see Table 10-3 for peripheral function numbers)

bit 7-5 Unimplemented: Read as '0'

bit 4-0 **RP14R<4:0>:** Peripheral Output Function is Assigned to RP14 Output Pin bits (see Table 10-3 for peripheral function numbers)

REGISTER 10-23: RPOR8: PERIPHERAL PIN SELECT OUTPUT REGISTERS 8⁽¹⁾

		W = Writable '1' = Bit is set				x = Bit is unknown		
Legend:	1.11							
bit 7							bit C	
	_	—	RP16R<4:0>					
U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
							bit e	
bit 15	1	ł					bit 8	
_	_	_		RP17R<4:0>				
U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	

bit 15-13	Unimplemented: Read as '0'
bit 12-8	RP17R<4:0>: Peripheral Output Function is Assigned to RP17 Output Pin bits (see Table 10-3 for peripheral function numbers)
bit 7-5	Unimplemented: Read as '0'
bit 4-0	RP16R<4:0>: Peripheral Output Function is Assigned to RP16 Output Pin bits (see Table 10-3 for peripheral function numbers)

Note 1: This register is implemented in 44-pin devices only.

REGISTER 10-24: RPOR9: PERIPHERAL PIN SELECT OUTPUT REGISTERS 9⁽¹⁾

U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	_	_			RP19R<4:0>	•	
bit 15							bit 8
U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	—	RP18R<4:0>				
bit 7							bit 0
Legend:							
R = Readable bit W = Writable bit			bit U = Unimplemented bit, read as '0'				
-n = Value at POR '1' = Bit is set				'0' = Bit is clea	ared	x = Bit is unkr	nown

bit 15-13 Unimplemented: Read as '0'

bit 12-8 RP19R<4:0>: Peripheral Output Function is Assigned to RP19 Output Pin bits (see Table 10-3 for peripheral function numbers)

bit 7-5 Unimplemented: Read as '0'

bit 4-0 RP18R<4:0>: Peripheral Output Function is Assigned to RP18 Output Pin bits (see Table 10-3 for peripheral function numbers)

Note 1: This register is implemented in 44-pin devices only.

U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
_	—	—			RP21R<4:0>	>		
bit 15		• •					bit 8	
U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
_	—	—			RP20R<4:0	>		
bit 7		• •					bit 0	
Legend:								
R = Readab	le bit	W = Writable	bit	bit U = Unimplemented bit, read as '0'				
-n = Value at POR '1' = Bit is set				'0' = Bit is cleared x = Bit is unknown			nown	
bit 15-13	Unimplemer	nted: Read as '	0'					
hit 12 0	DD04D-4.05	. Darinharal O	itaut Eurotia	a ia Apaignad ta		Din hita (ana Tal	alo 10 2 for	

bit 12-8	RP21R<4:0>: Peripheral Output Function is Assigned to RP21 Output Pin bits (see Table 10-3 for peripheral function numbers)
bit 7-5	Unimplemented: Read as '0'
bit 4-0	RP20R<4:0>: Peripheral Output Function is Assigned to RP20 Output Pin bits (see Table 10-3 for

Note 1: This register is implemented in 44-pin devices only.

peripheral function numbers)

U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	—			RP23R<4:0>		
bit 15							bit 8
U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	—			RP22R<4:0>		
bit 7							bit 0

REGISTER 10-26: RPOR11: PERIPHERAL PIN SELECT OUTPUT REGISTERS 11⁽¹⁾

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit,	read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-13 Unimplemented: Read as '0'

bit 12-8 **RP23R<4:0>:** Peripheral Output Function is Assigned to RP23 Output Pin bits (see Table 10-3 for peripheral function numbers)

bit 7-5 Unimplemented: Read as '0'

bit 4-0 **RP22R<4:0>:** Peripheral Output Function is Assigned to RP22 Output Pin bits (see Table 10-3 for peripheral function numbers)

Note 1: This register is implemented in 44-pin devices only.

. . .

RPOR12: PERIPHERAL PIN SELECT OUTPUT REGISTERS 12⁽¹⁾

U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
—	—	—			RP25R<4:0>	>		
bit 15							bit 8	
				D # 4 4	D # M / O	D 444 0	D 444 0	
U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
—	—	—			RP24R<4:0>	>		
bit 7							bit 0	
Legend:								
R = Readable	bit	W = Writable I	oit	it U = Unimplemented bit, read as '0'				
-n = Value at POR '1' = Bit is set				'0' = Bit is cle	ared	x = Bit is unkr	nown	
bit 15-13	Unimplemer	ited: Read as ')'					
bit 12-8		: Peripheral Ounction numbers)	•	n is Assigned to	RP25 Output	Pin bits (see Tal	ble 10-3 for	

bit 7-5 **Unimplemented:** Read as '0'

bit 4-0 **RP24R<4:0>:** Peripheral Output Function is Assigned to RP24 Output Pin bits (see Table 10-3 for peripheral function numbers)

Note 1: This register is implemented in 44-pin devices only.

NOTES:

11.0 TIMER1

Note:	This data sheet summarizes the features
	of the PIC24HJ32GP302/304,
	PIC24HJ64GPX02/X04, and
	PIC24HJ128GPX02/X04 families of
	devices. It is not intended to be a compre-
	hensive reference source. To complement
	the information in this data sheet, refer to
	the PIC24H Family Reference Manual,
	"Section 11. Timers" (DS70244), which
	is available from the Microchip website
	(www.microchip.com).

The Timer1 module is a 16-bit timer, which can serve as the time counter for the real-time clock, or operate as a free-running interval timer/counter.

The Timer1 module has the following unique features over other timers:

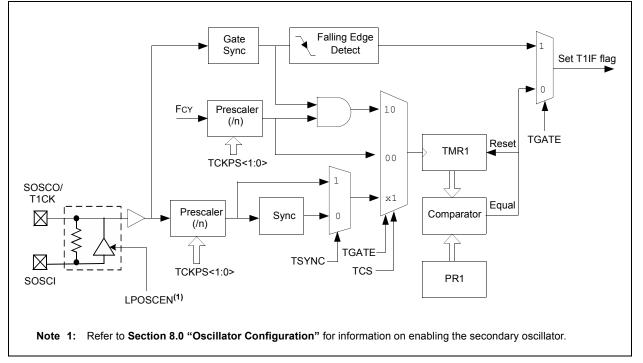
- Can be operated from the low power 32 kHz crystal oscillator available on the device
- Can be operated in Asynchronous Counter mode from an external clock source.
- The external clock input (T1CK) can optionally be synchronized to the internal device clock and the clock synchronization is performed after the prescaler.

The unique features of Timer1 allow it to be used for Real Time Clock (RTC) applications. A block diagram of Timer1 is shown in Figure 11-1. The Timer1 module can operate in one of the following modes:

- Timer mode
- Gated Timer mode
- Synchronous Counter mode
- Asynchronous Counter mode

In Timer and Gated Timer modes, the input clock is derived from the internal instruction cycle clock (FcY). In Synchronous and Asynchronous Counter modes, the input clock is derived from the external clock input at the T1CK pin.

The Timer modes are determined by the following bits:


- Timer Clock Source Control bit (TCS): T1CON<1>
- Timer Synchronization Control bit (TSYNC): T1CON<2>
- Timer Gate Control bit (TGATE): T1CON<6>

Timer control bit setting for different operating modes are given in the Table 11-1.

TABLE 11-1:	TIMER MODE SETTINGS
-------------	---------------------

Mode	TCS	TGATE	TSYNC
Timer	0	0	Х
Gated timer	0	1	Х
Synchronous counter	1	х	1
Asynchronous counter	1	х	0

FIGURE 11-1: 16-BIT TIMER1 MODULE BLOCK DIAGRAM

REGISTER	11-1: T1CO	N: TIMER1 C	ONTROL R	EGISTER						
R/W-0	U-0	R/W-0	U-0	U-0	U-0	U-0	U-0			
TON	_	TSIDL	—	_	_	_	—			
bit 15							bit 8			
		D 444 0	D 444 0		Dates	D 444 0				
U-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0	U-0			
	TGATE	TCKPS	5<1:0>	—	TSYNC	TCS	— bit (
bit 7							bit			
Legend:										
R = Readab	ole bit	W = Writable	bit	U = Unimplei	mented bit, read	l as '0'				
-n = Value a	at POR	'1' = Bit is set		'0' = Bit is cle		x = Bit is unkn	own			
bit 15	TON: Timer1	On bit								
	1 = Starts 16-									
	0 = Stops 16-									
bit 14	-	ted: Read as '								
bit 13	•	TSIDL: Stop in Idle Mode bit								
		 Discontinue module operation when device enters Idle mode Continue module operation in Idle mode 								
bit 12-7				ide						
bit 6	-	Unimplemented: Read as '0' TGATE: Timer1 Gated Time Accumulation Enable bit								
bit 0		When T1CS = 1:								
		This bit is ignored.								
		When $T1CS = 0$:								
		1 = Gated time accumulation enabled								
bit 5-4		0 = Gated time accumulation disabled								
DIL 3-4	11 = 1:256	TCKPS<1:0> Timer1 Input Clock Prescale Select bits								
	10 = 1:64									
	01 = 1:8	01 = 1:8								
	00 = 1:1									
bit 3	-	ted: Read as '								
bit 2		TSYNC: Timer1 External Clock Input Synchronization Select bit								
		<u>When TCS = 1:</u> 1 = Synchronize external clock input								
		0 = Do not synchronize external clock input								
	When TCS =									
	This bit is ign									
bit 1		Clock Source S								
	1 = External o 0 = Internal c	clock from pin ٦ lock (Ecy)	1CK (on the	rising edge)						
bit 0		ted: Read as '	0'							
	Cumplemen		0							

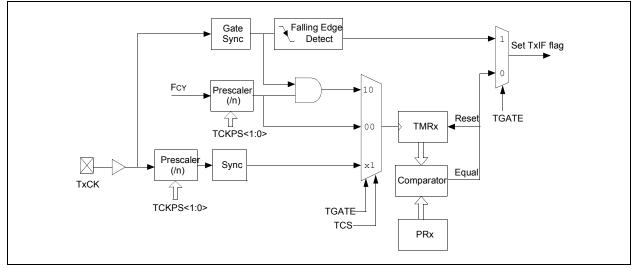
REGISTER 11-1: T1CON: TIMER1 CONTROL REGISTER

12.0 TIMER2/3 AND TIMER4/5 FEATURE

Note: This data sheet summarizes the features of the PIC24HJ32GP302/304, PIC24HJ64GPX02/X04. and PIC24HJ128GPX02/X04 families of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to the PIC24H Family Reference Manual, "Section 11. Timers" (DS70244), which is available from the Microchip website (www.microchip.com).

Timer2 and Timer4 are Type B timers with the following specific features:

• A Type B timer can be concatenated with a Type C timer to form a 32-bit timer


• The external clock input (TxCK) is always synchronized to the internal device clock and the clock synchronization is performed after the prescaler.

A block diagram of the Type B timer is shown in Figure 12-1.

Timer3 and Timer5 are Type C timers with the following specific features:

- A Type C timer can be concatenated with a Type B timer to form a 32-bit timer
- At least one Type C timer has the ability to trigger an A/D conversion.
- The external clock input (TxCK) is always synchronized to the internal device clock and the clock synchronization is performed before the prescaler

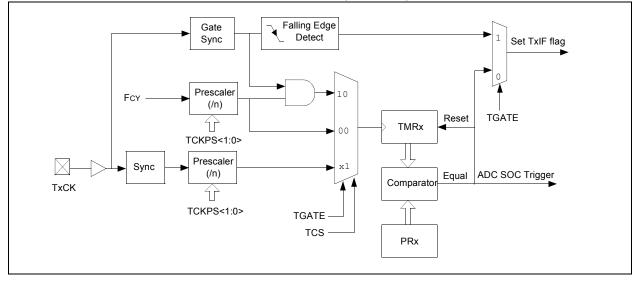

A block diagram of the Type C timer is shown in Figure 12-2.

FIGURE 12-1: TYPE B TIMER BLOCK DIAGRAM (x = 2 or 4)

FIGURE 12-2:

TYPE C TIMER BLOCK DIAGRAM (x = 3 or 5)

© 2008 Microchip Technology Inc.

The Timer2/3 and Timer4/5 modules can operate in one of the following modes:

- · Timer mode
- · Gated Timer mode
- · Synchronous Counter mode

In Timer and Gated Timer modes, the input clock is derived from the internal instruction cycle clock (FcY). In Synchronous Counter mode, the input clock is derived from the external clock input at TxCK pin.

The timer modes are determined by the following bits:

- TCS (TxCON<1>): Timer Clock Source Control bit
- TGATE (TxCON<6>): Timer Gate Control bit

Timer control bit settings for different operating modes are given in the Table 12-1.

TABLE 12-1 :	TIMER MODE SETTINGS
---------------------	---------------------

Mode	TCS	TGATE
Timer	0	0
Gated timer	0	1
Synchronous counter	1	Х

12.1 16-bit Operation

To configure any of the timers for individual 16-bit operation:

- 1. Clear the T32 bit corresponding to that timer.
- 2. Select the timer prescaler ratio using the TCKPS<1:0> bits.
- 3. Set the Clock and Gating modes using the TCS and TGATE bits.
- 4. Load the timer period value into the PRx register.
- 5. If interrupts are required, set the interrupt enable bit, TxIE. Use the priority bits, TxIP<2:0>, to set the interrupt priority.
- 6. Set the TON bit.

Note:	Only Timer2 and Timer3 can trigger a	I
	DMA data transfer.	

12.2 32-bit Operation

A 32-bit timer module can be formed by combining a Type B and a Type C 16-bit timer module. For 32-bit timer operation, the T32 control bit in the Type B Timer Control (TxCON<3>) register must be set. The Type C timer holds the most significant word (msw) and the Type B timer holds the least significant word (lsw) for 32-bit operation.

When configured for 32-bit operation, only the Type B Timer Control (TxCON) register bits are required for setup and control. Type C timer control register bits are ignored (except TSIDL bit).

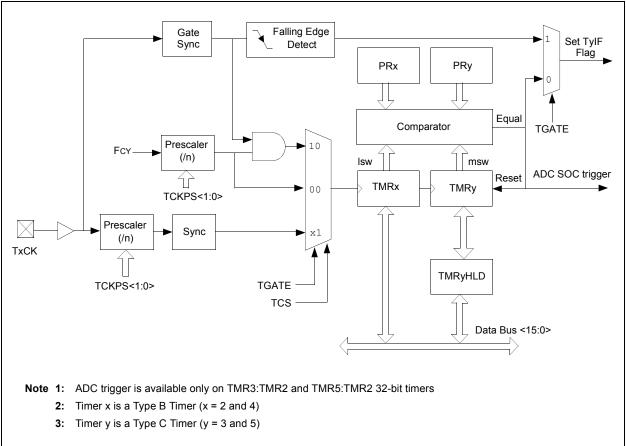
For interrupt control, the combined 32-bit timer uses the interrupt enable, interrupt flag and interrupt priority control bits of the Type C timer. The interrupt control and status bits for the Type B timer are ignored during 32-bit timer operation.

The Type B and Type C timers that can be combined to form a 32-bit timer are listed in Table 12-2.

TABLE 12-2: 32-BIT TIMER

TYPE B Timer (Isw)	TYPE C Timer (msw)
Timer2	Timer3
Timer4	Timer5

A block diagram representation of the 32-bit timer module is shown in Figure 12-3. The 32-timer module can operate in one of the following modes:


- Timer mode
- · Gated Timer mode
- · Synchronous Counter mode

To configure the features of Timer2/3 or Timer4/5 for 32-bit operation:

- 1. Set the T32 control bit.
- 2. Select the prescaler ratio for Timer2 or Timer4 using the TCKPS<1:0> bits.
- 3. Set the Clock and Gating modes using the corresponding TCS and TGATE bits.
- Load the timer period value. PR3 or PR5 contains the most significant word of the value, while PR2 or PR4 contains the least significant word.
- If interrupts are required, set the interrupt enable bits, T3IE or T5IE. Use the priority bits, T3IP<2:0> or T5IP<2:0> to set the interrupt priority. While Timer2 or Timer4 controls the timer, the interrupt appears as a Timer3 or Timer5 interrupt.
- 6. Set the corresponding TON bit.

The timer value at any point is stored in the register pair, TMR3:TMR2 or TMR5:TMR4, which always contains the most significant word of the count, while TMR2 or TMR4 contains the least significant word.

R/W-0	U-0	R/W-0	U-0	U-0	U-0	U-0	U-0				
TON	—	TSIDL	—	—	—	—	_				
bit 15							bit				
U-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	U-0				
	TGATE	TCKP	S<1:0>	T32 ⁽¹⁾	_	TCS	—				
bit 7							bit				
Legend:											
R = Readable	e bit	W = Writable	bit	U = Unimplem	ented bit, rea	d as '0'					
-n = Value at		'1' = Bit is set		'0' = Bit is clea		x = Bit is unkn	own				
			·								
bit 15	TON: Timerx	(On bit									
		<u>1 (in 32-bit Tim</u>									
		bit TMRx:TMR									
	0 = Stops 32-bit TMRx:TMRy timer pair When T32 = 0 (in 16-bit Timer mode):										
		1 = Starts 16-bit timer									
	0 = Stops 16	-bit timer									
bit 14	Unimpleme	nted: Read as '	0'								
bit 13	•	in Idle Mode bit									
		nue timer operation timer operation		vice enters Idle r	node						
bit 12-7		nted: Read as '		<i>,</i>							
bit 6	-	erx Gated Time		n Enable bit							
	When TCS =	When TCS = 1:									
	This bit is ignored.										
	<u>When TCS = 0:</u> 1 = Gated time accumulation enabled										
		ne accumulation									
bit 5-4		>: Timerx Input		le Select bits							
		rescale value									
	10 = 1:64 prescale value										
	01 = 1:8 pres 00 = 1:1 pres										
bit 3	•	imerx Mode Se	lect hit(1)								
		nd TMRy form a									
		nd TMRy form s		t timer							
bit 2	Unimpleme	n ted: Read as '	0'								
bit 1		Clock Source S									
	1 = External	clock from TxC	K nin								
		clock (Fosc/2)	ix pin								

Note 1: In 32-bit mode, the TYCON control bits do not effect 32-bit timer operation.

REGISTER	12-2: TxCOM	N: TIMER CO	NTROL RE	GISTER (x =	3 OR 5)			
R/W-0	U-0	R/W-0	U-0	U-0	U-0	U-0	U-0	
TON ⁽²⁾		TSIDL ⁽¹⁾	_	_	—	—	_	
bit 15							bit 8	
U-0	R/W-0	R/W-0	R/W-0	U-0	U-0	R/W-0	U-0	
_	TGATE ⁽²⁾	TCKPS	<1:0> ⁽²⁾	—	—	TCS ⁽²⁾		
bit 7							bit (
Legend:								
R = Readabl	e bit	W = Writable I	bit	U = Unimpler	nented bit, rea	id as '0'		
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle		x = Bit is unkno	own	
				0 20000			•••••	
bit 15	TON: Timery	On bit ⁽²⁾						
	1 = Starts 16-							
	0 = Stops 16-	bit Timerx						
bit 14	Unimplemen	ted: Read as ')'					
bit 13	TSIDL: Stop i	n Idle Mode bit	(1)					
		ue timer operat timer operation		vice enters Idle	mode			
bit 12-7	Unimplemen	ted: Read as ')'					
bit 6	TGATE: Time	erx Gated Time	Accumulatio	n Enable bit ⁽²⁾				
	When TCS =							
	This bit is igno							
	<u>When TCS = 0:</u> 1 = Gated time accumulation enabled							
		le accumulation						
bit 5-4				le Select bits ⁽²⁾				
	11 = 1:256 pr	•						
	10 = 1:64 pre							
	01 = 1:8 pres							
	00 = 1:1 pres							
bit 3-2	-	ted: Read as '						
bit 1		Clock Source S						
		clock from TxCl	< pin					
	0 = Internal cl							
bit 0	Unimplemen	ted: Read as ')′					

Note 1: When 32-bit timer operation is enabled (T32 = 1) in the Timer Control (TxCON<3>) register, the TSIDL bit must be cleared to operate the 32-bit timer in Idle mode.

2: When the 32-bit timer operation is enabled (T32 = 1) in the Timer Control (TxCON<3>) register, these bits have no effect.

CONTED 40 0.

NOTES:

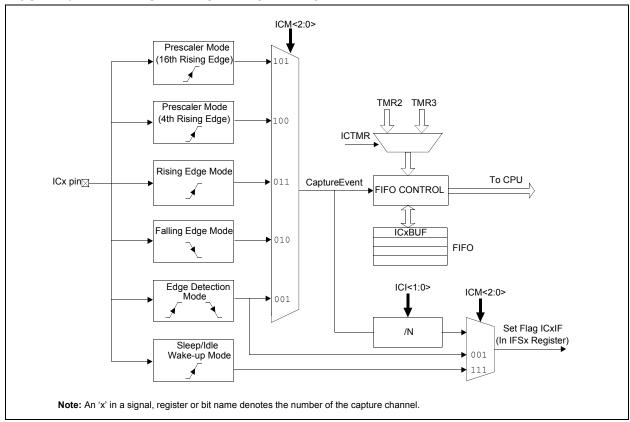
13.0 INPUT CAPTURE

Note: This data sheet summarizes the features PIC24HJ32GP302/304, of the PIC24HJ64GPX02/X04, and PIC24HJ128GPX02/X04 families of devices. It is not intended to be a comprehensive reference source. То complement the information in this data sheet, refer to the PIC24H Family Reference Manual, "Section 12. Input Capture" (DS70248), which is available from the Microchip website (www.microchip.com).

The input capture module is useful in applications requiring frequency (period) and pulse measurement. The PIC24HJ32GP302/304, PIC24HJ64GPX02/X04, and PIC24HJ128GPX02/X04 devices support up to four input capture channels.

The input capture module captures the 16-bit value of the selected Time Base register when an event occurs at the ICx pin. The events that cause a capture event are listed below in three categories:

- 1. Simple Capture Event modes:
 - Capture timer value on every falling edge of input at ICx pin
 - Capture timer value on every rising edge of input at ICx pin


- 2. Capture timer value on every edge (rising and falling)
- 3. Prescaler Capture Event modes:
 - Capture timer value on every 4th rising edge of input at ICx pin
 - Capture timer value on every 16th rising edge of input at ICx pin

Each input capture channel can select one of two 16-bit timers (Timer2 or Timer3) for the time base. The selected timer can use either an internal or external clock.

Other operational features include:

- Device wake-up from capture pin during CPU Sleep and Idle modes
- Interrupt on input capture event
- 4-word FIFO buffer for capture values:
 - Interrupt optionally generated after 1, 2, 3, or 4 buffer locations are filled
- Use of input capture to provide additional sources of external interrupts

Note: Only IC1 and IC2 can trigger a DMA data transfer. If DMA data transfers are required, the FIFO buffer size must be set to '1' (ICI<1:0> = 00)

FIGURE 13-1: INPUT CAPTURE BLOCK DIAGRAM

13.1 Input Capture Registers

REGISTER 13-1: ICxCON: INPUT CAPTURE x CONTROL REGISTER (x = 1, 2, 7 OR 8)

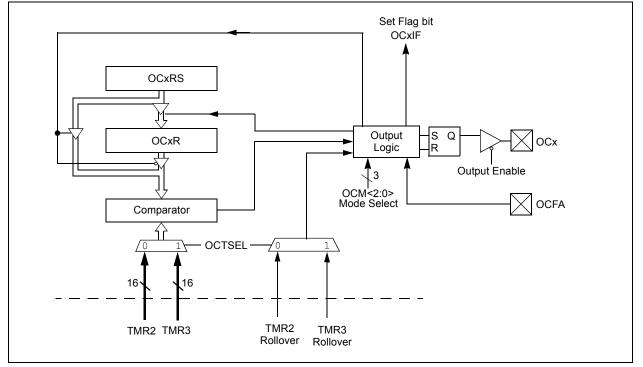
— ICSIDL — … <th>U-0</th> <th>U-0</th> <th>R/W-0</th> <th>U-0</th> <th>U-0</th> <th>U-0</th> <th>U-0</th> <th>U-0</th>	U-0	U-0	R/W-0	U-0	U-0	U-0	U-0	U-0
bit 15 bit 8	—	—	ICSIDL	—	—	—	—	—
	bit 15							bit 8

R/W-0	R/W-0	R/W-0	R-0, HC	R-0, HC	R/W-0	R/W-0	R/W-0
ICTMR	ICI<1:0>		ICOV	ICBNE		ICM<2:0>	
bit 7							bit 0

W = Writable bit	U = Unimplemented bit,	read as '0'				
'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown				
emented: Read as '0'						
	in Idle Control bit					
it capture module halts in CP	U Idle mode					
bit 12-8 Unimplemented: Read as '0'						
Input Capture Timer Select	bits					
	•					
Select Number of Capture	s per Interrupt bits					
errupt on every third capture errupt on every second captu	event ure event					
V: Input Capture Overflow Status Flag bit (read-only)						
•	ed					
Input Capture Buffer Empty	Status bit (read-only)					
	, at least one more capture val	ue can be read				
D>: Input Capture Mode Sele	ct bits					
Rising edge detect only, all o Inused (module disabled) apture mode, every 16th risi apture mode, every 4th risin apture mode, every rising ec	ther control bits are not applicang edge g edge Ige					
	•					
	 '1' = Bit is set emented: Read as '0' Input Capture Module Stop at capture module halts in CP at capture module continues in emented: Read as '0' Input Capture Timer Select I R2 contents are captured on R3 contents are capture on errupt on every fourth capture errupt on every fourth capture arrupt on every second capture errupt on every second capture errupt on every capture even nput Capture Overflow occurred input capture overflow occurred input capture buffer is not empty at capture buffer is empty at capture buffer is empty at capture buffer is empty at capture buffer is empty at capture functions as inter (Rising edge detect only, all of Dapture mode, every 16th risi Capture mode, every 16th risi Capture mode, every falling et Capture mode et capture falles et Capture falles et capture falles et Capture mode	 '1' = Bit is set '0' = Bit is cleared emented: Read as '0' Input Capture Module Stop in Idle Control bit at capture module halts in CPU Idle mode at capture module continues to operate in CPU Idle mode emented: Read as '0' Input Capture Timer Select bits R2 contents are captured on capture event R3 contents are captured on capture event Select Number of Captures per Interrupt bits errupt on every fourth capture event errupt on every second capture event nput Capture Overflow Status Flag bit (read-only) at capture overflow occurred Input Capture Buffer Empty Status bit (read-only) at capture buffer is not empty, at least one more capture valut capture buffer is empty 0>: Input Capture Mode Select bits nput Capture functions as interrupt pin only when device is i (Rising edge detect only, all other control bits are not application) 				

- 001 = Capture mode, every edge (rising and falling)
- (ICI<1:0> bits do not control interrupt generation for this mode.)
- 000 = Input capture module turned off

14.0 OUTPUT COMPARE


Note:	This data sheet summarizes the features
	of the PIC24HJ32GP302/304,
	PIC24HJ64GPX02/X04, and
	PIC24HJ128GPX02/X04 families of
	devices. It is not intended to be a compre-
	hensive reference source. To complement
	the information in this data sheet, refer to
	the PIC24H Family Reference Manual,
	"Section 13. Output Compare"
	(DS70247), which is available from the
	Microchip website (www.microchip.com).

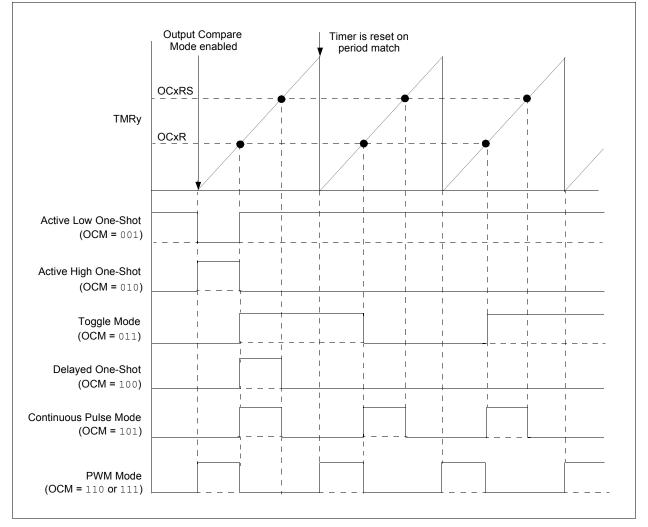
The Output Compare module can select either Timer2 or Timer3 for its time base. The module compares the value of the timer with the value of one or two compare registers depending on the operating mode selected. The state of the output pin changes when the timer value matches the compare register value. The Output Compare module generates either a single output pulse or a sequence of output pulses, by changing the state of the output pin on the compare match events. The Output Compare module can also generate interrupts on compare match events.

The Output Compare module has multiple operating modes:

- Active Low One-Shot mode
- Active High One-Shot mode
- Toggle mode
- · Delayed One-Shot mode
- Continuous Pulse mode
- PWM mode without fault protection
- PWM mode with fault protection

14.1 Output Compare Modes

Configure the Output Compare modes by setting the appropriate Output Compare Mode (OCM<2:0>) bits in the Output Compare Control (OCxCON<2:0>) register. Table 14-1 lists the different bit settings for the Output Compare modes. Figure 14-2 illustrates the output


TABLE 14-1: OUTPUT COMPARE MODES

compare operation for various modes. The user application must disable the associated timer when writing to the output compare control registers to avoid malfunctions.

Note: Only OC1 and OC2 can trigger a DMA data transfer.

OCM<2:0>	Mode	OCx Pin Initial State	OCx Interrupt Generation
000	Module Disabled	Controlled by GPIO register	—
001	Active Low One-Shot	0	OCx Rising edge
010	Active High One-Shot	1	OCx Falling edge
011	Toggle Mode	Current output is maintained	OCx Rising and Falling edge
100	Delayed One-Shot	0	OCx Falling edge
101	Continuous Pulse mode	0	OCx Falling edge
110	PWM mode without fault protection	0, if OCxR is zero 1, if OCxR is non-zero	No interrupt
111	PWM mode with fault protection	0, if OCxR is zero 1, if OCxR is non-zero	OCFA Falling edge for OC1 to OC4

FIGURE 14-2: OUTPUT COMPARE OPERATION

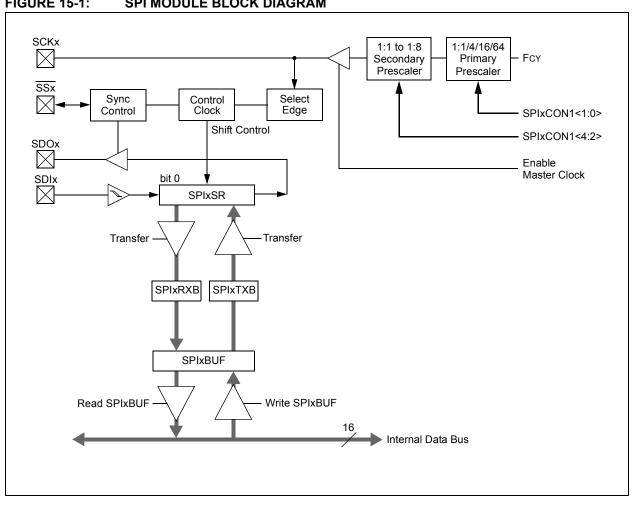
REGISTER 14-1: OCxCON: OUTPUT COMPARE x CONTROL REGISTER (x = 1, 2, 3 OR 4)

U-0	U-0	R/W-0	U-0	U-0	U-0	U-0	U-0			
	—	OCSIDL	_	_	_	—	_			
bit 15	·			· · · · · ·			bit			
U-0	U-0	U-0	R-0 HC	R/W-0	R/W-0	R/W-0	R/W-0			
—		—	OCFLT	OCTSEL		OCM<2:0>				
bit 7							bit (
Legend:		HC = Cleared ir	n Hardware	HS = Set in F	lardware					
R = Readab	le bit	W = Writable bi	t	U = Unimpler	mented bit, rea	ad as '0'				
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkn	own			
bit 15-14	Unimpleme	ented: Read as '0'	,							
bit 13	OCSIDL: St	op Output Compa	ire in Idle Mod	e Control bit						
	1 = Output Compare x halts in CPU Idle mode									
	0 = Output (Compare x continu	ues to operate	in CPU Idle m	ode					
bit 12-5	Unimpleme	ented: Read as '0	,							
bit 4	OCFLT: PW	M Fault Condition	Status bit							
	1 = PWM Fault condition has occurred (cleared in hardware only)									
	 0 = No PWM Fault condition has occurred (This bit is only used when OCM<2:0> = 111.) 									
bit 3	•	Output Compare Ti								
		is the clock source								
		is the clock source								
bit 2-0	OCM<2:0>:	Output Compare	Mode Select	bits						
	111 = PWM	111 = PWM mode on OCx, Fault pin enabled								
	110 = PWM mode on OCx, Fault pin disabled									
		101 = Initialize OCx pin low, generate continuous output pulses on OCx pin 100 = Initialize OCx pin low, generate single output pulse on OCx pin								
		pare event toggles		e output puise o	on OCx pin					
		lize OCx pin high,	•	nt forces OCx p	in low					
	001 = Initial	ize OCx pin low, o	compare event							
	000 = Outp	ut compare chann	el is disabled							

NOTES:

15.0 SERIAL PERIPHERAL **INTERFACE (SPI)**

Note: This data sheet summarizes the features of the PIC24HJ32GP302/304, PIC24HJ64GPX02/X04. and PIC24HJ128GPX02/X04 families of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to the PIC24H Family Reference Manual, "Section 18. Serial Peripheral Interface (SPI)" (DS70243), which is available from the Microchip website (www.microchip.com).


The Serial Peripheral Interface (SPI) module is a synchronous serial interface useful for communicating with other peripheral or microcontroller devices. These peripheral devices can be serial EEPROMs, shift registers, display drivers, analog-to-digital converters, etc. The SPI module is compatible with SPI and SIOP from Motorola[®].

Each SPI module consists of a 16-bit shift register, SPIxSR (where x = 1 or 2), used for shifting data in and out, and a buffer register, SPIxBUF. A control register, SPIxCON, configures the module. Additionally, a status register, SPIxSTAT, indicates status conditions.

The serial interface consists of 4 pins:

- SDIx (serial data input)
- · SDOx (serial data output)
- SCKx (shift clock input or output)
- SSx (active low slave select).

In Master mode operation, SCK is a clock output. In Slave mode, it is a clock input.

FIGURE 15-1: SPI MODULE BLOCK DIAGRAM

R/W-0	U-0	R/W-0	U-0	U-0	U-0	U-0	U-0
SPIEN		SPISIDL		—		—	_
bit 15							bit 8
U-0	R/C-0	U-0	U-0	U-0	U-0	R-0	R-0
_	SPIROV	—	—	—	—	SPITBF	SPIRBF
bit 7							bit
Legend:		C = Clearable	bit				
R = Readab	ole bit	W = Writable I	bit	U = Unimplen	nented bit, rea	d as '0'	
-n = Value a	at POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown
bit 14 bit 13 bit 12-7	 1 = Enables module and configures SCKx, SDOx, SDIx and SSx as serial port pins 0 = Disables module Unimplemented: Read as '0' SPISIDL: Stop in Idle Mode bit 1 = Discontinue module operation when device enters Idle mode 0 = Continue module operation in Idle mode 						
bit 6	 Unimplemented: Read as '0' SPIROV: Receive Overflow Flag bit 1 = A new byte/word is completely received and discarded. The user software has not read the previous data in the SPIxBUF register. 0 = No overflow has occurred. 						
bit 5-2	Unimplemen	ted: Read as 'd)'				
bit 1	 SPITBF: SPIx Transmit Buffer Full Status bit 1 = Transmit not yet started, SPIxTXB is full 0 = Transmit started, SPIxTXB is empty Automatically set in hardware when CPU writes SPIxBUF location, loading SPIxTXB Automatically cleared in hardware when SPIx module transfers data from SPIxTXB to SPIxSR 						
bit 0	 SPIRBF: SPIx Receive Buffer Full Status bit 1 = Receive complete, SPIxRXB is full 0 = Receive is not complete, SPIxRXB is empty Automatically set in hardware when SPIx transfers data from SPIxSR to SPIxRXB Automatically cleared in hardware when core reads SPIxBUF location, reading SPIxRXB 					⟨B	

REGISTER 15-1: SPIxSTAT: SPIx STATUS AND CONTROL REGISTER

U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
—	—	_	DISSCK	DISSDO	MODE16	SMP	CKE ⁽¹⁾		
bit 15							bit		
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
SSEN	CKP	MSTEN	R/W-U	SPRE<2:0>			R/W-0 E<1:0>		
bit 7	UKF	WISTEN		3FRE-2.02		FFNL	bit		
Legend:									
R = Readable	bit	W = Writable	bit	U = Unimpler	nented bit, read	as '0'			
-n = Value at P		'1' = Bit is set		'0' = Bit is cle		x = Bit is unkr	างพท		
				0 2000 000					
bit 15-13	Unimplemer	nted: Read as '	0'						
pit 12	-	able SCKx pin		r modes only)					
	1 = Internal S	SPI clock is disa SPI clock is ena	abled, pin func	• •					
oit 11	DISSDO: Dis	SDO: Disable SDOx pin bit							
	 1 = SDOx pin is not used by module; pin functions as I/O 0 = SDOx pin is controlled by the module 								
	-		-						
bit 10	MODE16: Word/Byte Communication Select bit								
	 1 = Communication is word-wide (16 bits) 0 = Communication is byte-wide (8 bits) 								
bit 9	SMP: SPIx Data Input Sample Phase bit								
	Master mode:								
	 I = Input data sampled at end of data output time Input data sampled at middle of data output time 								
	<u>Slave mode:</u>								
		e cleared when		n Slave mode.					
bit 8	CKE: SPIx Clock Edge Select bit ⁽¹⁾								
	 1 = Serial output data changes on transition from active clock state to Idle clock state (see bit 6) 0 = Serial output data changes on transition from Idle clock state to active clock state (see bit 6) 								
bit 7		Select Enable	-						
	$1 = \overline{SSx}$ pin used for Slave mode								
	0 = SSx pin r	not used by mo	dule. Pin contr	olled by port fu	unction.				
bit 6	CKP: Clock Polarity Select bit 1 = Idle state for clock is a high level; active state is a low level								
		for clock is a r							
bit 5		ster Mode Enat		·					
	1 = Master mode								
	0 = Slave mo								

(FRMEN = 1).

© 2008 Microchip Technology Inc.

REGISTER 15-2: SPIXCON1: SPIX CONTROL REGISTER 1 (CONTINUED)

- 01 = Primary prescale 16:1
 00 = Primary prescale 64:1
 Note 1: The CKE bit is not used in the Framed SPI modes. Program this bit to '0' for the Framed SPI modes
- (FRMEN = 1).

REGISTER		UNZ. SPIX C								
R/W-0	R/W-0	R/W-0	U-0	U-0	U-0	U-0	U-0			
FRMEN	SPIFSD	FRMPOL	—	—	—	—	_			
bit 15							bit 8			
U-0	U-0	U-0	U-0	U-0	U-0	R/W-0	U-0			
—	—	—	_	_	—	FRMDLY	—			
bit 7							bit C			
Legend:										
R = Readable	e bit	W = Writable I	bit	U = Unimpler	mented bit, read	l as '0'				
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cleared		x = Bit is unknown				
bit 15		ned SPIx Supp								
	 1 = Framed SPIx support enabled (SSx pin used as frame sync pulse input/output) 0 = Framed SPIx support disabled 									
bit 14	SPIFSD: Frame Sync Pulse Direction Control bit									
	1 = Frame sync pulse input (slave)									
	0 = Frame sy	nc pulse output	(master)							
bit 13	FRMPOL: Fra	ame Sync Pulse	e Polarity bit							
	1 = Frame sync pulse is active-high									

REGISTER 15-3: SPIxCON2: SPIx CONTROL REGISTER 2

0 = Frame sync pulse is active-low **Unimplemented:** Read as '0'

FRMDLY: Frame Sync Pulse Edge Select bit

1 = Frame sync pulse coincides with first bit clock 0 = Frame sync pulse precedes first bit clock

Unimplemented: This bit must not be set to '1' by the user application.

bit 12-2

bit 1

bit 0

NOTES:

16.0 INTER-INTEGRATED CIRCUIT (I²C™)

Note: This data sheet summarizes the features of the PIC24HJ32GP302/304, PIC24HJ64GPX02/X04. and PIC24HJ128GPX02/X04 families of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to the PIC24H Family Reference Manual, "Section 19. Inter-Integrated Circuit (I²C[™])" (DS70235), which is available from the Microchip website (www.microchip.com).

The Inter-Integrated Circuit (I^2C) module provides complete hardware support for both Slave and Multi-Master modes of the I^2C serial communication standard, with a 16-bit interface.

The I²C module has a 2-pin interface:

- The SCLx pin is clock.
- The SDAx pin is data.

The I²C module offers the following key features:

- I²C interface supporting both Master and Slave modes of operation.
- I²C Slave mode supports 7 and 10-bit address.
- I²C Master mode supports 7 and 10-bit address.
- I²C port allows bidirectional transfers between master and slaves.
- Serial clock synchronization for I²C port can be used as a handshake mechanism to suspend and resume serial transfer (SCLREL control).
- I²C supports multi-master operation, detects bus collision and arbitrates accordingly.

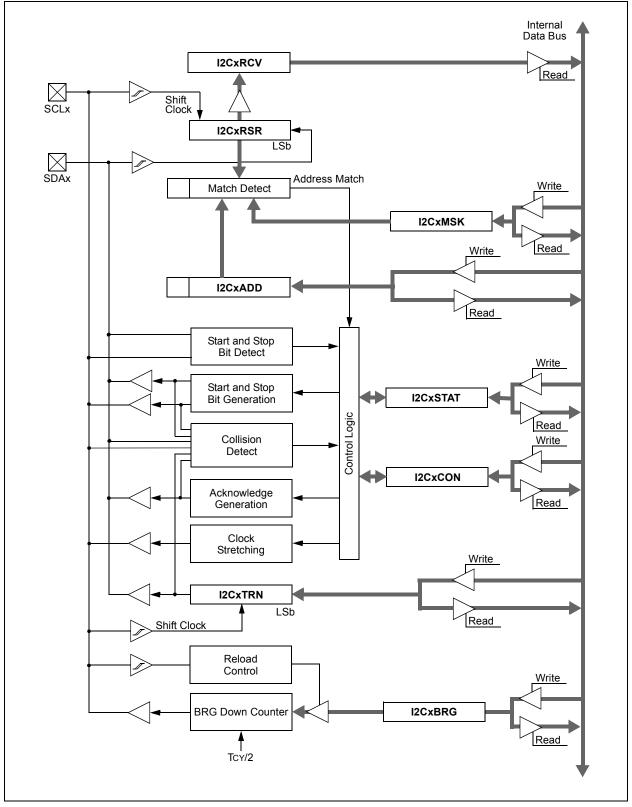
16.1 Operating Modes

The hardware fully implements all the master and slave functions of the I^2C Standard and Fast mode specifications, as well as 7 and 10-bit addressing.

The l^2C module can operate either as a slave or a master on an l^2C bus.

The following types of I^2C operation are supported:

- I²C slave operation with 7-bit address
- I²C slave operation with 10-bit address
- I²C master operation with 7- or 10-bit address


For details about the communication sequence in each of these modes, refer to the "*PIC24H Family Reference Manual*". Please see the Microchip website (www.microchip.com) for the latest PIC24H Family Reference Manual chapters.

16.2 I²C Registers

I2CxCON and I2CxSTAT are control and status registers, respectively. The I2CxCON register is readable and writable. The lower six bits of I2CxSTAT are read-only. The remaining bits of the I2CSTAT are read/write:

- I2CxRSR is the shift register used for shifting data internal to the module and the user application has no access to it.
- I2CxRCV is the receive buffer and the register to which data bytes are written, or from which data bytes are read.
- I2CxTRN is the transmit register to which bytes are written during a transmit operation.
- The I2CxADD register holds the slave address.
- A status bit, ADD10, indicates 10-bit Address mode.
- The I2CxBRG acts as the Baud Rate Generator (BRG) reload value.

In receive operations, I2CxRSR and I2CxRCV together form a double-buffered receiver. When I2CxRSR receives a complete byte, it is transferred to I2CxRCV, and an interrupt pulse is generated. FIGURE 16-1: $I^2 C^{TM}$ BLOCK DIAGRAM (x = 1)

REGISTER	16-1: I2CxC	ON: I2Cx CO	NTROL REG	ISTER						
R/W-0	U-0	R/W-0	R/W-1 HC	R/W-0	R/W-0	R/W-0	R/W-0			
I2CEN	_	I2CSIDL	SCLREL	IPMIEN	A10M	DISSLW	SMEN			
bit 15							bit 8			
R/W-0	R/W-0	R/W-0	R/W-0 HC	R/W-0 HC	R/W-0 HC	R/W-0 HC	R/W-0 HC			
GCEN	STREN	ACKDT	ACKEN	RCEN	PEN	RSEN	SEN			
bit 7	Onten	Noner	HORLEN	ROEN		ROER	bit 0			
				l = = (0)						
Legend:	a hit	U = Unimplemented bit, read as '0' W = Writable bit HS = Set in hardware HC = Cleared in h								
R = Readable										
-n = Value at	PUR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	IOWN			
bit 15	12CEN: 12Cx	Enable bit								
		he I2Cx modul the I2Cx modul				as serial port pir ns.	าร			
bit 14	Unimplemen	ted: Read as '	0'							
bit 13	I2CSIDL: Sto	I2CSIDL: Stop in Idle Mode bit								
	 1 = Discontinue module operation when device enters an Idle mode 0 = Continue module operation in Idle mode 									
bit 12	SCLREL: SCLx Release Control bit (when operating as I ² C slave)									
	 1 = Release SCLx clock 0 = Hold SCLx clock low (clock stretch) 									
	If STREN = 1: Bit is R/W (i.e., software can write '0' to initiate stretch and write '1' to release clock). Hardware clear at beginning of slave transmission. Hardware clear at end of slave reception.									
	If STREN = 0	<u>:</u> ., software can				lear at beginning	g of slave			
bit 11	IPMIEN: Intelligent Peripheral Management Interface (IPMI) Enable bit 1 = IPMI mode is enabled; all addresses Acknowledged 0 = IPMI mode disabled									
bit 10	A10M: 10-bit Slave Address bit									
		is a 10-bit slav is a 7-bit slave								
bit 9	DISSLW: Disable Slew Rate Control bit									
		control disable control enable								
bit 8	SMEN: SMbus Input Levels bit									
	 1 = Enable I/O pin thresholds compliant with SMbus specification 0 = Disable SMbus input thresholds 									
bit 7	GCEN: General Call Enable bit (when operating as I ² C slave)									
	(module is	terrupt when a s enabled for re call address dis	eception)	ldress is recei	ived in the I2C>	RSR				
bit 6		x Clock Stretch		nen operating	as I ² C slave)					
	Used in conju 1 = Enable so	unction with SC	LREL bit.	hing	/					

ISCACON ISCA CONTROL PEGISTER DECISTED 16 1.

REGISTER 16-1: I2CxCON: I2Cx CONTROL REGISTER (CONTINUED)

bit 5	ACKDT: Acknowledge Data bit (when operating as I ² C master, applicable during master receive) Value that is transmitted when the software initiates an Acknowledge sequence. 1 = Send NACK during Acknowledge 0 = Send ACK during Acknowledge
bit 4	 ACKEN: Acknowledge Sequence Enable bit (when operating as I²C master, applicable during master receive) 1 = Initiate Acknowledge sequence on SDAx and SCLx pins and transmit ACKDT data bit. Hardware clear at end of master Acknowledge sequence. 0 = Acknowledge sequence not in progress
bit 3	 RCEN: Receive Enable bit (when operating as I²C master) 1 = Enables Receive mode for I²C. Hardware clear at end of eighth bit of master receive data byte. 0 = Receive sequence not in progress
bit 2	 PEN: Stop Condition Enable bit (when operating as I²C master) 1 = Initiate Stop condition on SDAx and SCLx pins. Hardware clear at end of master Stop sequence. 0 = Stop condition not in progress
bit 1	 RSEN: Repeated Start Condition Enable bit (when operating as I²C master) 1 = Initiate Repeated Start condition on SDAx and SCLx pins. Hardware clear at end of master Repeated Start sequence. 0 = Repeated Start condition not in progress
bit 0	 SEN: Start Condition Enable bit (when operating as I²C master) 1 = Initiate Start condition on SDAx and SCLx pins. Hardware clear at end of master Start sequence. 0 = Start condition not in progress

			ATUS REGI						
R-0 HSC	R-0 HSC	U-0	U-0	U-0	R/C-0 HS	R-0 HSC	R-0 HSC		
ACKSTAT	TRSTAT	—	—	—	BCL	GCSTAT	ADD10		
bit 15							bit		
R/C-0 HS	R/C-0 HS	R-0 HSC	R/C-0 HSC	R/C-0 HSC	R-0 HSC	R-0 HSC	R-0 HSC		
IWCOL	I2COV	D_A	P	S	R_W	RBF	TBF		
bit 7			-	_			bit		
				ad as (0)					
Legend:	1.11		nented bit, rea						
R = Readable		W = Writable		HS = Set in h		HSC = Hardwa			
-n = Value at	POR	'1' = Bit is se		'0' = Bit is cle	ared	x = Bit is unkn	own		
bit 15	ACKSTAT: Ac (when operati 1 = NACK rec 0 = ACK rece Hardware set	ng as l ² C™ m eived from sla ived from slav	aster, applical ive e		ransmit operati	on)			
bit 14	TRSTAT: Tran 1 = Master tra 0 = Master tra	nsmit Status bi ansmit is in pro ansmit is not ir	t (when opera ogress (8 bits + oprogress	ting as I ² C ma ⊦ ACK)		e to master trans and of slave Ack			
oit 13-11	Unimplemen	ted: Read as	0'						
bit 10	BCL: Master	CL: Master Bus Collision Detect bit							
	1 = A bus coll 0 = No collisio Hardware set	on		ing a master o	peration				
bit 9	GCSTAT: General Call Status bit								
		all address wa	as not received		ss. Hardware	clear at Stop det	ection.		
bit 8	ADD10: 10-bi 1 = 10-bit add 0 = 10-bit add Hardware set	lress was mat lress was not	ched matched	ched 10-bit ad	dress. Hardwa	re clear at Stop	detection.		
bit 7	IWCOL: Write Collision Detect bit								
	0 = No collisio	on	-		ause the I ² C m usy (cleared b	-			
bit 6	Hardware set at occurrence of write to I2CxTRN while busy (cleared by software). I2COV: Receive Overflow Flag bit								
	0 = No overflo	w		-	till holding the				
bit 5	D_A: Data/Address bit (when operating as l^2C slave)								
	1 = Indicates 0 = Indicates	that the last by	/te received w /te received w	as data as device add	ress by reception of	f slave byte.			
bit 4	P: Stop bit				-	-			
	1 = Indicates 0 = Stop bit w			ected last					

TED 46 2 -----10

REGISTER 16-2: I2CxSTAT: I2Cx STATUS REGISTER (CONTINUED)

bit 3	S: Start bit
	 1 = Indicates that a Start (or Repeated Start) bit has been detected last 0 = Start bit was not detected last Hardware set or clear when Start, Repeated Start or Stop detected.
bit 2	R_W: Read/Write Information bit (when operating as I ² C slave)
	 1 = Read – indicates data transfer is output from slave 0 = Write – indicates data transfer is input to slave Hardware set or clear after reception of I²C device address byte.
bit 1	RBF: Receive Buffer Full Status bit 1 = Receive complete, I2CxRCV is full 0 = Receive not complete, I2CxRCV is empty Hardware set when I2CxRCV is written with received byte. Hardware clear when software reads I2CxRCV.
bit 0	TBF: Transmit Buffer Full Status bit 1 = Transmit in progress, I2CxTRN is full 0 = Transmit complete, I2CxTRN is empty Hardware set when software writes I2CxTRN. Hardware clear at completion of data transmission.

REGISTER 16-3: I2CxMSK: I2Cx SLAVE MODE ADDRESS MASK REGISTER

U-0	U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0
—	—	—	—	—	—	AMSK9	AMSK8
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
AMSK7	AMSK6	AMSK5	AMSK4	AMSK3	AMSK2	AMSK1	AMSK0
bit 7							bit 0
Legend:							
R = Readable bit		W = Writable bit		U = Unimplemented bit, read as '0'			
-n = Value at POR		'1' = Bit is set		'0' = Bit is cleared		x = Bit is unknown	
-n = Value at POR				•			

bit 15-10 Unimplemented: Read as '0'

bit 9-0 AMSKx: Mask for Address bit x Select bit

1 = Enable masking for bit x of incoming message address; bit match not required in this position

0 = Disable masking for bit x; bit match required in this position

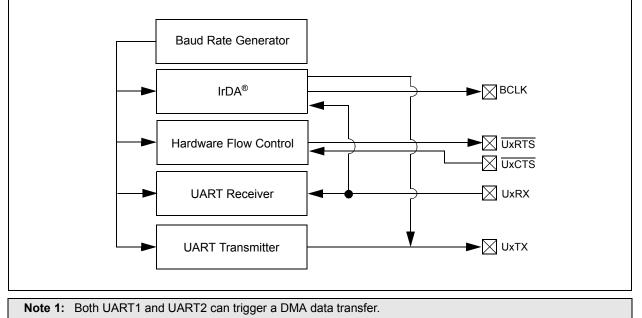
NOTES:

17.0 UNIVERSAL ASYNCHRONOUS RECEIVER TRANSMITTER (UART)

Note:	This data sheet summarizes the features
	of the PIC24HJ32GP302/304,
	PIC24HJ64GPX02/X04, and
	PIC24HJ128GPX02/X04 families of
	devices. It is not intended to be a compre-
	hensive reference source. To complement
	the information in this data sheet, refer to
	the PIC24H Family Reference Manual,
	"Section 17. UART" (DS70232), which is
	available from the Microchip website
	(www.microchip.com).

The Universal Asynchronous Receiver Transmitter (UART) module is one of the serial I/O modules available in the PIC24HJ32GP302/304, PIC24HJ64GPX02/X04, and PIC24HJ128GPX02/X04 device family. The UART is a full-duplex asynchronous system that can communicate with peripheral devices, such as personal computers, LIN, RS-232 and RS-485 interfaces. The module also supports a hardware flow control option with the UxCTS and UxRTS pins and also includes an IrDA[®] encoder and decoder.

The primary features of the UART module are:


- Full-Duplex, 8- or 9-bit Data Transmission through the UxTX and UxRX pins
- Even, Odd or No Parity Options (for 8-bit data)

- One or two stop bits
- Hardware flow control option with UxCTS and UxRTS pins
- Fully integrated Baud Rate Generator with 16-bit prescaler
- Baud rates ranging from 1 Mbps to 15 Mbps at 16 MIPS
- 4-deep First-In First-Out (FIFO) Transmit Data buffer
- · 4-deep FIFO Receive Data buffer
- Parity, framing and buffer overrun error detection
- Support for 9-bit mode with Address Detect (9th bit = 1)
- · Transmit and Receive interrupts
- · A separate interrupt for all UART error conditions
- · Loopback mode for diagnostic support
- · Support for sync and break characters
- · Support for automatic baud rate detection
- · IrDA encoder and decoder logic
- · 16x baud clock output for IrDA support

A simplified block diagram of the UART module is shown in Figure 17-1. The UART module consists of these key hardware elements:

- · Baud Rate Generator
- Asynchronous Transmitter
- · Asynchronous Receiver

FIGURE 17-1: UART SIMPLIFIED BLOCK DIAGRAM

2: If DMA transfers are required, the UART TX/RX FIFO buffer must be set to a size of 1 byte/word (i.e., UTXISEL<1:0> = 00 and URXISEL<1:0> = 00).

R/W-0	U-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0		
UARTEN	_	USIDL	IREN ⁽¹⁾	RTSMD		UEN	<1:0>		
bit 15			•	•			bit		
	D 444.0		D 444 0	D44 (0)	DAMA	D 444 0	D 444 0		
R/W-0 HC	R/W-0	R/W-0 HC	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
WAKE	LPBACK ABAUD URXINV BRGH PDSEL<1:0> ST								
bit 7							bit		
Legend:		HC = Hardwa	re cleared						
R = Readable	able bit W = Writable bit U = Unimplemented bit, read as '0'								
-n = Value at I	POR	'1' = Bit is set		'0' = Bit is cle		x = Bit is unkr	nown		
	-						-		
bit 15	UARTEN: UA	ARTx Enable bi	t						
	1 = UARTx is	s enabled; all L	ARTx pins are	e controlled by	UARTx as def	ined by UEN<1:	0>		
	 0 = UARTx is disabled; all UARTx pins are controlled by port latches; UARTx power consumption minimal 								
bit 14		ted: Read as '	0'						
bit 13									
	USIDL: Stop in Idle Mode bit 1 = Discontinue module operation when device enters Idle mode								
	0 = Continue module operation in Idle mode								
bit 12	IREN: IrDA Encoder and Decoder Enable bit ⁽¹⁾								
	1 = IrDA encoder and decoder enabled								
	0 = IrDA encoder and decoder disabled								
bit 11		RTSMD: Mode Selection for UxRTS Pin bit							
	1 = UxRTS pin in Simplex mode 0 = UxRTS pin in Flow Control mode								
	•								
bit 10	-	ited: Read as '							
bit 9-8	UEN<1:0>: UARTx Enable bits								
	11 = UxTX, UxRX and BCLK pins are enabled and used; UxCTS pin controlled by port latches 10 = UxTX, UxRX, UxCTS and UxRTS pins are enabled and used								
	01 = UxTX, UxRX and UxRTS pins are enabled and used; UxCTS pin controlled by port latches								
	00 = UxTX and UxRX pins are enabled and used; UxCTS and UxRTS/BCLK pins controlled by								
	port lato								
bit 7	WAKE: Wake-up on Start bit Detect During Sleep Mode Enable bit								
	1 = UARTx continues to sample the UxRX pin; interrupt generated on falling edge; bit cleared								
	in hardware on following rising edge 0 = No wake-up enabled								
bit 6	LPBACK: UARTx Loopback Mode Select bit								
		1 = Enable Loopback mode							
	0 = Loopback mode								
bit 5	ABAUD: Auto	o-Baud Enable	bit						
						eception of a Sy	ync field (55h		
		ther data; clear			tion				
		e measuremen		completed					
bit 4		ceive Polarity Ir	version bit						
	1 = UxRX Idle 0 = UxRX Idle								

REGISTER 17-1: UxMODE: UARTx MODE REGISTER

Note 1: This feature is only available for the 16x BRG mode (BRGH = 0).

REGISTER 17-1: UxMODE: UARTx MODE REGISTER (CONTINUED)

bit 3	BRGH: High Baud Rate Enable bit
	 1 = BRG generates 4 clocks per bit period (4x baud clock, High-Speed mode) 0 = BRG generates 16 clocks per bit period (16x baud clock, Standard mode)
bit 2-1	PDSEL<1:0>: Parity and Data Selection bits
	 11 = 9-bit data, no parity 10 = 8-bit data, odd parity 01 = 8-bit data, even parity 00 = 8-bit data, no parity
bit 0	STSEL: Stop Bit Selection bit 1 = Two Stop bits 0 = One Stop bit

Note 1: This feature is only available for the 16x BRG mode (BRGH = 0).

R/W-0	R/W-0	R/W-0	U-0	R/W-0 HC	R/W-0	R-0	R-1		
UTXISEL1	UTXINV	UTXISEL0	_	UTXBRK	UTXEN	UTXBF	TRMT		
bit 15							bit		
R/W-0	R/W-0	R/W-0	R-1	R-0	R-0	R/C-0	R-0		
	EL<1:0>	ADDEN	RIDLE	PERR	FERR	OERR	URXDA		
bit 7							bit		
Legend:		HC = Hardwa	re cleared						
R = Readable	e bit	W = Writable I	oit	U = Unimplem	nented bit, read	d as '0'			
-n = Value at I	POR	'1' = Bit is set		'0' = Bit is clea		x = Bit is unkı	nown		
	10 = Interrupt transmit 01 = Interrupt operatio 00 = Interrupt	ed; do not use t when a charao buffer become t when the last ons are complet t when a charao one character o	s empty character is s ed cter is transfe	hifted out of the rred to the Tran	e Transmit Shif	t Register; all tr	ansmit		
bit 14			-	institution (
	UTXINV: Transmit Polarity Inversion bit 1 = UxTX Idle state is '1' 0 = UxTX Idle state is '0'								
bit 12	Unimplemented: Read as '0'								
bit 11	UTXBRK: Tra	BRK: Transmit Break bit							
	cleared b	nc Break on nex by hardware upo eak transmission	on completior	ı	owed by twelv	e '0' bits, follow	ed by Stop b		
bit 10	UTXEN: Tran	XEN: Transmit Enable bit							
	 1 = Transmit enabled, UxTX pin controlled by UARTx 0 = Transmit disabled, any pending transmission is aborted and buffer is reset. UxTX pin cc by port. 						pin controlle		
bit 9	UTXBF: Transmit Buffer Full Status bit (read-only) 1 = Transmit buffer is full 0 = Transmit buffer is not full, at least one more character can be written								
bit 8	TRMT: Trans	IT: Transmit Shift Register Empty bit (read-only)							
		Shift Register is Shift Register i					nas complete		
bit 7-6	URXISEL<1:	RXISEL<1:0>: Receive Interrupt Mode Selection bits							
	 11 = Interrupt is set on UxRSR transfer making the receive buffer full (i.e., has 4 data characters) 10 = Interrupt is set on UxRSR transfer making the receive buffer 3/4 full (i.e., has 3 data charact 0x = Interrupt is set when any character is received and transferred from the UxRSR to the receive buffer. Receive buffer has one or more characters. 								
		t is set when a	ny character i		transferred fro	om the UXRSR	to the receiv		
bit 5	buffer. F	t is set when a	ny character i as one or mo	re characters.		om the UXRSR	to the receiv		
bit 5	buffer. F ADDEN: Add 1 = Address	t is set when a Receive buffer h	ny character i as one or mo Detect bit (bi nabled. If 9-bi	re characters. t 8 of received o	data = 1)				
bit 5 bit 4	buffer. F ADDEN: Add 1 = Address 0 = Address	t is set when a Receive buffer h ress Character Detect mode e	ny character i as one or mo Detect bit (bi nabled. If 9-bi sabled	re characters. t 8 of received o	data = 1)				

... - -

REGISTER 17-2: UxSTA: UARTx STATUS AND CONTROL REGISTER (CONTINUED)

bit 3	 PERR: Parity Error Status bit (read-only) 1 = Parity error has been detected for the current character (character at the top of the receive FIFO) 0 = Parity error has not been detected
bit 2	FERR: Framing Error Status bit (read-only) Framing error has been detected for the current character (character at the top of the receive FIFO) Framing error has not been detected
bit 1	 OERR: Receive Buffer Overrun Error Status bit (read/clear only) 1 = Receive buffer has overflowed 0 = Receive buffer has not overflowed. Clearing a previously set OERR bit (1 → 0 transition) resets the receiver buffer and the UxRSR to the empty state.
bit 0	 URXDA: Receive Buffer Data Available bit (read-only) 1 = Receive buffer has data, at least one more character can be read 0 = Receive buffer is empty

NOTES:

18.0 ENHANCED CAN (ECAN™) MODULE

Note: This data sheet summarizes the features of the PIC24HJ32GP302/304, PIC24HJ64GPX02/X04. and PIC24HJ128GPX02/X04 families of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to the PIC24H Family Reference Manual, "Section 21. Enhanced Controller Area Network (ECAN™)" (DS70226), which is available from the Microchip website (www.microchip.com).

18.1 Overview

The Enhanced Controller Area Network (ECAN) module is a serial interface, useful for communicating with other CAN modules or microcontroller devices. This interface/protocol was designed to allow communications within noisy environments. The PIC24HJ32GP302/304, PIC24HJ64GPX02/X04, and PIC24HJ128GPX02/X04 devices contain up to two ECAN modules.

The ECAN module is a communication controller implementing the CAN 2.0 A/B protocol, as defined in the BOSCH CAN specification. The module supports CAN 1.2, CAN 2.0A, CAN 2.0B Passive and CAN 2.0B Active versions of the protocol. The module implementation is a full CAN system. The CAN specification is not covered within this data sheet. The reader can refer to the BOSCH CAN specification for further details.

The module features are as follows:

- Implementation of the CAN protocol, CAN 1.2, CAN 2.0A and CAN 2.0B
- · Standard and extended data frames
- 0-8 bytes data length
- Programmable bit rate up to 1 Mbit/sec
- Automatic response to remote transmission requests
- Up to eight transmit buffers with application specified prioritization and abort capability (each buffer can contain up to 8 bytes of data)
- Up to 32 receive buffers (each buffer can contain up to 8 bytes of data)
- Up to 16 full (standard/extended identifier)
 acceptance filters
- · Three full acceptance filter masks
- DeviceNet[™] addressing support
- Programmable wake-up functionality with integrated low-pass filter
- Programmable Loopback mode supports self-test operation
- Signaling via interrupt capabilities for all CAN receiver and transmitter error states
- Programmable clock source

- Programmable link to input capture module (IC2 for CAN1) for time-stamping and network synchronization
- · Low-power Sleep and Idle mode

The CAN bus module consists of a protocol engine and message buffering/control. The CAN protocol engine handles all functions for receiving and transmitting messages on the CAN bus. Messages are transmitted by first loading the appropriate data registers. Status and errors can be checked by reading the appropriate registers. Any message detected on the CAN bus is checked for errors and then matched against filters to see if it should be received and stored in one of the receive registers.

18.2 Frame Types

The ECAN module transmits various types of frames which include data messages, or remote transmission requests initiated by the user, as other frames that are automatically generated for control purposes. The following frame types are supported:

• Standard Data Frame:

A standard data frame is generated by a node when the node wishes to transmit data. It includes an 11-bit Standard Identifier (SID), but not an 18-bit Extended Identifier (EID).

Extended Data Frame:

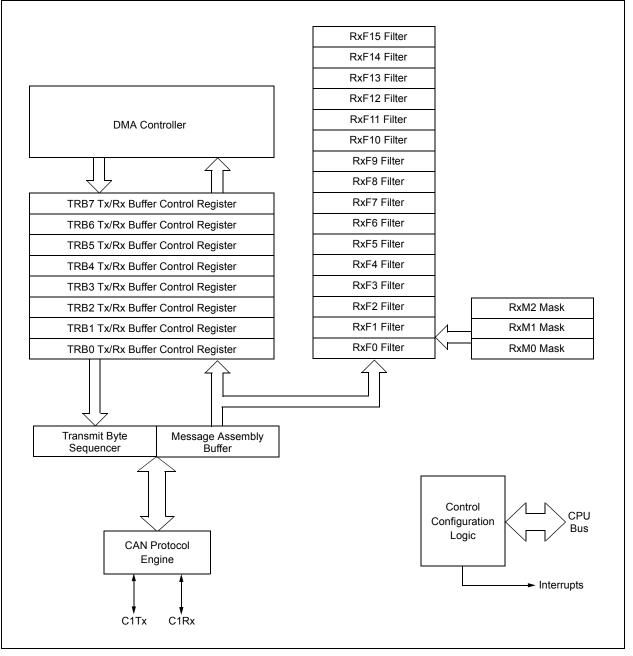
An extended data frame is similar to a standard data frame, but includes an extended identifier as well.

• Remote Frame:

It is possible for a destination node to request the data from the source. For this purpose, the destination node sends a remote frame with an identifier that matches the identifier of the required data frame. The appropriate data source node sends a data frame as a response to this remote request.

Error Frame:

An error frame is generated by any node that detects a bus error. An error frame consists of two fields: an error flag field and an error delimiter field.


• Overload Frame:

An overload frame can be generated by a node as a result of two conditions. First, the node detects a dominant bit during interframe space which is an illegal condition. Second, due to internal conditions, the node is not yet able to start reception of the next message. A node can generate a maximum of 2 sequential overload frames to delay the start of the next message.

· Interframe Space:

Interframe space separates a proceeding frame (of whatever type) from a following data or remote frame.

FIGURE 18-1: ECAN™ MODULE BLOCK DIAGRAM

18.3 Modes of Operation

The ECAN module can operate in one of several operation modes selected by the user. These modes include:

- Initialization mode
- Disable mode
- Normal Operation mode
- Listen Only mode
- Listen All Messages mode
- Loopback mode

Modes are requested by setting the REQOP<2:0> bits (CiCTRL1<10:8>). Entry into a mode is Acknowledged by monitoring the OPMODE<2:0> bits (CiCTRL1<7:5>). The module does not change the mode and the OPMODE bits until a change in mode is acceptable, generally during bus Idle time, which is defined as at least 11 consecutive recessive bits.

18.3.1 INITIALIZATION MODE

In the Initialization mode, the module does not transmit or receive. The error counters are cleared and the interrupt flags remain unchanged. The user application has access to Configuration registers that are access restricted in other modes. The module protects the user from accidentally violating the CAN protocol through programming errors. All registers which control the configuration of the module can not be modified while the module is on-line. The ECAN module is not allowed to enter the Configuration mode while a transmission is taking place. The Configuration mode serves as a lock to protect the following registers:

- · All Module Control registers
- Baud Rate and Interrupt Configuration registers
- Bus Timing registers
- Identifier Acceptance Filter registers
- Identifier Acceptance Mask registers

18.3.2 DISABLE MODE

In Disable mode, the module does not transmit or receive. The module has the ability to set the WAKIF bit due to bus activity, however, any pending interrupts remains and the error counters retains their value.

If the REQOP<2:0> bits (CiCTRL1<10:8>) = 001, the module enters the Module Disable mode. If the module is active, the module waits for 11 recessive bits on the CAN bus, detect that condition as an Idle bus, then accept the module disable command. When the OPMODE<2:0> bits (CiCTRL1<7:5>) = 001, that indicates whether the module successfully went into Module Disable mode. The I/O pins reverts to normal I/O function when the module is in the Module Disable mode.

The module can be programmed to apply a low-pass filter function to the CiRX input line while the module or the CPU is in Sleep mode. The WAKFIL bit (CiCFG2<14>) enables or disables the filter.

Note: Typically, if the ECAN module is allowed to transmit in a particular mode of operation and a transmission is requested immediately after the ECAN module has been placed in that mode of operation, the module waits for 11 consecutive recessive bits on the bus before starting transmission. If the user switches to Disable mode within this 11-bit period, then this transmission is aborted and the corresponding TXABT bit is set and TXREQ bit is cleared.

18.3.3 NORMAL OPERATION MODE

Normal Operation mode is selected when REQOP<2:0> = 000. In this mode, the module is activated and the I/O pins assumes the CAN bus functions. The module transmits and receive CAN bus messages via the CiTX and CiRX pins.

18.3.4 LISTEN ONLY MODE

If the Listen Only mode is activated, the module on the CAN bus is passive. The transmitter buffers revert to the port I/O function. The receive pins remain inputs. For the receiver, no error flags or Acknowledge signals are sent. The error counters are deactivated in this state. The Listen Only mode can be used for detecting the baud rate on the CAN bus. To use this, it is necessary that there are at least two further nodes that communicate with each other.

18.3.5 LISTEN ALL MESSAGES MODE

The module can be set to ignore all errors and receive any message. The Listen All Messages mode is activated by setting REQOP<2:0> = '111'. In this mode, the data which is in the message assembly buffer, until the time an error occurred, is copied in the receive buffer and can be read via the CPU interface.

18.3.6 LOOPBACK MODE

If the Loopback mode is activated, the module connects the internal transmit signal to the internal receive signal at the module boundary. The transmit and receive pins revert to their port I/O function.

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-1	R/W-0	R/W-0				
	_	CSIDL	ABAT	CANCKS		REQOP<2:0>					
bit 15							bit				
R-1	R-0	R-0	U-0	R/W-0	U-0	U-0	R/W-0				
	OPMODE<2:0		<u> </u>	CANCAP	_		WIN				
pit 7							bit				
egend:		C = Writable	bit, but only 'C)' can be written	to clear the bi	t					
R = Readab	le bit	W = Writable	bit	U = Unimplem	ented bit, read	d as '0'					
n = Value a	t POR	'1' = Bit is se	t	'0' = Bit is clea	ared	x = Bit is unkno	own				
	11										
bit 15-14	-	nted: Read as									
bit 13		in Idle Mode b			e mede						
		 1 = Discontinue module operation when device enters Idle mode 0 = Continue module operation in Idle mode 									
pit 12											
	ABAT: Abort All Pending Transmissions bit 1 = Signal all transmit buffers to abort transmission.										
	•	0 = Module will clear this bit when all transmissions are aborted									
bit 11	CANCKS: CAN Master Clock Select bit										
	1 = CAN FCAN clock is FCY 0 = CAN FCAN clock is FOSC										
oit 10-8	REQOP<2:0>: Request Operation Mode bits										
	000 = Set Normal Operation mode 001 = Set Disable mode										
	010 = Set Loopback mode										
		sten Only Mode									
		100 = Set Configuration mode 101 = Reserved									
	101 = Reserved										
		sten All Messag	ges mode								
oit 7-5		:0>: Operation									
	000 = Module is in Normal Operation mode										
	001 = Module is in Disable mode										
	010 = Module is in Loopback mode										
		011 = Module is in Listen Only mode 100 = Module is in Configuration mode									
	101 = Reser	-									
	110 = Reserved										
		e is in Listen A	-	lode							
bit 4	-	nted: Read as									
oit 3		P: CAN Message Receive Timer Capture Event Enable bit ble input capture based on CAN message receive									
	0 = Disable II		Seu UII CAN I	nessage receive	;						
oit 2-1		nted: Read as	0'								
pit 0	-	ap Window Se									
		•									
	1 = Use filter window 0 = Use buffer window										

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	
_		—		_		—		
bit 15							bit 8	
U-0	U-0	U-0	R-0	R-0	R-0	R-0	R-0	
_			DNCNT<4:0>					
bit 7							bit 0	
Legend:		C = Writeable	bit, but only	'0' can be writte	en to clear the	bit		
R = Readable bit		W = Writable b	bit U = Unimplemented bit, read as '0'					
-n = Value at POR '1' = Bit is set			'0' = Bit is cleared x = Bit is unkno			iown		

DIL 15-5	
bit 4-0	DNCNT<4:0>: DeviceNet™ Filter Bit Number bits
	10010-11111 = Invalid selection 10001 = Compare up to data byte 3, bit 6 with EID<17>
	•
	•
	•
	00001 = Compare up to data byte 1, bit 7 with EID<0> 00000 = Do not compare data bytes

U-0	U-0	U-0	R-0	R-0	R-0	R-0	R-0			
	_	_			FILHIT<4:0>					
it 15							bit			
U-0	R-1	R-0	R-0	R-0	R-0	R-0	R-0			
				ICODE<6:0	>					
bit 7							bit			
_egend:		C = Writeable	bit, but only '	0' can be writt	en to clear the b	it				
R = Readable bit W = Writable bit		U = Unimple	mented bit, read	as '0'						
n = Value at	POR	'1' = Bit is set		ʻ0' = Bit is cle	eared	x = Bit is unkr	iown			
oit 15-13	Unimplemen	nted: Read as '	0'							
bit 12-8	FILHIT<4:0>:	: Filter Hit Num	ber bits							
		1 = Reserved								
	01111 = Filte	er 15								
	•									
	•									
	00001 = Filter 1									
	00000 = Filte	er O								
bit 7	Unimplemen	nted: Read as '	0'							
bit 6-0		: Interrupt Flag								
	1000101-111111 = Reserved									
	1000100 = FIFO almost full interrupt 1000011 = Receiver overflow interrupt									
	1000010 = V	Vake-up interru	•							
	1000001 = E									
	1000000 = N	omenupi								
	•									
	0010000-0111111 = Reserved 0001111 = RB15 buffer Interrupt									
	•	CD 15 Duller line	inupt							
	•									
	•									
	0001001 = RB9 buffer interrupt									
	0001000 = RB8 buffer interrupt 0000111 = TRB7 buffer interrupt									
		RB7 buller inte								
		RB5 buffer inte								
		RB4 buffer inte								
		RB3 buffer inte RB2 buffer inte								
		RB1 buffer inte								
	000000 - T	RB0 Buffer inte								

REGISTER 18	8-4: CiFCT	RL: ECAN™	FIFO CONT	ROL REGIS	TER			
R/W-0	R/W-0	R/W-0	U-0	U-0	U-0	U-0	U-0	
DMABS<2:0>			—	—	—	—	—	
bit 15							bit 8	
U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
—	_	—			FSA<4:0>			
bit 7							bit 0	
Legend:		C = Writeable	e bit, but only '	0' can be writte	en to clear the b	it		
R = Readable I	oit	W = Writable	bit U = Unimplemented bit, read as '0'					
-n = Value at POR '1' = Bit is set		t	'0' = Bit is cleared x = Bit is unkno			nown		
			0					
bit 15-13	DMABS<2:0	>: DMA Buffer	Size bits					

	111 = Reserved
	110 = 32 buffers in DMA RAM
	101 = 24 buffers in DMA RAM
	100 = 16 buffers in DMA RAM
	011 = 12 buffers in DMA RAM
	010 = 8 buffers in DMA RAM
	001 = 6 buffers in DMA RAM
	000 = 4 buffers in DMA RAM
bit 12-5	Unimplemented: Read as '0'
bit 4-0	FSA<4:0>: FIFO Area Starts with Buffer bits
	11111 = Read buffer RB31
	11110 = Read buffer RB30
	•
	•
	•
	00001 = Tx/Rx buffer TRB1
	00000 = Tx/Rx buffer TRB0

U-0	U-0	R-0	R-0	R-0	R-0	R-0	R-0		
_				FBF	°<5:0>				
bit 15		•					bit 8		
U-0	U-0	R-0	R-0	R-0	R-0	R-0	R-0		
_	_	FNRB<5:0>							
bit 7							bit (
Legend:		C = Writable b	it, but only '0	' can be writter	to clear the	bit			
R = Readab	le bit	W = Writable b		U = Unimpler					
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown		
bit 7-6	• • 0000001 = - 0000000 = -	RB30 buffer IRB1 buffer IRB0 buffer ented: Read as '0	,						
bit 5-0	FNRB<5:0 011111 = F 011110 = F • • • Legend: 000001 =	 >: FIFO Next Rear RB31 buffer RB30 buffer IRB1 buffer IRB0 buffer 		ter bits					

bit 15 R/C-0 R/C-0 <t< th=""><th>U-0</th><th>U-0</th><th>R-0</th><th>R-0</th><th>R-0</th><th>R-0</th><th>R-0</th><th>R-0</th></t<>	U-0	U-0	R-0	R-0	R-0	R-0	R-0	R-0
R/C-0 R/C-0 <th< td=""><td></td><td>_</td><td>ТХВО</td><td>TXBP</td><td>RXBP</td><td>TXWAR</td><td>RXWAR</td><td>EWARN</td></th<>		_	ТХВО	TXBP	RXBP	TXWAR	RXWAR	EWARN
IVRIF WAKIF ERRIF FIFOIF RBOVIF RBIF TBIF bit 7 T	bit 15			•	•			bit 8
IVRIF WAKIF ERRIF FIFOIF RBOVIF RBIF TBIF it7	R/C-0	R/C-0	R/C-0	U-0	R/C-0	R/C-0	R/C-0	R/C-0
bit 7 Legend: C = Writeable bit, but only '0' can be written to clear the bit R = Readable bit W = Writeable bit U = Unimplemented to bit, read as '0' on = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 13 TXBO: Transmitter in Error State Bus Off bit 1 = Transmitter is not in Bus Off state 0 = Transmitter is not in Bus Off state 0 = Transmitter is not in Bus Off state 0 = Transmitter is in Bus Passive state 0 = Transmitter is in Bus Passive state 0 = Transmitter is in Bus Passive state 0 = Receiver is in Bus Passive state 0 = Receiver is in Bus Passive state 0 = Receiver is in Bus Passive state 0 = Transmitter is in Error State Warning bit 1 = Transmitter is in Error State Warning bit 1 = Transmitter is in Error State Warning state 0 = Receiver is in Cror Warning state 0 = Receiver is in ot in Error Warning state 0 = Receiver is in ot in Error State Warning bit 1 = Receiver is in the roceiver is in Error State Warning state 0 = Transmitter or Receiver is not in Error State Warning state 0 = Transmitter or Receiver is not in Error State Warning state 0 = Interrupt Request has not occurred 0 = Interrupt Request has not occurred 0 = Interrupt Request has not occurred 0 = Interrupt Request has not occurred 0 = Inter			1	_				
R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' or = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 15-14 Unimplemented: Read as '0' bit 13 TKBO: Transmitter in Error State Bus Off bit 1 = Transmitter is in Bus Off state bit 13 TKBP: Transmitter in Error State Bus Passive bit 1 = Transmitter is in Bus Passive state o = Transmitter is in Bus Passive state 0 = Receiver is not in Bus Passive state o = Receiver is not in Error State Bus Passive bit 1 = Receiver is not in Error Warning state o = Receiver is not in Error State Warning bit 1 = Transmitter is in Error Warning state o = Receiver is not in Error Warning state 0 = Receiver is not in Error State Warning bit o = Receiver is not in Error State Warning bit 1 = Transmitter or Receiver is In Error State Warning state o = Receiver is in Error State Warning state 0 = Receiver is in Error State Warning state bit 8 EWARN: Transmitter or Receiver is in Error State Warning state </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>bit (</td>								bit (
n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 15-14 Unimplemented: Read as '0' bit 13 TXBO: Transmitter in Error State Bus Off bit 1 = Transmitter is in Bus Off state 0 = Transmitter is not in Bus Off state 0 = Transmitter is not in Bus Passive state bit 12 TXBP: Transmitter is not in Bus Passive state 0 = Transmitter is not in Bus Passive state bit 11 RXBP: Receiver in Error State Bus Passive state 0 = Transmitter is not in Bus Passive state bit 11 RXPAR: Receiver in Error State Warning bit 1 = Transmitter is not in Error Warning state 0 = Transmitter is not in Error Warning state 0 = Transmitter or Receiver in Error State Warning bit 1 = Receiver is in Error Warning state 0 = Receiver is in Error Warning state 0 = Transmitter or Receiver in Error State Warning bit 1 = Transmitter or Receiver in Error State Warning state 0 = Transmitter or Receiver in Error State Warning state 0 = Transmitter or Receiver in Error State Warning state 0 = Transmitter or Receiver in Error State Warning state 0 = Interrupt Request has occurred 0 = Interrupt Request has occurred 0 = Interrupt Request has occurred 0 = Interrupt Request has occurred 0 = Interrupt Request has occurre	Legend:		C = Writeable	e bit, but only	0' can be writte	en to clear the b	pit	
bit 15-14 Unimplemented: Read as '0' bit 13 TXBO: Transmitter is in Euror State Bus Off bit 1 = Transmitter is not in Bus Off state 0 = Transmitter is not in Bus Off state 1 = Transmitter is not in Bus Passive state 0 = Receiver is not in Error State Bus Passive state 0 = Receiver is not in Error State Warning bit 1 = Transmitter is in Error Varning state 0 = Receiver is not in Error Varning state 0 = Receiver is not in Error Warning state 0 = Receiver is not in Error Warning state 0 = Receiver is not in Error Warning state 0 = Receiver is not in Error Varning state 0 = Receiver is not in Error Varning state 0 = Receiver is not in Error State Warning bit 1 = Transmitter or Receiver is in Error State Warning state 0 = Receiver is not in Error State Warning state 0 = Transmitter or Receiver is in Error State Warning state 0 = Interrupt Request has occurred 0 = Interrupt Request has not occurred bit 3 FIFOI : FIFO Almost Full Interrupt Flag bit 1 = Interrupt Request has not occurred bit 4 Unimplemented: Read as '0' bit 3 FIFOI : RX Buffer Overflow Interrupt Flag bit 1 = Interrupt Request has not occurred bit 4 RBOVI : RX Buffer Interrupt Flag bit 1 = Interrupt Request has not occurred bit 4 RBI : RX Buffer Interrupt Flag bit 1 = Interrupt Request has not occurred 0 = Interrupt Request has	R = Readabl	le bit	W = Writable	bit	U = Unimpler	mented bit, read	d as '0'	
bit 13 TXBO: Transmitter in Error State Bus Off bit 1 = Transmitter is in Bus Off state bit 12 TXBP: Transmitter in Error State Bus Passive bit 1 = Transmitter is in Bus Passive state 0 = Transmitter is in Bus Passive state bit 11 RXBP: Receiver in Error State Bus Passive state bit 11 RXBP: Receiver in Error State Bus Passive state bit 11 RXBP: Receiver is not in Bus Passive state bit 10 TXWAR: Transmitter in Error State Warning bit 1 = Transmitter is not in Error Warning state 0 = Transmitter is not in Error Warning state 0 = Receiver is in Error Warning state 0 = Receiver is in Error Warning state 0 = Receiver is not in Error Warning state 0 = Receiver is in Error Warning state 0 = Receiver is not in Error Warning state 0 = Transmitter or Receiver is not in Error State Warning bit 1 = Transmitter or Receiver is not in Error State Warning state 0 = Transmitter or Receiver is not in Error State Warning state bit 8 EWARN: Transmitter or Receiver is not in Error State Warning state 0 = Transmitter or Receiver is not in Error State Warning state bit 1 = Interrupt Request has not occurred 0 = Interrupt Request has not occurred bit 3 = Transmitter or Receiver is not in Error State Warning state 0 = Int	-n = Value at	t POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown
1 = Transmitter is in Bus Off state 0 = Transmitter is in Bus Off state 0 = Transmitter is in Bus Passive state 0 = Transmitter is in Bus Passive state 0 = Transmitter is in Bus Passive state 0 = Receiver is in Error Warning state 0 = Transmitter is in Error Warning state 0 = Transmitter is not in Error Warning state 0 = Receiver is in Error Warning state 0 = Receiver is not in Error Warning state 0 = Receiver is not in Error Warning state 0 = Receiver is not in Error State Warning bit 1 = Transmitter or Receiver is nerror State Warning state 0 = Transmitter or Receiver is not in Error State Warning state 0 = Transmitter or Receiver is not in Error State Warning state 0 = Transmitter or Receiver is not in Error State Warning state 0 = Interrupt Request has occurred 0 = Interrupt Request has occurred 0 = Interrupt Request has occurred 0 = Interrupt Reques	bit 15-14	Unimplemen	nted: Read as '	0'				
0 = Transmitter is not in Bus Off state bit 12 TXBP: Transmitter in Error State Bus Passive state 0 = Transmitter is in Bus Passive state bit 11 RXBP: Receiver in Error State Bus Passive state 0 = Receiver is in Bus Passive state 0 = Receiver is not in Bus Passive state 0 = Receiver is not in Bus Passive state 0 = Receiver is not in Bus Passive state 0 = Receiver is not in Bus Passive state 0 = Transmitter is in Error Warning state 0 = Transmitter is not in Error Warning state 0 = Receiver is not in Error Warning state 0 = Receiver is not in Error State Warning bit 1 = Receiver is not in Error Warning state 0 = Receiver is not in Error State Warning bit 1 = Receiver is not in Error State Warning bit 1 = Receiver is not in Error State Warning state 0 = Receiver is not in Error State Warning state 0 = Receiver is not in Error State Warning state 0 = Transmitter or Receiver is not Therror State Warning state 0 = Transmitter or Receiver is not in Error State Warning state 0 = Transmitter or Receiver is not in Error State Warning state 0 = Interrupt Request has occurred 0 = Interrupt Request has occurred 0 = Interrupt Request has occurred	bit 13	TXBO: Trans	mitter in Error	State Bus Off	bit			
bit 12 TXBP: Transmitter in Error State Bus Passive bit 1 = Transmitter is in Bus Passive state 0 = Transmitter is not in Bus Passive state 0 = Receiver is in Error State Bus Passive bit 1 = Receiver is in Bus Passive state 0 = Receiver is not in Bus Passive state 0 = Receiver is not in Bus Passive state 0 = Transmitter is in Error Warning bit 1 = Transmitter is in Error Warning state 0 = Transmitter is not in Error Warning state 0 = Receiver is not in Error State Warning state 0 = Transmitter or Receiver is In Error State Warning state 0 = Transmitter or Receiver is in Error State Warning state 0 = Transmitter or Receiver is not in Error State Warning state 0 = Interrupt Request has occurred 0 = Interrupt Request has not occurred 0 = Interrupt Request has not occurred 0 = Interrupt Request has occurre								
0 = Transmitter is not in Bus Passive state bit 11 RXBP: Receiver in Error State Bus Passive bit 1 = Receiver is in Bus Passive state 0 = Receiver is not in Bus Passive state bit 10 TXWAR: Transmitter in Error State Warning bit 1 = Transmitter is in Error Warning state 0 = Transmitter is in Error Warning state 0 = Transmitter is not in Error Warning state 0 = Receiver is not in Error Warning state bit 9 RXWAR: Receiver in Error State Warning bit 1 = Receiver is not in Error Warning state 0 = Receiver is not in Error Warning state 0 = Receiver is not in Error Warning state 0 = Receiver is not in Error State Warning state 0 = Receiver is not in Error State Warning state 0 = Transmitter or Receiver is in Error State Warning state 0 = Transmitter or Receiver is not in Error State Warning state 0 = Transmitter or Receiver is not in Error State Warning state 0 = Transmitter or Receiver is not in Error State Warning state 0 = Transmitter or Receiver is not in Error State Warning state 0 = Interrupt Request has occurred 0 = Interrupt Request has occurred 0 = Interrupt Request has not occurred 0 = Interrupt Request has not occurred bit 3 FIFOIF: FIFO Almost Full Interrupt Flag bit 1 = Interrupt Request has not occurred 0 = Interrupt Request has not occurred </td <td>bit 12</td> <td></td> <td></td> <td></td> <td>sive bit</td> <td></td> <td></td> <td></td>	bit 12				sive bit			
bit 11 RXBP: Receiver in Error State Bus Passive bit 1 = Receiver is in Bus Passive state 0 = Receiver is not in Bus Passive state 0 = Transmitter in Error State Warning bit 1 = Transmitter is not in Error State Warning bit 1 = Transmitter is not in Error Warning state 0 = Transmitter is not in Error Warning state 0 = Transmitter is not in Error Warning state 0 = Receiver is in Error Warning state 0 = Receiver is not in Error Warning state 0 = Receiver is not in Error Warning state 0 = Receiver is not in Error Warning state 0 = Receiver is not receiver is In Error State Warning bit 1 = Transmitter or Receiver is not fireror State Warning state 0 = Transmitter or Receiver is not State Warning state bit 8 EWARN: Transmitter or Receiver is not fireror State Warning state 0 = Transmitter or Receiver is not fireror State Warning state bit 7 IVRIF: Invalid Message Received Interrupt Flag bit 1 = Interrupt Request has occurred 0 = Interrupt Request has occurred 0 = Interrupt Request has occurred bit 5 ERRIF: Error Interrupt Flag bit (multiple sources in CIINTF<13:8> register) 1 = Interrupt Request has occurred 0 = Interrupt Request has not occurred bit 3 FIFOIF: FIFO Almost Full Interrupt Flag bit 1 = Interrupt Request has not occurred 0 = Interrupt Request has not occur					2			
1 = Receiver is in Bus Passive state 0 = Receiver is not in Bus Passive state 0 = Receiver is not in Bus Passive state 0 = Transmitter is in Error Warning state 0 = Transmitter is in Error Warning state 0 = Transmitter is not in Error Warning state 0 = Receiver is in Error Warning state 0 = Receiver is in Error Warning state 0 = Receiver is not in Error Warning state 0 = Receiver is not in Error Warning state 0 = Receiver is not in Error Warning state 0 = Receiver is not in Error State Warning bit 1 = Transmitter or Receiver in Error State Warning state 0 = Transmitter or Receiver is not in Error State Warning state 0 = Transmitter or Receiver is not in Error State Warning state 0 = Transmitter or Receiver is not in Error State Warning state 0 = Transmitter or Receiver is not in Error State Warning state 0 = Transmitter or Receiver is not in Error State Warning state 0 = Transmitter or Receiver is not in Error State Warning state 0 = Transmitter or Receiver is not in Error State Warning state 0 = Interrupt Request has not occurred 0 = Interrupt Request has occurred 0 = Interrupt Request has not occurred bit 3 FIFOIF: FIFO Almost Full Interrupt Flag bit 1 = Interru	hit 11							
bit 10 TXWAR: Transmitter in Error State Warning bit 1 = Transmitter is in terror Warning state 0 = Transmitter is not in Error Warning state bit 9 RXWAR: Receiver in Error State Warning bit 1 = Receiver is in Error Warning state 0 = Receiver is in Error Warning state 0 = Receiver is not in Error Warning state 0 = Receiver is not in Error State Warning bit 1 = Transmitter or Receiver in Error State Warning state 0 = Transmitter or Receiver is not in Error State Warning state 0 = Transmitter or Receiver is not in Error State Warning state 0 = Transmitter or Receiver is not in Error State Warning state 0 = Transmitter or Receiver is not in Error State Warning state 0 = Interrupt Request has occurred 0 = Interrupt Request has occurred 0 = Interrupt Request has not occurred 0 = Interrupt Request has not occurred 0 = Interrupt Request has occurred 0 = Interrupt Request has not occurred 0 = Interrupt Request has occurred 0 = Interrupt Request has not occurred 0 = Interrupt Request has occurred 0 = Interrupt Request has not occurred bit 1 RBIF : RX Buffer Interrupt Flag bit 1 = Interrupt Request has occurred 0 = Interrupt Request has occurre		1 = Receiver	is in Bus Pass	ve state				
1 = Transmitter is in Error Warning state 0 = Transmitter is not in Error Warning state 0 = Transmitter is not in Error Warning state 0 = Receiver is in Error Warning state 0 = Receiver is not in Error Warning state 0 = Receiver is not in Error Warning state 0 = Receiver is not in Error Warning state 0 = Receiver is not in Error Warning state 0 = Transmitter or Receiver is Error State Warning state 0 = Transmitter or Receiver is not in Error State Warning state 0 = Transmitter or Receiver is not in Error State Warning state 0 = Transmitter or Receiver is not in Error State Warning state 0 = Transmitter or Receiver is not in Error State Warning state 0 = Transmitter or Receiver is not in Error State Warning state 0 = Transmitter or Receiver is not in Error State Warning state 0 = Transmitter or Receiver is not in Error State Warning state 0 = Transmitter or Receiver is not in Error State Warning state 0 = Interrupt Request has occurred 0 = Interrupt Request has occurred 0 = Interrupt Request has not occurred bit 3 FIFOIF : FIFO Almost Full Interrupt Flag bit 1 = Interrupt Request has occurred 0 = Interrupt Request has occurred 0 = Interrupt Request has occurred 0 =	bit 10				na bit			
bit 9 RXWAR: Receiver in Error State Warning bit 1 = Receiver is not in Error Warning state 0 = Receiver is not in Error Warning state bit 8 EWARN: Transmitter or Receiver in Error State Warning state 0 = Transmitter or Receiver is not in Error State Warning state 0 = Transmitter or Receiver is not in Error State Warning state 0 = Transmitter or Receiver is not in Error State Warning state 0 = Transmitter or Receiver is not in Error State Warning state 0 = Transmitter or Receiver is not in Error State Warning state bit 7 IVRIF: Invalid Message Received Interrupt Flag bit 1 = Interrupt Request has occurred 0 = Interrupt Request has not occurred 0 = Interrupt Request has not occurred 0 = Interrupt Request has not occurred 0 = Interrupt Request has not occurred 0 = Interrupt Request has not occurred 0 = Interrupt Request has not occurred 0 = Interrupt Request has not occurred 0 = Interrupt Request has not occurred 0 = Interrupt Request has not occurred 0 = Interrupt Request has not occurred 0 = Interrupt Request has not occurred 0 = Interrupt Request has not occurred 0 = Interrupt Request has not occurred 0 = Interrupt Request has not occurred 0 = Interrupt Request has not occurred 0 = Interrupt Request has not occurred 0 = I					ig sit			
1 = Receiver is in Error Warning state 0 = Receiver is not in Error Warning state bit 8 EWARN: Transmitter or Receiver in Error State Warning state 0 = Transmitter or Receiver is in Error State Warning state 0 = Transmitter or Receiver is not in Error State Warning state 0 = Transmitter or Receiver is not in Error State Warning state 0 = Transmitter or Receiver is not in Error State Warning state 0 = Transmitter or Receiver is not in Error State Warning state 0 = Transmitter or Receiver is not in Error State Warning state 0 = Transmitter or Receiver is not in Error State Warning state 0 = Transmitter or Receiver is not in Error State Warning state 0 = Transmitter or Received Interrupt Flag bit 1 = Interrupt Request has occurred 0 = Interrupt Request has not occurred 0 = Interrupt Request has not occurred 0 = Interrupt Request has not occurred 0 = Interrupt Request has occurred 0 = Interrupt Request has occurred 0 = Interrupt Request has not occurred 0 = Interrupt Request has not occurred 0 = Interrupt Request has occurred 0 = Interrupt Request		0 = Transmitt	ter is not in Erro	or Warning sta	ate			
0 = Receiver is not in Error Warning state bit 8 EWARN: Transmitter or Receiver in Error State Warning state 0 = Transmitter or Receiver is in Error State Warning state 0 = Transmitter or Receiver is not in Error State Warning state bit 7 IVRIF: Invalid Message Received Interrupt Flag bit 1 = Interrupt Request has occurred 0 = Interrupt Request has not occurred 0 = Interrupt Request has not occurred bit 6 WAKIF: Bus Wake-up Activity Interrupt Flag bit 1 = Interrupt Request has not occurred 0 = Interrupt Request has not occurred bit 5 ERRIF: Error Interrupt Flag bit (multiple sources in CiINTF<13:8> register) 1 = Interrupt Request has not occurred 0 = Interrupt Request has not occurred bit 4 Unimplemented: Read as '0' bit 3 FIFOIF: FIFO Almost Full Interrupt Flag bit 1 = Interrupt Request has occurred 0 = Interrupt Request has occurred bit 2 RBOVIF: RX Buffer Overflow Interrupt Flag bit 1 = Interrupt Request has occurred 0 = Interrupt Request has occurred bit 1 RBIF: RX Buffer Interrupt Flag bit 1 = Interrupt Request has occurred 0 = Interrupt Request has occurred bit 1 RBIF: RX Buffer Interrupt Flag bit 1 = Interrupt Request has occurred 0 = Interru	bit 9			•	bit			
1 = Transmitter or Receiver is in Error State Warning state 0 = Transmitter or Receiver is not in Error State Warning state bit 7 IVRIF: Invalid Message Received Interrupt Flag bit 1 = Interrupt Request has occurred 0 = Interrupt Request has not occurred bit 6 WAKIF: Bus Wake-up Activity Interrupt Flag bit 1 = Interrupt Request has not occurred 0 = Interrupt Request has not occurred 0 = Interrupt Request has not occurred 0 = Interrupt Request has not occurred bit 5 ERRIF: Error Interrupt Flag bit (multiple sources in CiINTF<13:8> register) 1 = Interrupt Request has not occurred 0 = Interrupt Request has not occurred bit 4 Unimplemented: Read as '0' bit 3 FIFOIF: FIFO Almost Full Interrupt Flag bit 1 = Interrupt Request has not occurred 0 = Interrupt Request has not occurred bit 2 RBOVIF: RX Buffer Overflow Interrupt Flag bit 1 = Interrupt Request has not occurred 0 = Interrupt Request has not occurred bit 1 RBIF: RX Buffer Interrupt Flag bit 1 = Interrupt Request has not occurred 0 = Interrupt Request has not occurred bit 1 RBIF: RX Buffer Interrupt Flag bit 1 = Interrupt Request has not occurred 0 = Interrupt Request has not occurred 0 = Interr				•				
0 = Transmitter or Receiver is not in Error State Warning statebit 7IVRIF: Invalid Message Received Interrupt Flag bit 1 = Interrupt Request has occurred 0 = Interrupt Request has not occurredbit 6WAKIF: Bus Wake-up Activity Interrupt Flag bit 1 = Interrupt Request has occurred 0 = Interrupt Request has not occurredbit 5ERRIF: Error Interrupt Flag bit (multiple sources in CiINTF<13:8> register) 1 = Interrupt Request has occurred 0 = Interrupt Request has not occurredbit 4Unimplemented: Read as '0'bit 3FIFOIF: FIFO Almost Full Interrupt Flag bit 1 = Interrupt Request has occurred 0 = Interrupt Request has not occurredbit 1RBIF: RX Buffer Overflow Interrupt Flag bit 1 = Interrupt Request has not occurred 0 = Interrupt Request has not occurredbit 1RBIF: RX Buffer Interrupt Flag bit 1 = Interrupt Request has not occurred 0 = Interrupt Request has not occurredbit 1RBIF: RX Buffer Interrupt Flag bit 1 = Interrupt Request has not occurred 0 = Interrupt Request has not occurredbit 0TBIF: TX Buffer Interrupt Flag bit	bit 8							
bit 7 IVRIF: Invalid Message Received Interrupt Flag bit 1 = Interrupt Request has occurred 0 = Interrupt Request has not occurred bit 6 WAKIF: Bus Wake-up Activity Interrupt Flag bit 1 = Interrupt Request has occurred 0 = Interrupt Request has not occurred bit 5 ERRIF: Error Interrupt Flag bit (multiple sources in CiINTF<13:8> register) 1 = Interrupt Request has occurred 0 = Interrupt Request has not occurred bit 4 Unimplemented: Read as '0' bit 3 FIFOIF: FIFO Almost Full Interrupt Flag bit 1 = Interrupt Request has occurred 0 = Interrupt Request has not occurred bit 4 Unimplemented: Read as '0' bit 5 RIFOIF: FIFO Almost Full Interrupt Flag bit 1 = Interrupt Request has not occurred 0 = Interrupt Request has not occurred bit 2 RBOVIF: RX Buffer Overflow Interrupt Flag bit 1 = Interrupt Request has not occurred 0 = Interrupt Request has not occurred bit 1 RBIF: RX Buffer Interrupt Flag bit 1 = Interrupt Request has occurred 0 = Interrupt Request has occurred bit 1 RBIF: RX Buffer Interrupt Flag bit 1 = Interrupt Request has not occurred 0 = Interrupt Request has not occurred bit 0 TBIF: TX Buffer Inte					•			
1 = Interrupt Request has occurred 0 = Interrupt Request has not occurred bit 6 WAKIF: Bus Wake-up Activity Interrupt Flag bit 1 = Interrupt Request has occurred 0 = Interrupt Request has not occurred bit 5 ERRIF: Error Interrupt Flag bit (multiple sources in CiINTF<13:8> register) 1 = Interrupt Request has occurred 0 = Interrupt Request has not occurred bit 4 Unimplemented: Read as '0' bit 3 FIFOIF: FIFO Almost Full Interrupt Flag bit 1 = Interrupt Request has not occurred bit 4 Unimplemented: Read as '0' bit 3 FIFOIF: FIFO Almost Full Interrupt Flag bit 1 = Interrupt Request has occurred 0 = Interrupt Request has not occurred bit 2 RBOVIF: RX Buffer Overflow Interrupt Flag bit 1 = Interrupt Request has occurred 0 = Interrupt Request has occurred 0 = Interrupt Request has not occurred 0 = Interrupt Request has not occurred bit 1 RBIF: RX Buffer Interrupt Flag bit 1 = Interrupt Request has occurred 0 = Interrupt Request has occurred 0 = Interrupt Request has occurred 0 = Interrupt Request has occurred 0 = Interrupt Request has occurred 0 = Interrupt Request has occurred 0 =	hit 7				-	state		
0 = Interrupt Request has not occurred bit 6 WAKIF: Bus Wake-up Activity Interrupt Flag bit 1 = Interrupt Request has occurred 0 = Interrupt Request has not occurred bit 5 ERRIF: Error Interrupt Flag bit (multiple sources in CiINTF<13:8> register) 1 = Interrupt Request has occurred 0 = Interrupt Request has not occurred bit 4 Unimplemented: Read as '0' bit 3 FIFOIF: FIFO Almost Full Interrupt Flag bit 1 = Interrupt Request has not occurred bit 4 Unimplemented: Read as '0' bit 5 RBOVIF: FIFO Almost Full Interrupt Flag bit 1 = Interrupt Request has not occurred bit 2 RBOVIF: RX Buffer Overflow Interrupt Flag bit 1 = Interrupt Request has occurred 0 = Interrupt Request has not occurred bit 1 RBIF: RX Buffer Interrupt Flag bit 1 = Interrupt Request has occurred 0 = Interrupt Request has not occurred bit 1 RBIF: RX Buffer Interrupt Flag bit 1 = Interrupt Request has not occurred 0 = Interrupt Request has					n Flag bit			
 1 = Interrupt Request has occurred 0 = Interrupt Request has not occurred bit 5 ERRIF: Error Interrupt Flag bit (multiple sources in CiINTF<13:8> register) 1 = Interrupt Request has occurred 0 = Interrupt Request has not occurred bit 4 Unimplemented: Read as '0' bit 3 FIFOIF: FIFO Almost Full Interrupt Flag bit 1 = Interrupt Request has not occurred 0 = Interrupt Request has not occurred bit 3 FIFOIF: FIFO Almost Full Interrupt Flag bit 1 = Interrupt Request has not occurred 0 = Interrupt Request has not occurred 0 = Interrupt Request has not occurred bit 2 RBOVIF: RX Buffer Overflow Interrupt Flag bit 1 = Interrupt Request has not occurred bit 1 RBIF: RX Buffer Interrupt Flag bit 1 = Interrupt Request has occurred 0 = Interrupt Request has not occurred bit 1 RBIF: RX Buffer Interrupt Flag bit 1 = Interrupt Request has not occurred bit 1 BIF: TX Buffer Interrupt Flag bit 1 = Interrupt Request has not occurred 0 = Interrupt Request has not occurred bit 1 								
0 = Interrupt Request has not occurred bit 5 ERRIF: Error Interrupt Flag bit (multiple sources in CiINTF<13:8> register) 1 = Interrupt Request has occurred 0 = Interrupt Request has not occurred bit 4 Unimplemented: Read as '0' bit 3 FIFOIF: FIFO Almost Full Interrupt Flag bit 1 = Interrupt Request has occurred 0 = Interrupt Request has not occurred bit 2 RBOVIF: RX Buffer Overflow Interrupt Flag bit 1 = Interrupt Request has occurred 0 = Interrupt Request has occurred bit 1 RBIF: RX Buffer Interrupt Flag bit 1 = Interrupt Request has occurred 0 = Interrupt Request has occurred bit 1 RBIF: RX Buffer Interrupt Flag bit 1 = Interrupt Request has occurred 0 = Interrupt Request has occurred bit 1 RBIF: RX Buffer Interrupt Flag bit 1 = Interrupt Request has occurred 0 = Interrupt Request has occurred bit 0 TBIF: TX Buffer Interrupt Flag bit	bit 6		•	•	ag bit			
bit 5ERRIF: Error Interrupt Flag bit (multiple sources in CiINTF<13:8> register) 1 = Interrupt Request has occurred 0 = Interrupt Request has not occurredbit 4Unimplemented: Read as '0'bit 3FIFOIF: FIFO Almost Full Interrupt Flag bit 1 = Interrupt Request has not occurred 0 = Interrupt Request has not occurred 0 = Interrupt Request has not occurredbit 2RBOVIF: RX Buffer Overflow Interrupt Flag bit 1 = Interrupt Request has occurred 0 = Interrupt Request has not occurredbit 1RBIF: RX Buffer Overflow Interrupt Flag bit 1 = Interrupt Request has not occurred 0 = Interrupt Request has not occurred								
1 = Interrupt Request has occurred 0 = Interrupt Request has not occurred bit 4 Unimplemented: Read as '0' bit 3 FIFOIF: FIFO Almost Full Interrupt Flag bit 1 = Interrupt Request has occurred 0 = Interrupt Request has not occurred bit 2 RBOVIF: RX Buffer Overflow Interrupt Flag bit 1 = Interrupt Request has occurred 0 = Interrupt Request has occurred bit 1 RBIF: RX Buffer Interrupt Flag bit 1 = Interrupt Request has not occurred 0 = Interrupt Request has not occurred bit 1 RBIF: RX Buffer Interrupt Flag bit 1 = Interrupt Request has occurred 0 = Interrupt Request has not occurred bit 1 RBIF: RX Buffer Interrupt Flag bit 1 = Interrupt Request has not occurred 0 = Interrupt Request has not occurred bit 0 TBIF: TX Buffer Interrupt Flag bit	L:1 C	-	-				a <i>x</i>)	
0 = Interrupt Request has not occurred bit 4 Unimplemented: Read as '0' bit 3 FIFOIF: FIFO Almost Full Interrupt Flag bit 1 = Interrupt Request has occurred 0 = Interrupt Request has not occurred bit 2 RBOVIF: RX Buffer Overflow Interrupt Flag bit 1 = Interrupt Request has occurred 0 = Interrupt Request has occurred bit 1 RBIF: RX Buffer Interrupt Flag bit 1 = Interrupt Request has not occurred 0 = Interrupt Request has not occurred bit 1 RBIF: RX Buffer Interrupt Flag bit 1 = Interrupt Request has not occurred 0 = Interrupt Request has not occurred bit 1 RBIF: RX Buffer Interrupt Flag bit 1 = Interrupt Request has not occurred 0 = Interrupt Request has not occurred bit 0 TBIF: TX Buffer Interrupt Flag bit	DILS				ources in Clini	F<13:8> regist	er)	
bit 4 Unimplemented: Read as '0' bit 3 FIFOIF: FIFO Almost Full Interrupt Flag bit 1 = Interrupt Request has occurred 0 = Interrupt Request has not occurred bit 2 RBOVIF: RX Buffer Overflow Interrupt Flag bit 1 = Interrupt Request has occurred 0 = Interrupt Request has occurred bit 1 RBIF: RX Buffer Interrupt Flag bit 1 = Interrupt Request has not occurred 0 = Interrupt Request has not occurred bit 1 RBIF: RX Buffer Interrupt Flag bit 1 = Interrupt Request has not occurred 0 = Interrupt Request has not occurred bit 0 TBIF: TX Buffer Interrupt Flag bit								
bit 3 FIFOIF: FIFO Almost Full Interrupt Flag bit 1 = Interrupt Request has occurred 0 = Interrupt Request has not occurred bit 2 RBOVIF: RX Buffer Overflow Interrupt Flag bit 1 = Interrupt Request has occurred 0 = Interrupt Request has not occurred 0 = Interrupt Request has not occurred bit 1 RBIF: RX Buffer Interrupt Flag bit 1 = Interrupt Request has occurred 0 = Interrupt Request has not occurred bit 1 RBIF: RX Buffer Interrupt Flag bit 1 = Interrupt Request has not occurred bit 0 TBIF: TX Buffer Interrupt Flag bit	bit 4	-	-					
1 = Interrupt Request has occurred 0 = Interrupt Request has not occurred bit 2 RBOVIF : RX Buffer Overflow Interrupt Flag bit 1 = Interrupt Request has occurred 0 = Interrupt Request has not occurred bit 1 RBIF : RX Buffer Interrupt Flag bit 1 = Interrupt Request has occurred bit 1 RBIF : RX Buffer Interrupt Flag bit 1 = Interrupt Request has occurred 0 = Interrupt Request has occurred 0 = Interrupt Request has not occurred bit 0 TBIF : TX Buffer Interrupt Flag bit		•			it			
bit 2 RBOVIF: RX Buffer Overflow Interrupt Flag bit 1 = Interrupt Request has occurred 0 = Interrupt Request has not occurred bit 1 RBIF: RX Buffer Interrupt Flag bit 1 = Interrupt Request has occurred 0 = Interrupt Request has occurred 0 = Interrupt Request has occurred 0 = Interrupt Request has not occurred bit 0 TBIF: TX Buffer Interrupt Flag bit								
1 = Interrupt Request has occurred 0 = Interrupt Request has not occurred bit 1 RBIF : RX Buffer Interrupt Flag bit 1 = Interrupt Request has occurred 0 = Interrupt Request has not occurred 0 = Interrupt Request has not occurred bit 0 TBIF : TX Buffer Interrupt Flag bit								
bit 0 = Interrupt Request has not occurred bit 1 RBIF: RX Buffer Interrupt Flag bit 1 = Interrupt Request has occurred 0 = Interrupt Request has not occurred bit 0 TBIF: TX Buffer Interrupt Flag bit	bit 2			•	ag bit			
bit 1 RBIF : RX Buffer Interrupt Flag bit 1 = Interrupt Request has occurred 0 = Interrupt Request has not occurred bit 0 TBIF : TX Buffer Interrupt Flag bit								
1 = Interrupt Request has occurred 0 = Interrupt Request has not occurred bit 0 TBIF: TX Buffer Interrupt Flag bit	hit 1	-	-					
0 = Interrupt Request has not occurred bit 0 TBIF: TX Buffer Interrupt Flag bit	~							
1 = Interrupt Request has occurred	bit 0							
0 = Interrupt Request has not occurred								

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0				
_	_	_	_	_	_	_	_				
bit 15				1			bit 8				
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
IVRIE	WAKIE	ERRIE	—	FIFOIE	RBOVIE	RBIE	TBIE				
bit 7							bit (
Legend:		C = Writeable	bit. but only '	0' can be writte	n to clear the bi	t					
R = Readab	le bit	W = Writable	, ,		nented bit, read						
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is clea		x = Bit is unkn	own				
bit 15-8	Unimplemen	ted: Read as '	0'								
bit 7	IVRIE: Invalid Message Received Interrupt Enable bit										
	1 = Interrupt Request Enabled 0 = Interrupt Request not enabled										
	•	•									
bit 6	WAKIE: Bus Wake-up Activity Interrupt Flag bit 1 = Interrupt Request Enabled										
bit 5	•	0 = Interrupt Request not enabled ERRIE: Error Interrupt Enable bit									
bit 0		1 = Interrupt Request Enabled									
	0 = Interrupt Request not enabled										
bit 4	•	ted: Read as '									
	FIFOIE: FIFC) Almost Full In	terrunt Enable	. h.:+							
bit 3	1 = Interrupt Request Enabled										
bit 3	1 = Interrupt										
bit 3			ed	DIL							
bit 3 bit 2	0 = Interrupt RBOVIE : RX	Request Enable Request not en Buffer Overflov	ed abled v Interrupt En								
	0 = Interrupt RBOVIE : RX 1 = Interrupt	Request Enable Request not en Buffer Overflov Request Enable	ed abled w Interrupt En ed								
bit 2	0 = Interrupt RBOVIE : RX 1 = Interrupt 0 = Interrupt	Request Enable Request not en Buffer Overflov Request Enable Request not en	ed abled w Interrupt En ed abled								
	0 = Interrupt RBOVIE : RX 1 = Interrupt 0 = Interrupt RBIE : RX Bu	Request Enable Request not en Buffer Overflov Request Enable Request not en ffer Interrupt Er	ed abled w Interrupt En ed abled nable bit								
bit 2	0 = Interrupt RBOVIE : RX 1 = Interrupt 0 = Interrupt RBIE : RX Bu 1 = Interrupt	Request Enable Request not en Buffer Overflov Request Enable Request not en ffer Interrupt En Request Enable	ed abled w Interrupt En ed abled nable bit ed								
bit 2 bit 1	0 = Interrupt RBOVIE : RX 1 = Interrupt 0 = Interrupt RBIE : RX Bu 1 = Interrupt 0 = Interrupt	Request Enable Request not en Buffer Overflov Request Enable Request not en ffer Interrupt En Request Enable Request not en	ed abled w Interrupt En ed abled nable bit ed abled								
bit 2	0 = Interrupt RBOVIE : RX 1 = Interrupt 0 = Interrupt RBIE : RX Bu 1 = Interrupt 0 = Interrupt TBIE : TX Buf	Request Enable Request not en Buffer Overflov Request Enable Request not en ffer Interrupt En Request Enable	ed abled w Interrupt En ed abled nable bit ed abled abled able bit								

REGISTER 18-8: CIEC: ECAN™ TRANSMIT/RECEIVE ERROR COUNT REGISTER

R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0		
			TERRO	CNT<7:0>					
bit 15							bit 8		
R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0		
			RERRO	CNT<7:0>					
bit 7							bit 0		
Legend:		C = Writeable b	it, but only	'0' can be written to	clear the	bit]		
R = Readable I	bit	W = Writable bit	t	U = Unimplemented bit, read as '0'					
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is cleared	b	x = Bit is unknown			

bit 15-8	TERRCNT<7:0>: Transmit Error Count bits
bit 7-0	RERRCNT<7:0>: Receive Error Count bits

REGISTER 18-9: CICFG1: ECAN™ BAUD RATE CONFIGURATION REGISTER 1

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
_	—			_	—		—
bit 15							bit 8

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
SJW	<1:0>			BRP	°<5:0>		
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	l as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-8	Unimplemented: Read as '0'				
bit 7-6	SJW<1:0>: Synchronization Jump Width bits				
	11 = Length is 4 x TQ 10 = Length is 3 x TQ 01 = Length is 2 x TQ 00 = Length is 1 x TQ				
bit 5-0	BRP<5:0>: Baud Rate Prescaler bits				
	11 1111 = TQ = 2 x 64 x 1/FCAN				
	•				
	•				
	•				
	00 0010 = $Tq = 2 \times 3 \times 1/FCAN$ 00 0001 = $Tq = 2 \times 2 \times 1/FCAN$ 00 0000 = $Tq = 2 \times 1 \times 1/FCAN$				

00 0000 = $Tq = 2 \times 1 \times 1/FCAN$

© 2008 Microchip Technology Inc.

U-0	R/W-x	U-0	U-0	U-0	R/W-x	R/W-x	R/W-x				
_	WAKFIL	_	_	_		SEG2PH<2:0>					
bit 15							bit 8				
R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x				
SEG2PHTS	SAM		SEG1PH<2:0>			PRSEG<2:0>					
bit 7							bit (
Legend:											
R = Readable	e bit	W = Writable	e bit	U = Unimplei	mented bit, re	ad as '0'					
-n = Value at	POR	'1' = Bit is se	et	'0' = Bit is cle	eared	x = Bit is unkno	wn				
=											
bit 15	-	ted: Read as									
bit 14			Line Filter for W	ake-up bit							
		bus line filter	for wake-up ot used for wake								
bit 13-11				-up							
bit 10-8	Unimplemented: Read as '0' SEG2PH<2:0>: Phase Segment 2 bits										
	111 = Length										
	•	•									
	•										
	000 = 1 enath	is 1 x To									
bit 7	000 = Length is 1 x TQ SEG2PHTS: Phase Segment 2 Time Select bit										
	1 = Freely pro	ogrammable				whichovor is groate)r				
bit 6	0 = Maximum of SEG1PH bits or Information Processing Time (IPT), whichever is greater										
bit o	SAM: Sample of the CAN bus Line bit 1 = Bus line is sampled three times at the sample point										
	 a Bus line is sampled once at the sample point b = Bus line is sampled once at the sample point 										
bit 5-3	SEG1PH<2:0>: Phase Segment 1 bits										
	111 = Length is 8 x Tq										
	•	•									
	•	•									
	•										
	000 = Length	is 1 x Tq									
bit 2-0	PRSEG<2:0>	. Propagation	n Time Segment	bits							
	111 = Length	is 8 x Tq									
	•										
	•										
	•										

'0' = Bit is cleared

x = Bit is unknown

REGISTER 18-11: CIFEN1: ECAN™ ACCEPTANCE FILTER ENABLE REGISTER

R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	
FLTEN15	FLTEN14	FLTEN13	FLTEN12	FLTEN11	FLTEN10	FLTEN9	FLTEN8	
bit 15							bit 8	
R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	
FLTEN7	FLTEN6	FLTEN5	FLTEN4	FLTEN3	FLTEN2	FLTEN1	FLTEN0	
bit 7							bit 0	
Legend: C = Writeable bit, but only '0' can be written to clear the bit								
R = Readable I	bit	W = Writable	bit	U = Unimplemented bit, read as '0'				

bit 15-0

-n = Value at POR

FLTENn: Enable Filter n to Accept Messages bits

'1' = Bit is set

1 = Enable Filter n

0 = Disable Filter n

REGISTER 18-12: CiBUFPNT1: ECAN™ FILTER 0-3 BUFFER POINTER REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
	F3BP<	<3:0>			F2BP	<3:0>	
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
	F1BP<	<3:0>		F0BP<3:0>				
bit 7							bit 0	

Legend:	C = Writeable bit, but only '0' can be written to clear the bit			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'		
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 15-12	F3BP<3:0>: RX Buffer mask for Filter 3 1111 = Filter hits received in RX FIFO buffer 1110 = Filter hits received in RX Buffer 14
	•
	•
	•
	0001 = Filter hits received in RX Buffer 1
	0000 = Filter hits received in RX Buffer 0
bit 11-8	F2BP<3:0>: RX Buffer mask for Filter 2 (same values as bit 15-12)
bit 7-4	F1BP<3:0>: RX Buffer mask for Filter 1 (same values as bit 15-12)
bit 3-0	F0BP<3:0>: RX Buffer mask for Filter 0 (same values as bit 15-12)

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
10.00-0		P<3:0>	17/07-0	10/00-0			10.00-0		
	F/Dr	~3.0>			FODI	><3:0>			
bit 15							bit 8		
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
	F5BF	P<3:0>			F4BF	P<3:0>			
bit 7							bit C		
Legend:		C = Writeable	e bit, but only	'0' can be writte	n to clear the l	bit			
R = Readable bit		W = Writable bit		U = Unimplemented bit, read as '0'					
-n = Value at POR		'1' = Bit is set	t	'0' = Bit is cleared x = Bit		x = Bit is unkı	s unknown		
bit 15-12	F7BP<3:0>: RX Buffer mask for Filter 7								
	1111 = Filter hits received in RX FIFO buffer								
	1110 = Filter hits received in RX Buffer 14								
	•								
	•								
	•								
		r hits received in r hits received in							
bit 11-8				samo valuos as	bit 15-12)				
		RX Buffer mas	-		-				
bit 7-4 F5BP<3:0>: RX Buffer mask for Filter 5 (same values as bit 15-12)									

REGISTER 18-13: CiBUFPNT2: ECAN™ FILTER 4-7 BUFFER POINTER REGISTER

bit 3-0 **F4BP<3:0>:** RX Buffer mask for Filter 4 (same values as bit 15-12)

REGISTER 18-14: CiBUFPNT3: ECAN™ FILTER 8-11 BUFFER POINTER REGISTER

R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 F9BP<3:0> F8BP<3:0> bit 7 bit 7 Legend: C = Writeable bit, but only '0' can be written to clear the bit bit 7 bit 7 Legend: C = Writeable bit, but only '0' can be written to clear the bit R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' -n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 15-12 F11BP<3:0>: RX Buffer mask for Filter 11 1111 = Filter hits received in RX FIFO buffer 1110 = Filter hits received in RX Buffer 1 0001 = Filter hits received in RX Buffer 14 • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •<								
bit 15 bit 17 bit 10 can be written to clear the bit 17 bit 10 can be written to clear the bit 10 can be written to clear the bit 10 can be written to clear the bit 11 can be written to clear the bit 12 can be wr	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 F9BP<3:0> F8BP<3:0> bit 7 bit 7 Legend: C = Writeable bit, but only '0' can be written to clear the bit bit 7 bit 7 Legend: C = Writeable bit, but only '0' can be written to clear the bit R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' -n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 15-12 F11BP<3:0>: RX Buffer mask for Filter 11 1111 = Filter hits received in RX FIFO buffer 1110 = Filter hits received in RX Buffer 1 0001 = Filter hits received in RX Buffer 14 • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •<		F11BP	?<3:0>			F10B	SP<3:0>	
F9BP<3:0> F8BP<3:0> bit 7 bit 7 Legend: C = Writeable bit, but only '0' can be written to clear the bit R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' -n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 15-12 F11BP<3:0>: RX Buffer mask for Filter 11 1111 = Filter hits received in RX FIFO buffer 1110 = Filter hits received in RX Buffer 14 <	bit 15							bit 8
F9BP<3:0> F8BP<3:0> bit 7 bit 7 Legend: C = Writeable bit, but only '0' can be written to clear the bit R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' -n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 15-12 F11BP<3:0>: RX Buffer mask for Filter 11 1111 = Filter hits received in RX FIFO buffer 1110 = Filter hits received in RX Buffer 14 <								
bit 7 bit 7 bit 7 bit 7 bit 7 bit 7 bit 7 bit 7 bit 7 bit 10 bit 7 c bit 7 c bit 7 bit 10 bit 7 c bit 8 c bit 9 c c c bit 15-12 F11BP<3:0>: RX Buffer mask for Filter 11 1111 = Filter hits received in RX FIFO buffer 1110 = Filter hits received in RX Buffer 14 c 0001 = Filter hits received in RX Buffer 1 0000 = Filter hits received in RX Buffer 1 0000 = Filter hits received in RX Buffer 0 bit 11-8 F10BP<3:0>: RX Buffer mask for Filter 10 (same values as bit 15-12) bit 7-4 F9BP<3:0>: RX Buffer mask for Filter 9 (same values as bit 15-12)	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
Legend: C = Writeable bit, but only '0' can be written to clear the bit R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' -n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 15-12 F11BP<3:0>: RX Buffer mask for Filter 11 1111 = Filter hits received in RX FIFO buffer 1110 = Filter hits received in RX Buffer 14 . . . 0001 = Filter hits received in RX Buffer 1 . 0001 = Filter hits received in RX Buffer 1 . . . <		F9BP	<3:0>			F8B	P<3:0>	
R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' -n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 15-12 F11BP<3:0>: RX Buffer mask for Filter 11 1111 = Filter hits received in RX FIFO buffer 1110 = Filter hits received in RX Buffer 14 • • 0001 = Filter hits received in RX Buffer 1 0001 = Filter hits received in RX Buffer 1 0000 = Filter hits received in RX Buffer 1 0000 = Filter hits received in RX Buffer 0 bit 11-8 F10BP<3:0>: RX Buffer mask for Filter 10 (same values as bit 15-12) bit 7-4	bit 7							bit 0
R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' -n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 15-12 F11BP<3:0>: RX Buffer mask for Filter 11 1111 = Filter hits received in RX FIFO buffer 1110 = Filter hits received in RX Buffer 14 • • 0001 = Filter hits received in RX Buffer 1 0001 = Filter hits received in RX Buffer 1 0000 = Filter hits received in RX Buffer 1 0000 = Filter hits received in RX Buffer 0 bit 11-8 F10BP<3:0>: RX Buffer mask for Filter 10 (same values as bit 15-12) bit 7-4								
-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 15-12 F11BP<3:0>: RX Buffer mask for Filter 11 1111 = Filter hits received in RX FIFO buffer 1110 = Filter hits received in RX Buffer 14 . . . 0001 = Filter hits received in RX Buffer 1 0000 = Filter hits received in RX Buffer 1 0000 = Filter hits received in RX Buffer 1 0000 = Filter hits received in RX Buffer 0 bit 11-8 F10BP<3:0>: RX Buffer mask for Filter 10 (same values as bit 15-12) bit 7-4 F9BP<3:0>: RX Buffer mask for Filter 9 (same values as bit 15-12)	Legend:		C = Writeable	e bit, but only	'0' can be writte	en to clear the	bit	
bit 15-12 F11BP<3:0>: RX Buffer mask for Filter 11 1111 = Filter hits received in RX FIFO buffer 1110 = Filter hits received in RX Buffer 14	R = Readable bit W = Writable bit			U = Unimpler	U = Unimplemented bit, read as '0'			
<pre>1111 = Filter hits received in RX FIFO buffer 1110 = Filter hits received in RX Buffer 14</pre>	-n = Value at POR '1' = Bit is set			'0' = Bit is cle	ared	x = Bit is unkı	nown	
	bit 15-12 bit 11-8	1111 = Filter 1110 = Filter • • • • • • • • • • • • • • • • • • •	hits received in hits received in hits received in hits received in	n RX FIFO bu n RX Buffer 1 n RX Buffer 1 n RX Buffer 0	iffer 4	as bit 15-12)		
	bit 7-4				-	-		
	bit 3-0							

						LOIDIEN		
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
	F15B	P<3:0>			F14BI	><3:0>		
bit 15							bit 8	
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
	F13B	P<3:0>			F12B	><3:0>		
bit 7							bit 0	
Legend:		C = Writeable	e bit, but only '	0' can be writte	n to clear the b	bit		
R = Readable bit W = Writable bi			bit	U = Unimplemented bit, read as '0'				
-n = Value at POR '1' = Bit is set		t	'0' = Bit is cleared x = Bit is unknown					
bit 15-12	F15BP<3:0	>: RX Buffer ma	sk for Filter 15	;				
		er hits received in						
	1110 = Filte	er hits received in	n RX Buffer 14	ļ				
	•							
	•							
	•							
	0001	er hits received in er hits received in						
bit 11-8	F14BP<3:0	>: RX Buffer ma	sk for Filter 14	(same values	as bit 15-12)			
bit 7-4		>: RX Buffer ma		-	-			

bit 3-0 F12BP<3:0>: RX Buffer mask for Filter 12 (same values as bit 15-12)

^{© 2008} Microchip Technology Inc.

	n (n =	0-15)					
R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
SID10	SID9	SID8	SID7	SID6	SID5	SID4	SID3
bit 15							bit 8
R/W-x	R/W-x	R/W-x	U-0	R/W-x	U-0	R/W-x	R/W-x
SID2	SID1	SID0	_	EXIDE	_	EID17	EID16
bit 7							bit 0
Legend:		C = Writeable	bit, but only	0' can be writte	en to clear the b	pit	
R = Readable	R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'						
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown
bit 15-5 SID<10:0>: Standard Identifier bits 1 = Message address bit SIDx must be '1' to match filter 0 = Message address bit SIDx must be '0' to match filter							

Unimplemented: Read as '0'

Unimplemented: Read as '0'

EID<17:16>: Extended Identifier bits

If MIDE = 1 then:

If MIDE = 0 then: Ignore EXIDE bit.

EXIDE: Extended Identifier Enable bit

1 = Match only messages with extended identifier addresses 0 = Match only messages with standard identifier addresses

1 = Message address bit EIDx must be '1' to match filter 0 = Message address bit EIDx must be '0' to match filter

bit 4

bit 3

bit 2

bit 1-0

REGISTER 18-16: CIRXFnSID: ECAN™ ACCEPTANCE FILTER STANDARD IDENTIFIER REGISTER

DS70293B-page 202	

R/W-x R/W-x EID9 EID8
bit
bit
R/W-x R/W-x
EID1 EID0
bit

REGISTER 18-17:	CIRXFnEID: ECAN™ ACCEPTANCE FILTER EXTENDED IDENTIFIER REGISTER
	n (n = 0-15)

Legend:	C = Writeable bit, but	C = Writeable bit, but only '0' can be written to clear the bit				
R = Readable bit	W = Writable bit	U = Unimplemented bit,	, read as '0'			
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown			

bit 15-0

EID<15:0>: Extended Identifier bits

1 = Message address bit EIDx must be '1' to match filter

0 = Message address bit EIDx must be '0' to match filter

REGISTER 18-18: CiFMSKSEL1: ECAN™ FILTER 7-0 MASK SELECTION REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
F7MSI	<<1:0>	F6MSH	<<1:0>	F5MS	K<1:0>	F4MSK<1:0>	
bit 15							bit 8
		R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
R/W-0	R/W-0	R/W-0	R/W-U	R/W-0	R/W-U	R/W-0	R/W-0
	R/W-0 <<1:0>	F2MSł			K/W-0 K<1:0>	F0MSł	

Legend:	C = Writeable bit, but c	C = Writeable bit, but only '0' can be written to clear the bit					
R = Readable bit	W = Writable bit	U = Unimplemented bit,	U = Unimplemented bit, read as '0'				
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown				

bit 15-14	F7MSK<1:0>: Mask Source for Filter 7 bit 11 = No mask 10 = Acceptance Mask 2 registers contain mask
	01 = Acceptance Mask 2 registers contain mask
	00 = Acceptance Mask 0 registers contain mask
bit 13-12	F6MSK<1:0>: Mask Source for Filter 6 bit (same values as bit 15-14)
bit 11-10	F5MSK<1:0>: Mask Source for Filter 5 bit (same values as bit 15-14)
bit 9-8	F4MSK<1:0>: Mask Source for Filter 4 bit (same values as bit 15-14)
bit 7-6	F3MSK<1:0>: Mask Source for Filter 3 bit (same values as bit 15-14)
bit 5-4	F2MSK<1:0>: Mask Source for Filter 2 bit (same values as bit 15-14)
bit 3-2	F1MSK<1:0>: Mask Source for Filter 1 bit (same values as bit 15-14)
bit 1-0	F0MSK<1:0>: Mask Source for Filter 0 bit (same values as bit 15-14)

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
F15M	SK<1:0>	F14MS	K<1:0>	F13MS	SK<1:0>	F12MS	K<1:0>	
bit 15							bit 8	
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
F11M	SK<1:0>			_	≺ <1:0>			
bit 7							bit 0	
Legend:		C = Writeable	bit, but only	0' can be writte	n to clear the b	it		
R = Readable	e bit	W = Writable	bit	U = Unimplem	nented bit, read	l as '0'		
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cleared			x = Bit is unknown	
bit 15-14	11 = No mas 10 = Accepta 01 = Accepta	0>: Mask Sourc sk ance Mask 2 reg ance Mask 1 reg ance Mask 0 reg	gisters contair gisters contair	n mask n mask				
bit 13-12	F14MSK<1:0	0>: Mask Sourc	e for Filter 14	bit (same value	es as bit 15-14)			
bit 11-10	F13MSK<1:0	0>: Mask Sourc	e for Filter 13	bit (same value	es as bit 15-14)			
bit 9-8	F12MSK<1:0	0>: Mask Sourc	e for Filter 12	bit (same value	es as bit 15-14)			
bit 7-6	F11MSK<1:0	D>: Mask Sourc	e for Filter 11	bit (same value	s as bit 15-14)			
bit 5-4	F10MSK<1:0	0>: Mask Sourc	e for Filter 10	bit (same value	es as bit 15-14)			
bit 3-2	F9MSK<1:0	Hask Source	for Filter 9 bi	t (same values	as bit 15-14)			
bit 1-0	F8MSK<1:0>	Hask Source	for Filter 8 bi	t (same values a	as bit 15-14)			

REGISTER 18-19: CIFMSKSEL2: ECAN™ FILTER 15-8 MASK SELECTION REGISTER

REGISTER	R 18-20: CiRXN REGIS	/InSID: ECAN STER n (n = (ANCE FILTE	R MASK STA	ANDARD IDE	NTIFIER
R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
SID10	SID9	SID8	SID7	SID6	SID5	SID4	SID3
bit 15							bit 8
D (14)		D 444		D 444		D 444	D 444
R/W-x	R/W-x	R/W-x	U-0	R/W-x	U-0	R/W-x	R/W-x
SID2	SID1	SID0	—	MIDE	—	EID17	EID16
bit 7							bit 0
Legend:		C = Writeable	e bit, but only '	0' can be writte	en to clear the l	oit	
R = Readab	ole bit	W = Writable	bit	U = Unimpler	nented bit, read	d as '0'	
-n = Value a	at POR	'1' = Bit is set'0' = Bit is clearedx = Bit is unknow				nown	
bit 15-5	1 = Include b	Standard Identi it SIDx in filter is don't care in	comparison	son			
bit 4	Unimplemen	ted: Read as '	0'				
bit 3	MIDE: Identif	ier Receive Mo	ode bit				
	0 = Match eit	her standard o	r extended ad	dress message	ldress) that cor e if filters match EID) = (Messag		DE bit in filter
bit 2		ted: Read as '	•				
bit 1-0	-	Extended Ider					

- bit 1-0 EID<17:16>: Extended Identifier bits
 - 1 = Include bit EIDx in filter comparison
 - 0 = Bit EIDx is don't care in filter comparison

REGISTER 18-21: CIRXMnEID: ECAN[™] ACCEPTANCE FILTER MASK EXTENDED IDENTIFIER REGISTER n (n = 0-2)

R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
EID15	EID14	EID13	EID12	EID11	EID10	EID9	EID8
bit 15							bit 8
R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x

| R/W-x |
|-------|-------|-------|-------|-------|-------|-------|-------|
| EID7 | EID6 | EID5 | EID4 | EID3 | EID2 | EID1 | EID0 |
| bit 7 | | | | | | | bit 0 |

Legend:	C = Writeable bit, but only '0' can be written to clear the bit					
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'				
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown			

bit 15-0 EID<15:0>: Extended Identifier bits

1 = Include bit EIDx in filter comparison

0 = Bit EIDx is don't care in filter comparison

REGISTER 18-22: CIRXFUL1: ECAN™ RECEIVE BUFFER FULL REGISTER 1
--

		-					
R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0
RXFUL15	RXFUL14	RXFUL13	RXFUL12	RXFUL11	RXFUL10	RXFUL9	RXFUL8
bit 15							bit 8
R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0
RXFUL7	RXFUL6	RXFUL5	RXFUL4	RXFUL3	RXFUL2	RXFUL1	RXFUL0
bit 7							bit 0
		<u> </u>					

Legend:	C = Writeable bit, but only '0' can be written to clear the bit				
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	d as '0'		
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown		

bit 15-0 **RXFUL<15:0>:** Receive Buffer n Full bits

1 = Buffer is full (set by module)

0 = Buffer is empty

REGISTER 18-23: CIRXFUL2: ECAN™ RECEIVE BUFFER FULL REGISTER 2

| R/C-0 |
|---------|---------|---------|---------|---------|---------|---------|---------|
| RXFUL31 | RXFUL30 | RXFUL29 | RXFUL28 | RXFUL27 | RXFUL26 | RXFUL25 | RXFUL24 |
| bit 15 | | | | | | | bit 8 |

| R/C-0 |
|---------|---------|---------|---------|---------|---------|---------|---------|
| RXFUL23 | RXFUL22 | RXFUL21 | RXFUL20 | RXFUL19 | RXFUL18 | RXFUL17 | RXFUL16 |
| bit 7 | | | | | | | bit 0 |

Legend:	C = Writeable bit, but only	C = Writeable bit, but only '0' can be written to clear the bit					
R = Readable bit	W = Writable bit	U = Unimplemented bit, rea	d as '0'				
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown				

bit 15-0 **RXFUL<31:16>:** Receive Buffer n Full bits

1 = Buffer is full (set by module)

0 = Buffer is empty

'0' = Bit is cleared

x = Bit is unknown

REGISTER TO	REGISTER 18-24: CIRAOVFT: ECAN TRECEIVE BUFFER OVERFLOW REGISTER 1							
R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	
RXOVF15	RXOVF14	RXOVF13	RXOVF12	RXOVF11	RXOVF10	RXOVF9	RXOVF8	
bit 15							bit 8	
R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	
RXOVF7	RXOVF6	RXOVF5	RXOVF4	RXOVF3	RXOVF2	RXOVF1	RXOVF0	
bit 7							bit 0	
Legend: C = Writeable bit, but only '0' can be written to clear the bit								
R = Readable bit W = Writable bit U = Unimplemented			nented bit, read	as '0'				

REGISTER 18-24: CIRXOVF1: ECAN™ RECEIVE BUFFER OVERFLOW REGISTER 1

bit 15-0

-n = Value at POR

RXOVF<15:0>: Receive Buffer n Overflow bits

'1' = Bit is set

1 = Module attempted to write to a full buffer (set by module)

0 = No overflow condition

REGISTER 18-25: CIRXOVF2: ECAN™ RECEIVE BUFFER OVERFLOW REGISTER 2

| R/C-0 |
|---------|---------|---------|---------|---------|---------|---------|---------|
| RXOVF31 | RXOVF30 | RXOVF29 | RXOVF28 | RXOVF27 | RXOVF26 | RXOVF25 | RXOVF24 |
| bit 15 | | | | | | | bit 8 |

| R/C-0 |
|---------|---------|---------|---------|---------|---------|---------|---------|
| RXOVF23 | RXOVF22 | RXOVF21 | RXOVF20 | RXOVF19 | RXOVF18 | RXOVF17 | RXOVF16 |
| bit 7 | | | | | | | bit 0 |

Legend:	C = Writeable bit, but	C = Writeable bit, but only '0' can be written to clear the bit					
R = Readable bit	W = Writable bit	U = Unimplemented bit	, read as '0'				
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown				

bit 15-0

RXOVF<31:16>: Receive Buffer n Overflow bits

1 = Module attempted to write to a full buffer (set by module)

0 = No overflow condition

© 2008 Microchip Technology Inc.

REGISTER 18-26: CiTRmnCON: ECAN™ Tx/Rx BUFFER m CONTROL REGISTER

R/W-0	R-0	R-0	R-0	R/W-0	R/W-0	R/W-0	R/W-0				
TXENn	TXABTn	TXLARBn	TXERRn	TXREQn	RTRENn	TXnPF	RI<1:0>				
bit 15	-		• • •		ł		bit 8				
R/W-0	R-0	R-0	R-0	R/W-0	R/W-0	R/W-0	R/W-0				
TXENm	TXABTm ⁽¹⁾	TXLARBm ⁽¹⁾	TXERRm ⁽¹⁾	TXREQm	RTRENm	TXmPF	RI<1:0>				
bit 7							bit (
Legend:		C = Writeable	bit but only '0	' can be writte	en to clear the b	it					
R = Readab	le hit	W = Writable	-		mented bit, read						
-n = Value a		'1' = Bit is set		0' = Bit is cle		x = Bit is unkr					
					arcu		IOWIT				
bit 15-8	See Definition	n for Bits 7-0, C	ontrols Buffer i	n							
bit 7		RX Buffer Sele									
	1 = Buffer TR	1 = Buffer TRBn is a transmit buffer									
	0 = Buffer TR	0 = Buffer TRBn is a receive buffer									
bit 6	TXABTm: Message Aborted bit ⁽¹⁾										
		1 = Message was aborted									
	•	0 = Message completed transmission successfully									
bit 5		TXLARBm: Message Lost Arbitration bit ⁽¹⁾									
	1 = Message lost arbitration while being sent										
bit 4	•	0 = Message did not lose arbitration while being sent									
DIL 4		TXERRm: Error Detected During Transmission bit ⁽¹⁾									
	 1 = A bus error occurred while the message was being sent 0 = A bus error did not occur while the message was being sent 										
bit 3		essage Send F									
		-	-	bit automatica	ally clears when	the message i	s successfull				
	sent.										
	•	the bit to '0' wh	•	•	abort.						
bit 2		RTRENm: Auto-Remote Transmit Enable bit									
		 1 = When a remote transmit is received, TXREQ will be set 0 = When a remote transmit is received, TXREQ will be unaffected 									
bit 1-0		>: Message Transmit			unanecleu						
		message prior		Unity Dits							
	10 = High intermediate message priority 01 = Low intermediate message priority										
	01 = Low inte	ermediate mess	ade priority								

Note 1: This bit is cleared when TXREQ is set.

Note: The buffers, SID, EID, DLC, Data Field and Receive Status registers are located in DMA RAM.

18.4 ECAN Message Buffers

ECAN Message Buffers are part of DMA RAM Memory. They are not ECAN special function registers. The user application must directly write into the DMA RAM area that is configured for ECAN Message Buffers. The location and size of the buffer area is defined by the user application.

BUFFER 18-1: ECAN[™] MESSAGE BUFFER WORD 0

U-0	U-0	U-0	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
_	—	—	SID10	SID9	SID8	SID7	SID6
bit 15							bit 8

| R/W-x |
|-------|-------|-------|-------|-------|-------|-------|-------|
| SID5 | SID4 | SID3 | SID2 | SID1 | SID0 | SRR | IDE |
| bit 7 | | | | | | | bit 0 |

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit,	, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-13	Unimplemented: Read as '0'
bit 12-2	SID<10:0>: Standard Identifier bits
bit 1	SRR: Substitute Remote Request bit
	1 = Message will request remote transmission
	0 = Normal message
bit 0	IDE: Extended Identifier bit
	 1 = Message will transmit extended identifier 0 = Message will transmit standard identifier

BUFFER 18-2: ECAN[™] MESSAGE BUFFER WORD 1

U-0	U-0	U-0	U-0	R/W-x	R/W-x	R/W-x	R/W-x
—	_	_	—	EID17	EID16	EID15	EID14
bit 15							bit 8
R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
EID13	EID12	EID11	EID10	EID9	EID8	EID7	EID6
bit 7							bit 0
l egend.							

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit	, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-12 Unimplemented: Read as '0'

bit 11-0 EID<17:6>: Extended Identifier bits

BUFFER 18-3	: ECAN	MESSAGE	BUFFER W	IORD Z				
R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	
EID5	EID4	EID3	EID2	EID1	EID0	RTR	RB1	
bit 15							bit 8	
U-x	U-x	U-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	
			RB0	DLC3	DLC2	DLC1	DLC0	
bit 7							bit 0	
Legend:								
R = Readable b	oit	W = Writable	bit	U = Unimpler	mented bit, read	l as '0'		
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unknown		
bit 15-10		tended Identifie						
bit 9	RTR: Remote	Transmission	Request bit					
	•	will request rer	note transmis	sion				
	0 = Normal message							
bit 8	RB1: Reserve	ed Bit 1						
	User must set this bit to '0' per CAN protocol.							
bit 7-5	Unimplemen	ted: Read as '	0'					
bit 4	RB0: Reserve	ed Bit 0						
	User must set	this bit to '0' p	er CAN proto	col.				
		•						

BUFFER 18-3: ECAN[™] MESSAGE BUFFER WORD 2

	•	
bit 3-0	DLC<3:0>: Data Length Code bits	

BUFFER 18-4: ECAN[™] MESSAGE BUFFER WORD 3

R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
			By	/te 1			
bit 15							bit 8
R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
			By	/te 0			
bit 7							bit 0
Legend:							
R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'							
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown

bit 15-8 **Byte 1<15:8>:** ECAN™ Message Byte 0

bit 7-0 Byte 0<7:0>: ECAN Message Byte 1

BUFFER 18-5: ECAN[™] MESSAGE BUFFER WORD 4

R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
			Ву	te 3			
bit 15							bit 8
R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
			By	te 2			
bit 7							bit 0
Legend:							
R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'							
-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown					nown		

bit 15-8 Byte 3<15:8>: ECAN™ Message Byte 3

bit 7-0 Byte 2<7:0>: ECAN Message Byte 2

BUFFER 18-6: ECAN[™] MESSAGE BUFFER WORD 5

R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
			Ву	te 5			
bit 15							bit 8
R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
			By	te 4			
bit 7							bit 0
Legend:							
R = Readable bi	it	W = Writable bit	t	U = Unimpler	nented bit, read	l as '0'	

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 15-8 **Byte 5<15:8>:** ECAN™ Message Byte 5

bit 7-0 Byte 4<7:0>: ECAN Message Byte 4

BUFFER 18-7: ECAN[™] MESSAGE BUFFER WORD 6

R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	
			Ву	/te 7				
bit 15							bit 8	
R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	
			By	/te 6				
bit 7							bit 0	
Legend:								
R = Readable bit W = Writable bit				U = Unimplemented bit, read as '0'				
-n = Value at POR		'1' = Bit is set		'0' = Bit is cleared		x = Bit is unknown		

bit 15-8 Byte 7<15:8>: ECAN™ Message Byte 7

bit 7-0 Byte 6<7:0>: ECAN Message Byte 6

BUFFER 18-8: ECAN[™] MESSAGE BUFFER WORD 7

U-0	U-0	U-0	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x		
—	—	—	FILHIT<4:0> ⁽¹⁾						
bit 15							bit 8		
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0		
—		—		—		—			
bit 7							bit 0		
Legend:									
R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'									
-n = Value at P	OR	'1' = Bit is set	et '0' = Bit is cleared x = Bit is unknown						

bit 15-13 Unimplemented: Read as '0'

bit 12-8 **FILHIT<4:0>:** Filter Hit Code bits⁽¹⁾

Encodes number of filter that resulted in writing this buffer.

bit 7-0 Unimplemented: Read as '0'

Note 1: Only written by module for receive buffers, unused for transmit buffers.

19.0 10-BIT/12-BIT ANALOG-TO-DIGITAL CONVERTER (ADC1)

Note: This data sheet summarizes the features of the PIC24HJ32GP302/304, PIC24HJ64GPX02/X04. and PIC24HJ128GPX02/X04 families of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to the PIC24H Family Reference Manual, "Section 16. Analogto-Digital Converter (ADC)" (DS70225), which is available from the Microchip website (www.microchip.com).

The PIC24HJ32GP302/304, PIC24HJ64GPX02/X04, and PIC24HJ128GPX02/X04 devices have up to 13 ADC input channels.

The AD12B bit (AD1CON1<10>) allows each of the ADC modules to be configured by the user as either a 10-bit, 4-sample/hold ADC (default configuration) or a 12-bit, 1-sample/hold ADC.

Note: The ADC module needs to be disabled before modifying the AD12B bit.

19.1 Key Features

The 10-bit ADC configuration has the following key features:

- · Successive Approximation (SAR) conversion
- Conversion speeds of up to 1.1 Msps
- · Up to 13 analog input pins
- External voltage reference input pins
- Simultaneous sampling of up to four analog input pins
- Automatic Channel Scan mode
- Selectable conversion trigger source
- Selectable Buffer Fill modes
- Operation during CPU Sleep and Idle modes

The 12-bit ADC configuration supports all the above features, except:

- In the 12-bit configuration, conversion speeds of up to 500 ksps are supported
- There is only one sample/hold amplifier in the 12-bit configuration, so simultaneous sampling of multiple channels is not supported.

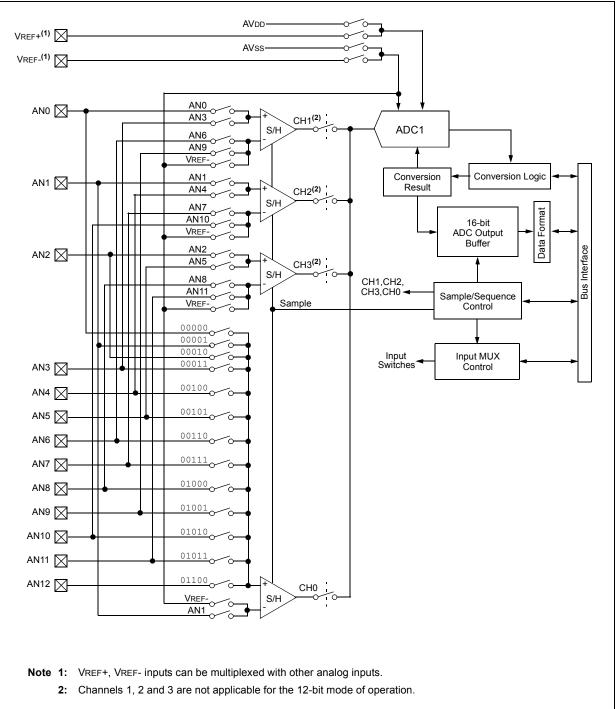
Depending on the particular device pinout, the ADC can have up to 13 analog input pins, designated AN0 through AN12. In addition, there are two analog input pins for external voltage reference connections. These voltage reference inputs can be shared with other analog input pins. The actual number of analog input pins and external voltage reference input configuration depends on the specific device.

Block diagrams of the ADC module are shown in Figure 19-1 and Figure 19-2.

19.2 ADC Initialization

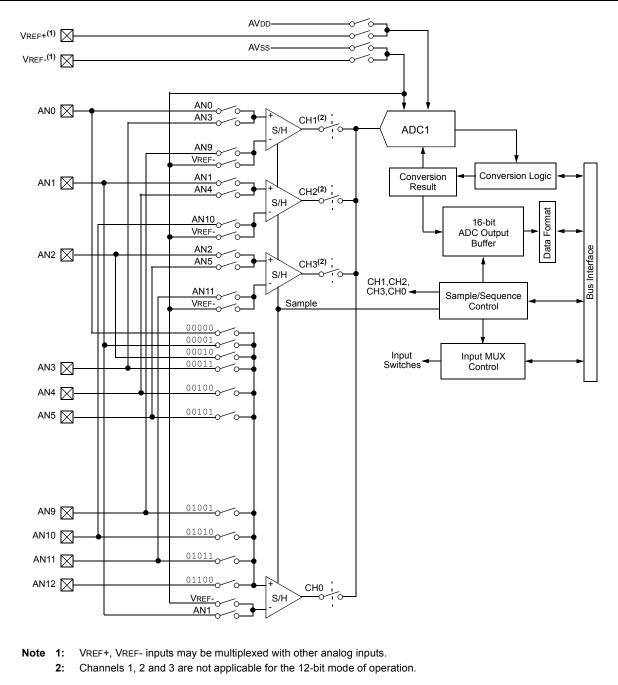
The following configuration steps should be performed.

- 1. Configure the ADC module:
 - a) Select port pins as analog inputs (AD1PCFGH<15:0> or AD1PCFGL<15:0>)
 - b) Select voltage reference source to match expected range on analog inputs (AD1CON2<15:13>)
 - c) Select the analog conversion clock to match desired data rate with processor clock (AD1CON3<7:0>)
 - d) Determine how many S/H channels are used (AD1CON2<9:8> and AD1PCFGH<15:0> or AD1PCFGL<15:0>)
 - e) Select the appropriate sample/conversion sequence (AD1CON1<7:5> and AD1CON3<12:8>)
 - f) Select how conversion results are presented in the buffer (AD1CON1<9:8>)
 - g) Turn on ADC module (AD1CON1<15>)
- 2. Configure ADC interrupt (if required):
 - a) Clear the AD1IF bit
 - b) Select ADC interrupt priority


19.3 ADC and DMA

If more than one conversion result needs to be buffered before triggering an interrupt, DMA data transfers can be used. ADC1 can trigger a DMA data transfer. If ADC1 is selected as the DMA IRQ source, a DMA transfer occurs when the AD1IF bit gets set as a result of an ADC1 sample conversion sequence.

The SMPI<3:0> bits (AD1CON2<5:2>) are used to select how often the DMA RAM buffer pointer is incremented.


The ADDMABM bit (AD1CON1<12>) determines how the conversion results are filled in the DMA RAM buffer area being used for ADC. If this bit is set, DMA buffers are written in the order of conversion. The module provides an address to the DMA channel that is the same as the address used for the non-DMA standalone buffer. If the ADDMABM bit is cleared, then DMA buffers are written in Scatter/Gather mode. The module provides a scatter/gather address to the DMA channel, based on the index of the analog input and the size of the DMA buffer.

^{© 2008} Microchip Technology Inc.

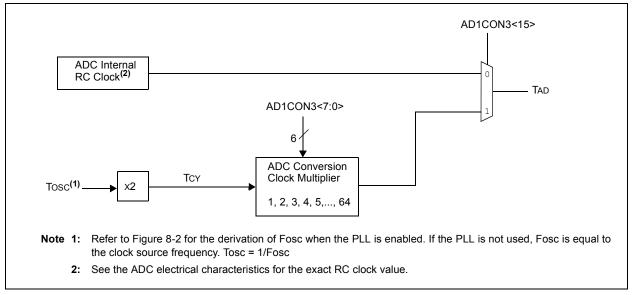


FIGURE 19-1: ADC MODULE BLOCK DIAGRAM

FIGURE 19-3: ADC CONVERSION CLOCK PERIOD BLOCK DIAGRAM

R/W-0	U-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0			
ADON		ADSIDL	ADDMABM		AD12B	FORM	/<1:0>			
bit 15							bit 8			
R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/C-0			
1000 0	-	1000 0		-	10000	HC,HS	HC, HS			
	SSRC<2:0>			SIMSAM	ASAM	SAMP	DONE			
bit 7							bit (
Legend:		HC = Cleared	by hardware	HS = Set by	hardware					
R = Readabl	le bit	W = Writable	bit	U = Unimple	mented bit, rea	d as '0'				
-n = Value at	POR	'1' = Bit is se	t	'0' = Bit is cl	eared	x = Bit is unki	nown			
bit 15	ADON: ADC	Operating Mo	de bit							
		dule is operati								
bit 14	Unimplemen	ted: Read as	' O '							
bit 13	ADSIDL: Sto	p in Idle Mode	bit							
			peration when de ation in Idle mod		dle mode					
bit 12		DMA Buffer B								
			n in the order of	conversion.	The module pro	vides an addre	ss to the DM			
	0 = DMA but	fers are writte	ne as the addres n in Scatter/Gat ased on the inde	her mode. Th	e module prov	ides a scatter/g	ather addres			
bit 11	Unimplemen	ted: Read as	' 0 '							
bit 10	AD12B: 10-b	it or 12-bit Op	eration Mode bit	t						
		-channel ADC -channel ADC								
bit 9-8	FORM<1:0>:	Data Output F	Format bits							
	For 10-bit ope									
	11 = Reserved									
	10 = Reserved 01 = Signed integer (Dout = ssss sssd dddd dddd, where s = .NOT.d<9>) 00 = Integer (Dout = 0000 00dd dddd dddd)									
	For 12-bit operation:									
	11 = Reserve									
	10 = Reserve					T 1 44.)				
			= ssss sddd dddd dddd d		where $s = .NO$	I.d<11>)				
bit 7-5	-	-	Source Select	-						
		-	s sampling and s		ion (auto-conve	ert)				
	110 = Reserv	/ed			,					
	101 = Reserv			e ende eenal	ing and starts a					
	100 = GP tim 011 = Reserv		ADC1) compare	e enus sampl	ing and starts c	onversion				
			ADC1) compare	e ends sampl	ing and starts o	onversion				
	001 = Active	transition on II	NT pin ends sar	npling and sta	arts conversion					
			ends sampling a	nd starts conv	version					
bit 4	Unimplemen	ted: Read as	'0'							

REGISTER 19-1: AD1CON1: ADC1 CONTROL REGISTER 1 (CONTINUED)

bit 3	SIMSAM: Simultaneous Sample Select bit (only applicable when CHPS<1:0> = 01 or 1x)
	<pre>When AD12B = 1, SIMSAM is: U-0, Unimplemented, Read as '0' 1 = Samples CH0, CH1, CH2, CH3 simultaneously (when CHPS<1:0> = 1x); or Samples CH0 and CH1 simultaneously (when CHPS<1:0> = 01) 0 = Samples multiple channels individually in sequence</pre>
bit 2	ASAM: ADC Sample Auto-Start bit
	 1 = Sampling begins immediately after last conversion. SAMP bit is auto-set. 0 = Sampling begins when SAMP bit is set
bit 1	SAMP: ADC Sample Enable bit
	 1 = ADC sample/hold amplifiers are sampling 0 = ADC sample/hold amplifiers are holding If ASAM = 0, software can write '1' to begin sampling. Automatically set by hardware if ASAM = 1. If SSRC = 000, software can write '0' to end sampling and start conversion. If SSRC ≠ 000, automatically cleared by hardware to end sampling and start conversion.
bit 0	 DONE: ADC Conversion Status bit 1 = ADC conversion cycle is completed. 0 = ADC conversion not started or in progress Automatically set by hardware when ADC conversion is complete. Software can write '0' to clear DONE status (software not allowed to write '1'). Clearing this bit does NOT affect any operation in progress. Automatically cleared by hardware at start of a new conversion.

REGISTER 19-2: AD1CON2: ADC1 CONTROL REGISTER 2

R/W-0	R/W-0	R/W-0	U-0	U-0	R/W-0	R/W-0	R/W-0
	VCFG<2:0>		—	—	CSCNA	CHPS	S<1:0>
bit 15							bit 8
R-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
BUFS	—		SMPI	<3:0>		BUFM	ALTS
bit 7							bit 0
Legend:							
R = Readable	e bit	W = Writable	e bit	U = Unimple	mented bit, rea	d as '0'	
-n = Value at	POR	'1' = Bit is se	et	'0' = Bit is cle		x = Bit is unk	nown
			-				-
bit 15-13	VCFG<2:0>:	Converter Vo	tage Reference	Configuration	bits		
	A	DREF+	ADREF-	7			
	000	Avdd	Avss				
	001 Exte	rnal VREF+	Avss				
	010	Avdd	External VREF-	_			
		rnal VREF+	External VREF-	_			
	1xx	Avdd	Avss				
bit 12-11	Unimplemen	ted: Read as	' O '				
bit 10		-	ions for CH0+ du	uring Sample	A bit		
	1 = Scan inp 0 = Do not so						
bit 9-8		•	nels Utilized bits				
			1:0> is: U-0, Un		d. Read as '0'		
	1x = Convert	s CH0, CH1, (CH2 and CH3		-,		
	01 = Converts 00 = Converts		11				
bit 7			(only valid when	RUFM = 1			
			buffer 0x8-0xF, t		ccess data in 0	x0-0x7	
			buffer 0x0-0x7, i				
bit 6	Unimplemen	ted: Read as	' 0 '				
bit 5-2			nent Rate for DM	A Addresses	bits or number	of sample/con	version
	operations pe	-	A address or ge	nerates inter	runt after comr	letion of every	16th sample/
		rsion operatic	•				Toth Sample/
		ments the DN rsion operation	IA address or ge	enerates inter	rupt after comp	pletion of every	15th sample/
	•						
	•						
			A address after of A address after of A				
bit 1	BUFM: Buffer	r Fill Mode Se	lect bit				
		-	ddress 0x0 on fir ffer at address 0:		nd 0x8 on next	interrupt	
bit 0	ALTS: Alterna	ate Input Sam	ple Mode Select	bit			

R/W-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
ADRC	—	_			SAMC<4:0>					
bit 15							bit 8			
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
-			ADCS	6<7:0>			-			
bit 7							bit (
Legend:										
R = Readab	le bit	W = Writable I	bit	U = Unimpler	mented bit, rea	ad as '0'				
-n = Value a		'1' = Bit is set		'0' = Bit is cle		x = Bit is unki	nown			
bit 15	ADRC: ADC	Conversion Clo	ck Source bit							
	1 = ADC internal RC clock									
	0 = Clock de	rived from syste	m clock							
bit 14-13	Unimplemer	nted: Read as ')'							
bit 12-8	SAMC<4:0>	: Auto Sample T	ïme bits							
	11111 = 31 [.]	Tad								
	•									
	•									
	•									
	00001 = 1 T /	AD								
	00000 = 0 T /	AD.								
bit 7-0	ADCS<7:0>:	ADC Conversion	on Clock Sele	ct bits						
	11111111 = TCY · (ADCS<7:0> + 1) = 256 · TCY = TAD									
	•									
	•									
	•									
		TCY · (ADCS<								
		TCY · (ADCS<7								
	00000000 =	TCY · (ADCS<	(:0> + 1) = 1	ICY = IAD						

REGISTER 19-3: AD1CON3: ADC1 CONTROL REGISTER 3

	-	-					
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	_	—	—	—	—
bit 15					•	•	bit 8
U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0
—	—	—	_	—		DMABL<2:0>	
bit 7					•		bit 0
Legend:							
R = Readable bit W = Writable bit			bit	U = Unimplemented bit, read as '0'			
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is cle	'0' = Bit is cleared x = Bit is unknown		

REGISTER 19-4: AD1CON4: ADC1 CONTROL REGISTER 4

bit 15-3 Unimplemented: Read as '0'

bit 2-0

DMABL<2:0>: Selects Number of DMA Buffer Locations per Analog Input bits

111 = Allocates 128 words of buffer to each analog input

110 = Allocates 64 words of buffer to each analog input

101 = Allocates 32 words of buffer to each analog input

100 = Allocates 16 words of buffer to each analog input

011 = Allocates 8 words of buffer to each analog input

010 = Allocates 4 words of buffer to each analog input

001 = Allocates 2 words of buffer to each analog input

000 = Allocates 1 word of buffer to each analog input

REGISTER 19-5: AD1CHS123: ADC1 INPUT CHANNEL 1, 2, 3 SELECT REGISTER

U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0			
—	—	—	—	—	CH123N	NB<1:0>	CH123SB			
bit 15							bit 8			
U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0			
					CH123N	VA<1:0>	CH123SA			
bit 7							bit 0			
Legend:										
R = Readab		W = Writable b	bit	•	nented bit, read					
-n = Value a	it POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unk	nown			
bit 15-11	•	ted: Read as '0								
bit 10-9	CH123NB<1:	0>: Channel 1,	2, 3 Negative	e Input Select fo	r Sample B bit	S				
	When AD12B = 1, CHxNB is: U-0, Unimplemented, Read as '0'									
	11 = CH1 negative input is AN9, CH2 negative input is AN10, CH3 negative input is AN11									
	10 = CH1 negative input is AN6, CH2 negative input is AN7, CH3 negative input is AN8 ⁽¹⁾									
		, I2, CH3 negativ			, 0					
bit 8			•	Select for Samp	ole B bit					
			•	•						
	When AD12B = 1, CHxSA is: U-0, Unimplemented, Read as '0' 1 = CH1 positive input is AN3, CH2 positive input is AN4, CH3 positive input is AN5									
	0 = CH1 positive input is AN0, CH2 positive input is AN1, CH3 positive input is AN2									
bit 7-3	Unimplement	ted: Read as '0	,							
bit 2-1	CH123NA<1:	0>: Channel 1,	2, 3 Negative	e Input Select fo	r Sample A bit	S				
	When AD12B = 1, CHxNA is: U-0, Unimplemented, Read as '0'									
	11 = CH1 negative input is AN9, CH2 negative input is AN10, CH3 negative input is AN11									
	10 = CH1 negative input is AN6, CH2 negative input is AN7, CH3 negative input is AN8 ⁽¹⁾									
	0x = CH1, CH2, CH3 negative input is VREF-									
bit 0	CH123SA: Ch	123SA: Channel 1, 2, 3 Positive Input Select for Sample A bit								
				plemented, Rea						
	•			ve input is AN4,	•	•				
	0 = CH1 posit	ive input is AN0), CH2 positiv	/e input is AN1,	CH3 positive in	nput is AN2				
Note 4	This hit setting is						י מעסי			
NOTE 1:	This bit setting is	Reserved in PI	024HJ 128GI	MUZ, PIUZ4HJ	04GPXUZ, and	1 FIGZ4HJ32G	>FAUZ (ZÖ-DIN)			

Note 1: This bit setting is Reserved in PIC24HJ128GPX02, PIC24HJ64GPX02, and PIC24HJ32GPX02 (28-pin) devices.

R/W-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
CH0NB		—			CH0SB<4:0>		
bit 15							bit
R/W-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
CH0NA	_	_			CH0SA<4:0>		
bit 7							bit
Legend:							
R = Readable b	bit	W = Writable	bit	U = Unimple	emented bit, rea	d as '0'	
-n = Value at P	OR	'1' = Bit is se	t	ʻ0' = Bit is cl	eared	x = Bit is unki	nown
bit 15	CH0NB: Cha	annel 0 Negativ	e Input Select	for Sample B	bit		
	Same definiti						
bit 14-13	•	nted: Read as					
bit 12-8		>: Channel 0 Po	-	-	le B bits		
		annel 0 positive annel 0 positive					
	•						
	•						
	• 01000 = Cha	annel 0 positive	input is AN8 ⁽¹	I)			
	00111 = Cha	annel 0 positive	input is AN7 ⁽¹	I)			
	00110 = Cha	annel 0 positive	input is AN6 ⁽¹	1)			
	•						
	•						
		annel 0 positive					
		annel 0 positive annel 0 positive					
bit 7		annel 0 Negativ	-	for Sample A	bit		
		0 negative inpu	•				
	0 = Channel	0 negative inpu	ut is VREF-				
bit 6-5	Unimplemen	nted: Read as	0'				
bit 4-0	CH0SA<4:0>	>: Channel 0 P	ositive Input Se	elect for Samp	le A bits		
		annel 0 positive					
	01011 = Cha	annel 0 positive	input is AN11				
	•						
	•			n			
	01000 = Cha	annel 0 positive annel 0 positive	input is AN8	., I)			
	00111 = Cha	annel 0 positive	input is AN6 ⁽¹	I)			
	•	·					
	•						
	00010 = Cha	annel 0 positive	input is AN2				
	00001 = Cha	annel 0 positive annel 0 positive annel 0 positive	input is AN1				

REGISTER 19-6: AD1CHS0: ADC1 INPUT CHANNEL 0 SELECT REGISTER

Note 1: These bit settings (AN6, AN7, and AN8) are reserved on PIC24HJ128GPX02, PIC24HJ64GPX02, and PIC24HJ32GPX02 (28-pin) devices.

U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	_	—	CSS12	CSS11	CSS10	CSS9	CSS8
bit 15		· · · · · ·					bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
CSS7	CSS6	CSS5	CSS4	CSS3	CSS2	CSS1	CSS0
bit 7							bit C
Legend:							
R = Readable	bit	W = Writable b	oit	U = Unimpler	mented bit, rea	d as '0'	

REGISTER 19-7: AD1CSSL: ADC1 INPUT SCAN SELECT REGISTER LOW⁽¹⁾

bit 15-13 Unimplemented: Read as '0'

-n = Value at POR

bit 12-0 CSS<12:0>: ADC Input Scan Selection bits

1 = Select ANx for input scan

'1' = Bit is set

0 = Skip ANx for input scan

Note 1: On devices without 13 analog inputs, all AD1CSSL bits can be selected by user application. However, inputs selected for scan without a corresponding input on device converts ADREF-.

'0' = Bit is cleared

x = Bit is unknown

REGISTER 19-8: AD1PCFGL: ADC1 PORT CONFIGURATION REGISTER LOW⁽¹⁾

U-0	U-0	U-0	U-0	U-0	U-0	U-0	R/W-0
—	—	—	PCFG12	PCFG11	PCFG10	PCFG9	PCFG8
bit 15		•					bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
PCFG7	PCFG6	PCFG5	PCFG4	PCFG3	PCFG2	PCFG1	PCFG0
bit 7		•					bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit,	, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

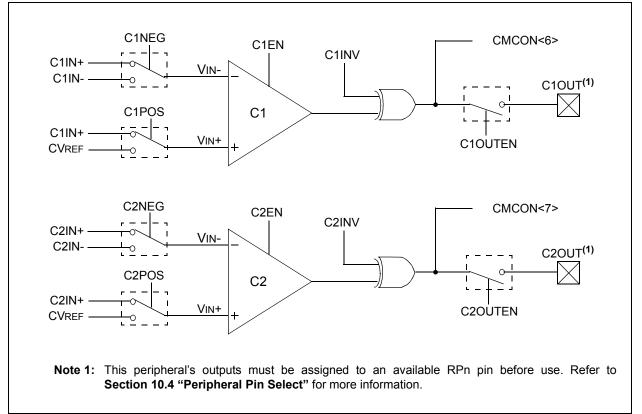
bit 15-13 Unimplemented: Read as '0'

PCFG<12:0>: ADC Port Configuration Control bits

1 = Port pin in Digital mode, port read input enabled, ADC input multiplexor connected to AVss
 0 = Port pin in Analog mode, port read input disabled, ADC samples pin voltage

Note 1: On devices without 13 analog inputs, all PCFG bits are R/W by user. However, PCFG bits are ignored on ports without a corresponding input on device.

bit 12-0


20.0 COMPARATOR MODULE

Note:	This data sheet summarizes the features					
	of the PIC24HJ32GP302/304,					
	PIC24HJ64GPX02/X04, and					
	PIC24HJ128GPX02/X04 families of					
	devices. It is not intended to be a compre-					
	hensive reference source. To complement					
	the information in this data sheet, refer to					
	the PIC24H Family Reference Manual,					
	"Section 34. Comparator", which is					
	available from the Microchip website					
	(www.microchip.com).					

The Comparator module provides a set of dual input comparators. The inputs to the comparator can be configured to use any one of the four pin inputs (C1IN+, C1IN-, C2IN+ and C2IN-) as well as the Comparator Voltage Reference Input (CVREF).

Note: This peripheral contains output functions that may need to be configured by the peripheral pin select feature. For more information, see Section 10.4 "Peripheral Pin Select"

FIGURE 20-1: COMPARATOR I/O OPERATING MODES

R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
CMIDL	_	C2EVT	C1EVT	C2EN	C1EN	C2OUTEN ⁽¹⁾	C1OUTEN ⁽²		
bit 15							bit		
R-0	R-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
C2OUT	C10UT	C2INV	C1INV	C2NEG	C2POS	C1NEG	C1POS		
bit 7	01001	021110	OTIN	OZINEO	021 00	OINEO	bit		
5117							Dit		
Legend:									
R = Readable	e bit	W = Writable	bit	U = Unimplen	nented bit, rea	ad as '0'			
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown		
-:- 4 5		in Jalla Marala							
bit 15	CMIDL: Stop				aavata intawww	ta Madula ia ati	المعمادا		
		e normal modul				ots. Module is sti	li enableu.		
bit 14		ited: Read as '	•						
bit 13	-								
	C2EVT: Comparator 2 Event 1 = Comparator output changed states								
	0 = Comparator output did not change states								
bit 12	C1EVT: Com	C1EVT: Comparator 1 Event							
		ator output chai ator output did i		ates					
bit 11	C2EN: Comparator 2 Enable								
	1 = Comparator is enabled								
	•	ator is disabled							
bit 10	•	arator 1 Enable	e						
	 1 = Comparator is enabled 0 = Comparator is disabled 								
bit 9			utput Enable ⁽	1)					
	C2OUTEN: Comparator 2 Output Enable ⁽¹⁾ 1 = Comparator output is driven on the output pad								
		ator output is no							
bit 8	C1OUTEN: Comparator 1 Output Enable ⁽²⁾								
	1 = Comparator output is driven on the output pad								
	-	ator output is no		e output pad					
bit 7		parator 2 Outp	ut bit						
	$\frac{\text{When C2INV}}{1 = C2 \text{VIN+}}$								
	0 = C2 VIN+	-							
	When C2INV								
	0 = C2 VIN+ 1 = C2 VIN+	-							

REGISTER 20-1: CMCON: COMPARATOR CONTROL REGISTER

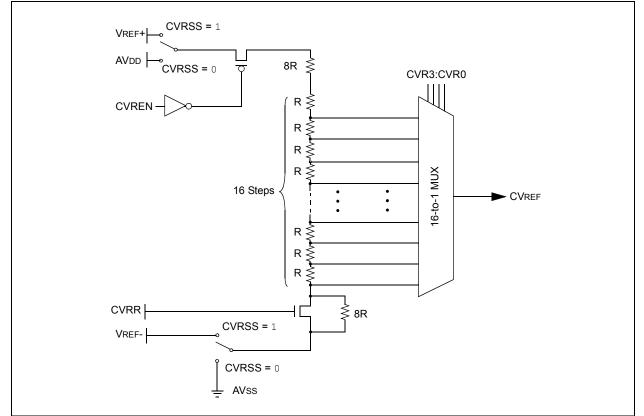
- Note 1: If C2OUTEN = 1, the C2OUT peripheral output must be configured to an available RPx pin. See Section 10.4 "Peripheral Pin Select" for more information.
 - 2: If C1OUTEN = 1, the C1OUT peripheral output must be configured to an available RPx pin. See Section 10.4 "Peripheral Pin Select" for more information.

REGISTER 20-1: CMCON: COMPARATOR CONTROL REGISTER (CONTINUED)

bit 6	C10UT: Comparator 1 Output bit
	When C1INV = 0:
	1 = C1 VIN + > C1 VIN -
	0 = C1 VIN + < C1 VIN -
	$\frac{\text{When C1INV} = 1}{2}$
	0 = C1 VIN+ > C1 VIN- 1 = C1 VIN+ < C1 VIN-
bit 5	C2INV: Comparator 2 Output Inversion bit
	1 = C2 output inverted
	0 = C2 output not inverted
bit 4	C1INV: Comparator 1 Output Inversion bit
	1 = C1 output inverted
	0 = C1 output not inverted
bit 3	C2NEG: Comparator 2 Negative Input Configure bit
	1 = Input is connected to VIN+
	0 = Input is connected to VIN-
1.11.0	See Figure 20-1 for the comparator modes.
bit 2	C2POS: Comparator 2 Positive Input Configure bit
	 1 = Input is connected to VIN+ 0 = Input is connected to CVREF
	See Figure 20-1 for the comparator modes.
bit 1	C1NEG: Comparator 1 Negative Input Configure bit
	1 = Input is connected to VIN+
	0 = Input is connected to VIN-
	See Figure 20-1 for the comparator modes.
bit 0	C1POS: Comparator 1 Positive Input Configure bit
	1 = Input is connected to VIN+
	 Input is connected to CVREF See Figure 20-1 for the comparator modes.
	occongule zo montale comparator modes.
Note 1:	If C2OUTEN = 1, the C2OUT peripheral output must be configured to an available RPx pin. See
	Section 10.4 "Peripheral Pin Select" for more information.

2: If C1OUTEN = 1, the C1OUT peripheral output must be configured to an available RPx pin. See Section 10.4 "Peripheral Pin Select" for more information.

20.1 Comparator Voltage Reference


20.1.1 CONFIGURING THE COMPARATOR VOLTAGE REFERENCE

The voltage reference module is controlled through the CVRCON register (Register 20-2). The comparator voltage reference provides two ranges of output voltage, each with 16 distinct levels. The range to be used is selected by the CVRR bit (CVRCON<5>). The primary difference between the ranges is the size of the steps selected by the CVREF Selection bits (CVR3:CVR0), with one range offering finer resolution.

The comparator reference supply voltage can come from either VDD and VSS, or the external VREF+ and VREF-. The voltage source is selected by the CVRSS bit (CVRCON<4>).

The settling time of the comparator voltage reference must be considered when changing the CVREF output.

FIGURE 20-2: COMPARATOR VOLTAGE REFERENCE BLOCK DIAGRAM

REGISTER 20-2: CVRCON: COMPARATOR VOLTAGE REFERENCE CONTROL REGISTER

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0		
—	—	—	—	—	—	—	—		
bit 15							bit 8		
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
CVREN	CVROE	CVRR	CVRSS	N/W-U		R<3:0>	N/W-U		
bit 7	OWNOL	OWNIN	01100		011	(10.0)	bit C		
Legend:									
R = Readable	e bit	W = Writable	bit	U = Unimplem	nented bit, rea	d as '0'			
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown		
bit 15-8	Unimplemen	ted: Read as '	0'						
bit 7	-	nparator Voltag		- 					
		ircuit powered							
		ircuit powered							
bit 6	CVROE: Con	CVROE: Comparator VREF Output Enable bit							
	1 = CVREF voltage level is output on CVREF pin								
	0 = CVREF voltage level is disconnected from CVREF pin								
bit 5	CVRR: Comparator VREF Range Selection bit								
	 1 = CVRSRC range should be 0 to 0.625 CVRSRC with CVRSRC/24 step size 0 = CVRSRC range should be 0.25 to 0.719 CVRSRC with CVRSRC/32 step size 								
		-			CVRSRC/32 s	tep size			
bit 4	CVRSS: Comparator VREF Source Selection bit 1 = Comparator reference source CVRSRC = VREF+ – VREF-								
bit 3-0	 0 = Comparator reference source CVRSRC = AVDD – AVSS CVR<3:0>: Comparator VREF Value Selection 0 ≤ CVR<3:0> ≤ 15 bits 								
	When CVRR								
	CVREF = (CV		CVRSRC)						
	When CVRR								
	<u> </u>	• (CVRSRC) + (

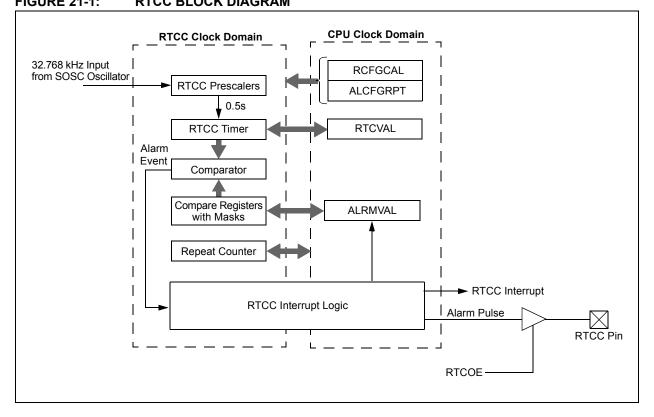
NOTES:

21.0 REAL-TIME CLOCK AND CALENDAR (RTCC)

Note: This data sheet summarizes the features of the PIC24HJ32GP302/304, PIC24HJ64GPX02/X04. and PIC24HJ128GPX02/X04 families of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to the PIC24H Family Reference Manual, "Section 37. Real-Time Clock and Calendar (RTCC)", which is available from the Microchip website (www.microchip.com).

This chapter discusses the Real-Time Clock and Calendar (RTCC) module, available on PIC24HJ32GP302/304, PIC24HJ64GPX02/X04, and PIC24HJ128GPX02/X04 devices, and its operation. Listed below are some of the key features of this module:

- · Time: hours, minutes, and seconds
- 24-hour format (military time)
- Calendar: weekday, date, month, and year



- Alarm configurable
- Year range: 2000 to 2099
- · Leap year correction
- BCD format for compact firmware
- Optimized for low-power operation
- · User calibration with auto-adjust
- Calibration range: ±2.64 seconds error per month
- Requirements: External 32.768 kHz clock crystal
- Alarm pulse or seconds clock output on RTCC pin

The RTCC module is intended for applications where accurate time must be maintained for extended periods of time with minimum to no intervention from the CPU. The RTCC module is optimized for low-power usage to provide extended battery lifetime while keeping track of time.

The RTCC module is a 100-year clock and calendar with automatic leap year detection. The range of the clock is from 00:00:00 (midnight) on January 1, 2000 to 23:59:59 on December 31, 2099.

The hours are available in 24-hour (military time) format. The clock provides a granularity of one second with half-second visibility to the user.

21.1 RTCC Module Registers

The RTCC module registers are organized into three categories:

- RTCC Control Registers
- RTCC Value Registers
- Alarm Value Registers

21.1.1 REGISTER MAPPING

To limit the register interface, the RTCC Timer and Alarm Time registers are accessed through corresponding register pointers. The RTCC Value register window (RTCVALH and RTCVALL) uses the RTCPTR bits (RCFGCAL<9:8>) to select the desired timer register pair (see Table 21-1).

By writing the RTCVALH byte, the RTCC Pointer value, RTCPTR<1:0> bits, decrement by one until they reach '00'. Once they reach '00', the MINUTES and SECONDS value will be accessible through RTCVALH and RTCVALL until the pointer value is manually changed.

TABLE 21-1: RTCVAL REGISTER MAPPING

RTCPTR	RTCC Value Register Window				
<1:0>	RTCVAL<15:8>	RTCVAL<7:0>			
00	MINUTES	SECONDS			
01	WEEKDAY	HOURS			
10	MONTH	DAY			
11	—	YEAR			

The Alarm Value register window (ALRMVALH and ALRMVALL) uses the ALRMPTR bits (ALCFGRPT<9:8>) to select the desired Alarm register pair (see Table 21-2).

By writing the ALRMVALH byte, the Alarm Pointer value, ALRMPTR<1:0> bits, decrement by one until they reach '00'. Once they reach '00', the ALRMMIN and ALRMSEC value will be accessible through ALRMVALH and ALRMVALL until the pointer value is manually changed.

TABLE 21-2: ALRMVAL REGISTER MAPPING

ALRMPTR	Alarm Value Register Window				
<1:0>	ALRMVAL<15:8>	ALRMVAL<7:0>			
00	ALRMMIN	ALRMSEC			
01	ALRMWD	ALRMHR			
10	ALRMMNTH	ALRMDAY			
11	_	_			

Considering that the 16-bit core does not distinguish between 8-bit and 16-bit read operations, the user must be aware that when reading either the ALRMVALH or ALRMVALL bytes will decrement the ALRMPTR<1:0> value. The same applies to the RTCVALH or RTCVALL bytes with the RTCPTR<1:0> being decremented.

Note:	This only applies to read operations and
	not write operations.

21.1.2 WRITE LOCK

In order to perform a write to any of the RTCC Timer registers, the RTCWREN bit (RCFGCAL<13>) must be set (refer to Example 21-1).

Note: To avoid accidental writes to the timer, it is recommended that the RTCWREN bit (RCFGCAL<13>) is kept clear at any other time. For the RTCWREN bit to be set, there is only 1 instruction cycle time window allowed between the 55h/AA sequence and the setting of RTCWREN; therefore, it is recommended that code follow the procedure in Example 21-1.

EXAMPLE 21-1: SETTING THE RTCWREN BIT

MOV	#NVMKEY, W1	;move the address of NVMKEY into W1
MOV	#0x55, W2	
MOV	#0xAA, W3	
MOV	W2, [W1]	;start 55/AA sequence
MOV	W3, [W1]	
BSET	RCFGCAL, #13	;set the RTCWREN bit

R/W-0	U-0	R/W-0	R-0	R-0	R/W-0	R/W-0	R/W-0
RTCEN ⁽²⁾		RTCWREN	RTCSYNC	HALFSEC ⁽³⁾	RTCOE	RTCPT	R<1:0>
pit 15	-			· · · · ·			bit
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			CAL	<7:0>			
bit 7							bit
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimpleme	ented bit, read	l as '0'	
n = Value at F	POR	'1' = Bit is set		'0' = Bit is clea	red	x = Bit is unkn	iown
bit 15	RTCEN: RT(CC Enable bit ⁽²⁾					
	1 = RTCC m	nodule is enable	d				
bit 14	Unimpleme	nted: Read as '	0'				
bit 13	RTCWREN: RTCC Value Registers Write Enable bit						
		H and RTCVAL and RTCVAL		in be written to b		n to by the user	
			•		•	into by the user	
bit 12	RTCSYNC: I 1 = RTCVAL resulting can be a	RTCC Value Re _H, RTCVALL ar g in an invalid da assumed to be v	gisters Read s nd ALCFGRP [*] ta read. If the valid.	Synchronization T registers can c register is read t registers can be	bit hange while re wice and resu	eading due to a llts in the same	rollover ripp data, the da
bit 12 bit 11	RTCSYNC: I 1 = RTCVAL resulting can be a 0 = RTCVAL HALFSEC: F 1 = Second	RTCC Value Re LH, RTCVALL ar g in an invalid da assumed to be v LH, RTCVALL or Half-Second Sta half period of a	gisters Read S and ALCFGRP ta read. If the ralid. r ALCFGRPT tus bit ⁽³⁾ second	Synchronization T registers can c register is read t	bit hange while re wice and resu	eading due to a llts in the same	rollover ripp data, the da
bit 11	RTCSYNC: I 1 = RTCVAL resulting can be a 0 = RTCVAL HALFSEC: H 1 = Second 0 = First hal	RTCC Value Re LH, RTCVALL ar i in an invalid da assumed to be v LH, RTCVALL or Half-Second Sta half period of a f period of a sec	gisters Read S and ALCFGRP ta read. If the valid. r ALCFGRPT tus bit ⁽³⁾ second cond	Synchronization T registers can c register is read t	bit hange while re wice and resu	eading due to a llts in the same	rollover ripp data, the da
	RTCSYNC: I 1 = RTCVAL resulting can be a 0 = RTCVAL HALFSEC: H 1 = Second 0 = First hal RTCOE: RTC 1 = RTCC o	RTCC Value Re LH, RTCVALL ar g in an invalid da assumed to be v LH, RTCVALL or Half-Second Sta half period of a	gisters Read S and ALCFGRP ta read. If the valid. r ALCFGRPT tus bit ⁽³⁾ second cond	Synchronization T registers can c register is read t	bit hange while re wice and resu	eading due to a llts in the same	rollover ripp data, the da
bit 11	RTCSYNC: I 1 = RTCVAL resulting can be a 0 = RTCVAL HALFSEC: F 1 = Second 0 = First hal RTCOE: RTC 1 = RTCC o 0 = RTCC o	RTCC Value Re LH, RTCVALL ar g in an invalid da assumed to be v LH, RTCVALL or Half-Second Sta half period of a f period of a sec CC Output Enab utput enabled utput disabled	gisters Read S and ALCFGRP ta read. If the ralid. r ALCFGRPT tus bit ⁽³⁾ second cond ble bit	Synchronization T registers can c register is read t	bit hange while re wice and resu read without	eading due to a llts in the same	rollover ripp data, the da
bit 11 bit 10	RTCSYNC: I 1 = RTCVAL resulting can be a 0 = RTCVAL HALFSEC: H 1 = Second 0 = First hal RTCOE: RTC 1 = RTCC o 0 = RTCC o RTCPTR<1: Points to the	RTCC Value Re LH, RTCVALL ar i nan invalid da assumed to be v LH, RTCVALL or Half-Second Sta half period of a f period of a sec CC Output Enabled utput enabled utput disabled 0 : RTCC Value corresponding	gisters Read S and ALCFGRP ta read. If the valid. r ALCFGRPT tus bit ⁽³⁾ second cond ble bit e Register Wir RTCC Value r	Synchronization T registers can c register is read t registers can be	bit hange while re- wice and resu read without	eading due to a ilts in the same concern over a ALH and RTCV	rollover ripp data, the da rollover ripp ALL register

- 2: A write to the RTCEN bit is only allowed when RTCWREN = 1.
- **3:** This bit is read-only. It is cleared to '0' on a write to the lower half of the MINSEC register.

REGISTER 21-1: RCFGCAL: RTCC CALIBRATION AND CONFIGURATION REGISTER⁽¹⁾ (CONTINUED)

bit 7-0	CAL<7:0>: RTC Drift Calibration bits
	01111111 =Maximum positive adjustment; adds 508 RTC clock pulses every one minute
	•
	•
	•
	01111111 =Minimum positive adjustment; adds 4 RTC clock pulses every one minute 00000000 =No adjustment 11111111 =Minimum negative adjustment; subtracts 4 RTC clock pulses every one minute
	•
	•
	•
	10000000 =Maximum negative adjustment; subtracts 512 RTC clock pulses every one minute

- Note 1: The RCFGCAL register is only affected by a POR.
 - 2: A write to the RTCEN bit is only allowed when RTCWREN = 1.
 - **3:** This bit is read-only. It is cleared to '0' on a write to the lower half of the MINSEC register.

REGISTER 21-2: PADCFG1: PAD CONFIGURATION CONTROL REGISTER

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
_	—	—	—	—	—	—	—
bit 15							bit 8
U-0	U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0
_	_	—	_	_	—	RTSECSEL ⁽¹⁾	PMPTTL
bit 7							bit 0
Legend:							
R = Readable bit		W = Writable bit		U = Unimplemented bit, rea		ad as '0'	
-n = Value at POR		'1' = Bit is set		'0' = Bit is cleared x = Bit is unki		x = Bit is unkno	wn
-n = Value at P	POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unkno	wn

bit 15-2 Unimplemented: Read as '0'

bit 1	RTSECSEL: RTCC Seconds Clock Output Select bit ⁽¹⁾
	 1 = RTCC seconds clock is selected for the RTCC pin 0 = RTCC alarm pulse is selected for the RTCC pin
bit 0	PMPTTL: PMP Module TTL Input Buffer Select bit
	1 = PMP module uses TTL input buffers

0 = PMP module uses Schmitt Trigger input buffers

Note 1: To enable the actual RTCC output, the RTCOE (RCFGCAL) bit needs to be set.

	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
ALRMEN	CHIME	·	AMA	\SK<3:0>		ALRMP1	[R<1:0>	
pit 15							bit	
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
			ARF	PT<7:0>				
oit 7							bit	
Legend:								
R = Readabl	le bit	W = Writable	bit	U = Unimplen	nented bit, read	l as '0'		
n = Value at	t POR	'1' = Bit is set	t	'0' = Bit is cle	ared	x = Bit is unkn	own	
oit 15	ALRMEN: Ala							
	1 = Alarm is e CHIME =		red automatio	cally after an ala	arm event whei	never ARPT<7:	0> = 00h ar	
	0 = Alarm is c	,						
oit 14	CHIME: Chime	e Enable bit						
	-		'T<7:0> bits a	ire allowed to ro	ll over from 00h	to FFh		
				stop once they re				
oit 13-10	AMASK<3:0>	: Alarm Mask	Configuration	n bits				
	0000 = Every		U					
	0001 = Every							
	0010 = Every							
	0011 = Every							
	0100 = Every 0101 = Every							
	0110 = Once a							
	0111 = Once a	a week						
	1000 = Once a							
	1001 = Once a 101x = Reser			ured for Februa	ry 29th, once e	very 4 years)		
	101x = Reser							
oit 9-8				Nindow Pointer	bits			
	ALRMPTR<1:0>: Alarm Value Register Window Pointer bits Points to the corresponding Alarm Value registers when reading ALRMVALH and ALRMVALL registers;							
	the ALRMPTR<1:0> value decrements on every read or write of ALRMVALH until it reaches '00'.							
	ALRMVAL<15	:8>:						
	00 = ALRMMI							
	01 = ALRMWI							
	10 = ALRMMN 11 = Unimpler							
	<u>ALRMVAL<7:</u>							
	00 = ALRMSE							
	01 = ALRMHF							
	10 = ALRMDA							
		٩Y						
oit 7-0	10 = ALRMDA 11 = Unimpler ARPT<7:0>: A	AY mented Alarm Repeat						
pit 7-0	10 = ALRMDA 11 = Unimpler	AY mented Alarm Repeat						
oit 7-0	10 = ALRMDA 11 = Unimpler ARPT<7:0>: A	AY mented Alarm Repeat						
pit 7-0	10 = ALRMDA 11 = Unimpler ARPT<7:0>: A 11111111 = A	AY mented Alarm Repeat Alarm will repe	at 255 more					
oit 7-0	10 = ALRMDA 11 = Unimpler ARPT<7:0>: A 11111111 = A	AY mented Alarm Repeat Alarm will repe Alarm will not i	eat 255 more repeat					

REGISTER 21-4: RTCVAL (WHEN RTCPTR<1:0> = 11): YEAR VALUE REGISTER⁽¹⁾

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	
—	—	—		—	—	—	—	
bit 15							bit 8	
R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	
	YRTEN	N<3:0>		YRONE<3:0>				
bit 7							bit 0	
Legend:								
R = Readable bit W = Writable bit		U = Unimplemented bit, read as '0'						
-n = Value at POR '1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unki	nown			

bit 15-8	Unimplemented: Read as '0'
bit 7-4	YRTEN<3:0>: Binary Coded Decimal Value of Year's Tens Digit; contains a value from 0 to 9
bit 3-0	YRONE<3:0>: Binary Coded Decimal Value of Year's Ones Digit; contains a value from 0 to 9

Note 1: A write to the YEAR register is only allowed when RTCWREN = 1.

REGISTER 21-5: RTCVAL (WHEN RTCPTR<1:0> = 10): MONTH AND DAY VALUE REGISTER⁽¹⁾

U-0	U-0	U-0	R-x	R-x	R-x	R-x	R-x
—	—	—	MTHTEN0	MTHONE<3:0>			
bit 15							bit 8

U-0	U-0	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
—	—	DAYTEN<1:0>		DAYONE<3:0>			
bit 7							bit 0

Legend:				
R = Readable bit	R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'			
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 15-13	Unimplemented: Read as '0'
bit 12	MTHTEN0: Binary Coded Decimal Value of Month's Tens Digit; contains a value of 0 or 1
bit 11-8	MTHONE<3:0>: Binary Coded Decimal Value of Month's Ones Digit; contains a value from 0 to 9
bit 7-6	Unimplemented: Read as '0'
bit 5-4	DAYTEN<1:0>: Binary Coded Decimal Value of Day's Tens Digit; contains a value from 0 to 3
bit 3-0	DAYONE<3:0>: Binary Coded Decimal Value of Day's Ones Digit; contains a value from 0 to 9

Note 1: A write to this register is only allowed when RTCWREN = 1.

REGISTER 21-6: RTCVAL (WHEN RTCPTR<1:0> = 01): WKDYHR: WEEKDAY AND HOURS VALUE REGISTER⁽¹⁾

			11.0	11.0		DAA	D // //
U-0	U-0	U-0	U-0	U-0	R/W-x	R/W-x	R/W-x
—	—	-	—	—		WDAY<2:0>	
bit 15							bit 8
U-0	U-0	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
_	—	HRTEN	HRTEN<1:0>		HRONE<3:0>		
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit,	read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-11	Unimplemented: Read as '0'
bit 10-8	WDAY<2:0>: Binary Coded Decimal Value of Weekday Digit; contains a value from 0 to 6
bit 7-6	Unimplemented: Read as '0'
bit 5-4	HRTEN<1:0>: Binary Coded Decimal Value of Hour's Tens Digit; contains a value from 0 to 2
bit 3-0	HRONE<3:0>: Binary Coded Decimal Value of Hour's Ones Digit; contains a value from 0 to 9

Note 1: A write to this register is only allowed when RTCWREN = 1.

REGISTER 21-7: RTCVAL (WHEN RTCPTR<1:0> = 00): **MINUTES AND SECONDS VALUE REGISTER**

U-0	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
—	— MINTEN<2:0>				MINON	IE<3:0>	
bit 15							bit 8
U-0	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
	SECTEN<2:0>				SECON	IE<3:0>	

bit 7

Legend:			
R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'			
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15	Unimplemented: Read as '0'
bit 14-12	MINTEN<2:0>: Binary Coded Decimal Value of Minute's Tens Digit; contains a value from 0 to 5
bit 11-8	MINONE<3:0>: Binary Coded Decimal Value of Minute's Ones Digit; contains a value from 0 to 9
bit 7	Unimplemented: Read as '0'
bit 6-4	SECTEN<2:0>: Binary Coded Decimal Value of Second's Tens Digit; contains a value from 0 to 5
bit 3-0	SECONE<3:0>: Binary Coded Decimal Value of Second's Ones Digit; contains a value from 0 to 9

bit 0

PIC24HJ32GP302/304, PIC24HJ64GPX02/X04, AND PIC24HJ128GPX02/X04

REGISTER 21-8: ALRMVAL (WHEN ALRMPTR<1:0> = 10): ALARM MONTH AND DAY VALUE REGISTER⁽¹⁾

U-0	U-0	U-0	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
—	—	—	MTHTEN0		MTHON	IE<3:0>	
bit 15							bit 8

U-0	U-0	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
—	—	DAYTE	N<1:0>		DAYON	IE<3:0>	
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit	t, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-13	Unimplemented: Read as '0'
bit 12	MTHTEN0: Binary Coded Decimal Value of Month's Tens Digit; contains a value of 0 or 1
bit 11-8	MTHONE<3:0>: Binary Coded Decimal Value of Month's Ones Digit; contains a value from 0 to 9
bit 7-6	Unimplemented: Read as '0'
bit 5-4	DAYTEN<1:0>: Binary Coded Decimal Value of Day's Tens Digit; contains a value from 0 to 3
bit 3-0	DAYONE<3:0>: Binary Coded Decimal Value of Day's Ones Digit; contains a value from 0 to 9

Note 1: A write to this register is only allowed when RTCWREN = 1.

REGISTER 21-9: ALRMVAL (WHEN ALRMPTR<1:0> = 01): ALARM WEEKDAY AND HOURS VALUE REGISTER⁽¹⁾

U-0	U-0	U-0	U-0	U-0	R/W-x	R/W-x	R/W-x
—	—	—	—	—	WDAY2	WDAY1	WDAY0
bit 15							bit 8
11-0	11_0						

U-0	U-0	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
—	—	HRTEN	N<1:0>		HRON	E<3:0>	
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-11	Unimplemented: Read as '0'
bit 10-8	WDAY<2:0>: Binary Coded Decimal Value of Weekday Digit; contains a value from 0 to 6
bit 7-6	Unimplemented: Read as '0'
bit 5-4	HRTEN<1:0>: Binary Coded Decimal Value of Hour's Tens Digit; contains a value from 0 to 2
bit 3-0	HRONE<3:0>: Binary Coded Decimal Value of Hour's Ones Digit; contains a value from 0 to 9

Note 1: A write to this register is only allowed when RTCWREN = 1.

REGISTER 21-10: ALRMVAL (WHEN ALRMPTR<1:0> = 00): ALARM MINUTES AND SECONDS VALUE REGISTER

U-0	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
_		MINTEN<2:0>			MINON	NE<3:0>	
bit 15							bit 8
U-0	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
	SECTEN<2:0>			SECONE<3:0>			
bit 7							bit 0
Legend:							
R = Readable bit W = Writable bit		U = Unimplem	ented bit, read	d as '0'			
-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = B			x = Bit is unkr	nown			

bit 15 Unimplemented: Read as '0'

bit 14-12 MINTEN<2:0>: Binary Coded Decimal Value of Minute's Tens Digit; contains a value from 0 to 5

bit 11-8MINONE<3:0>: Binary Coded Decimal Value of Minute's Ones Digit; contains a value from 0 to 9bit 7Unimplemented: Read as '0'

bit 6-4 SECTEN<2:0>: Binary Coded Decimal Value of Second's Tens Digit; contains a value from 0 to 5

bit 3-0 SECONE<3:0>: Binary Coded Decimal Value of Second's Ones Digit; contains a value from 0 to 9

22.0 PROGRAMMABLE CYCLIC REDUNDANCY CHECK (CRC) GENERATOR

Note: This data sheet summarizes the features PIC24HJ32GP302/304, of the PIC24HJ64GPX02/X04, and PIC24HJ128GPX02/X04 families of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to the PIC24H Family Reference Manual, "Section 36. Programmable Cyclic Redundancy Check (CRC)", which is available from the Microchip website (www.microchip.com).

The programmable CRC generator offers the following features:

- User-programmable polynomial CRC equation
- Interrupt output
- Data FIFO

22.1 Overview

The module implements a software configurable CRC generator. The terms of the polynomial and its length can be programmed using the CRCXOR (X<15:1>) bits and the CRCCON (PLEN<3:0>) bits, respectively.

EQUATION 22-1: CRC EQUATION

$$x^{16} + x^{12} + x^5 + 1$$

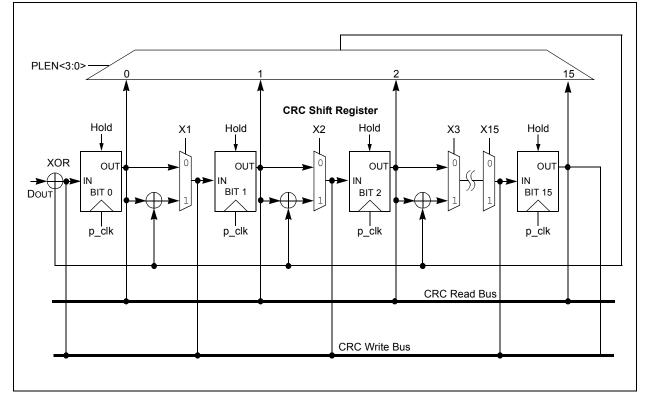
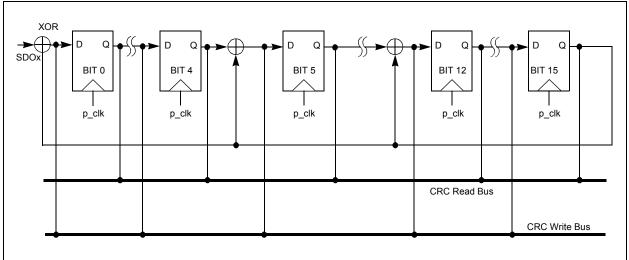

To program this polynomial into the CRC generator, the CRC register bits should be set as shown in Table 22-1.

TABLE 22-1:	EXAMPLE CRC SETUP
-------------	-------------------


Bit Name Bit Value			
PLEN<3:0>	1111		
X<15:1>	00010000010000		

For the value of X<15:1>, the 12th bit and the 5th bit are set to '1', as required by the CRC equation. The 0th bit required by the CRC equation is always XORed. For a 16-bit polynomial, the 16th bit is also always assumed to be XORed; therefore, the X<15:1> bits do not have the 0th bit or the 16th bit.

The topology of a standard CRC generator is shown in Figure 22-2.

FIGURE 22-1: CRC SHIFTER DETAILS

FIGURE 22-2: CRC GENERATOR RECONFIGURED FOR $x^{16} + x^{12} + x^5 + 1$

22.2 User Interface

22.2.1 DATA INTERFACE

To start serial shifting, a '1' must be written to the CRCGO bit.

The module incorporates a FIFO that is 8 deep when PLEN (PLEN<3:0>) > 7, and 16 deep, otherwise. The data for which the CRC is to be calculated must first be written into the FIFO. The smallest data element that can be written into the FIFO is one byte. For example, if PLEN = 5, then the size of the data is PLEN + 1 = 6. The data must be written as follows:

```
data[5:0] = crc_input[5:0]
data[7:6] = `bxx
```

Once data is written into the CRCWDAT MSb (as defined by PLEN), the value of VWORD (VWORD<4:0>) increments by one. The serial shifter starts shifting data into the CRC engine when CRCGO = 1 and VWORD > 0. When the MSb is shifted out, VWORD decrements by one. The serial shifter continues shifting until the VWORD reaches 0. Therefore, for a given value of PLEN, it will take (PLEN + 1) * VWORD number of clock cycles to complete the CRC calculations.

When VWORD reaches 8 (or 16), the CRCFUL bit will be set. When VWORD reaches 0, the CRCMPT bit will be set.

To continually feed data into the CRC engine, the recommended mode of operation is to initially "prime" the FIFO with a sufficient number of words so no interrupt is generated before the next word can be written. Once that is done, start the CRC by setting the CRCGO bit to '1'. From that point onward, the VWORD bits should be polled. If they read less than 8 or 16, another word can be written into the FIFO. To empty words already written into a FIFO, the CRCGO bit must be set to '1' and the CRC shifter allowed to run until the CRCMPT bit is set.

Also, to get the correct CRC reading, it will be necessary to wait for the CRCMPT bit to go high before reading the CRCWDAT register.

If a word is written when the CRCFUL bit is set, the VWORD Pointer will roll over to 0. The hardware will then behave as if the FIFO is empty. However, the condition to generate an interrupt will not be met; therefore, no interrupt will be generated (See Section 22.2.2 "Interrupt Operation").

At least one instruction cycle must pass after a write to CRCWDAT before a read of the VWORD bits is done.

22.2.2 INTERRUPT OPERATION

When the VWORD4:VWORD0 bits make a transition from a value of '1' to '0', an interrupt will be generated.

22.3 Operation in Power Save Modes

22.3.1 SLEEP MODE

If Sleep mode is entered while the module is operating, the module will be suspended in its current state until clock execution resumes.

22.3.2 IDLE MODE

To continue full module operation in Idle mode, the CSIDL bit must be cleared prior to entry into the mode.

If CSIDL = 1, the module will behave the same way as it does in Sleep mode; pending interrupt events will be passed on, even though the module clocks are not available.

22.4 Registers

The CRC module provides the following registers:

- CRC Control Register
- CRC XOR Polynomial Register

REGISTER 22-1: CRCCON: CRC CONTROL REGISTER

U-0	U-0	R/W-0	R-0	R-0	R-0	R-0	R-0
—	—	CSIDL			VWORD<4:0>	>	
bit 15							bit 8

R-0	R-1	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
CRCFUL	CRCMPT	—	CRCGO	PLEN<3:0>			
bit 7			•				bit 0

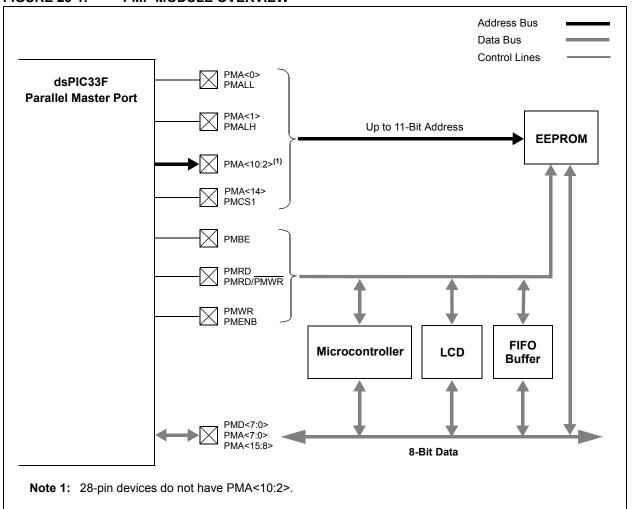
Legend:			
R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'			
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-14	Unimplemented: Read as '0'
bit 13	CSIDL: CRC Stop in Idle Mode bit
	1 = Discontinue module operation when device enters Idle mode0 = Continue module operation in Idle mode
bit 12-8	VWORD<4:0>: Pointer Value bits
	Indicates the number of valid words in the FIFO. Has a maximum value of 8 when PLEN<3:0> is greater than 7, or 16 when PLEN<3:0> is less than or equal to 7.
bit 7	CRCFUL: FIFO Full bit
	1 = FIFO is full
	0 = FIFO is not full
bit 6	CRCMPT: FIFO Empty Bit
	1 = FIFO is empty
	0 = FIFO is not empty
bit 5	Unimplemented: Read as '0'
bit 4	CRCGO: Start CRC bit
	1 = Start CRC serial shifter
	0 = CRC serial shifter turned off
bit 3-0	PLEN<3:0>: Polynomial Length bits
	Denotes the length of the polynomial to be generated minus 1.

REGISTER 22-2:	CRCXOR: CRC XOR POLYNOMIAL REGISTER
----------------	-------------------------------------

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			Х<	:15:8>			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0
			X<7:1>				_
bit 7							bit 0
Legend:							
R = Readable bit W = Writable bit			U = Unimplemented bit, read as '0'				
-n = Value at POR '1' = Bit is set		'0' = Bit is cleared x = Bit is unkno			nown		

bit 15-1 X<15:1>: XOR of Polynomial Term Xⁿ Enable bits


bit 0 Unimplemented: Read as '0'

23.0 PARALLEL MASTER PORT (PMP)

Note: This data sheet summarizes the features of the PIC24HJ32GP302/304, PIC24HJ64GPX02/X04. and PIC24HJ128GPX02/X04 families of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to the PIC24H Family Reference Manual, "Section 35. Parallel Master Port (PMP)", which is available from the Microchip website (www.microchip.com).

The Parallel Master Port (PMP) module is a parallel 8-bit I/O module, specifically designed to communicate with a wide variety of parallel devices, such as communication peripherals, LCDs, external memory devices and microcontrollers. Because the interface to parallel peripherals varies significantly, the PMP is highly configurable. Key features of the PMP module include:

- · Fully multiplexed address/data mode
- Demultiplexed or partially multiplexed address/ data mode
 - up to 11 address lines with single chip select
 - up to 12 address lines without chip select
- Single Chip Select Line
- · Programmable Strobe Options
 - Individual Read and Write Strobes or;
 - Read/Write Strobe with Enable Strobe
- Address Auto-Increment/Auto-Decrement
- Programmable Address/Data Multiplexing
- Programmable Polarity on Control Signals
- · Legacy Parallel Slave Port Support
- Enhanced Parallel Slave Support
 - Address Support
 - 4-Byte Deep Auto-Incrementing Buffer
- Programmable Wait States
- · Selectable Input Voltage Levels

FIGURE 23-1: PMP MODULE OVERVIEW

REGISTER	23-1: PMCO	N: PARALL	EL PORT CO	ONTROL REG	ISTER		
R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
PMPEN		PSIDL	ADRMUX1	ADRMUX0	PTBEEN	PTWREN	PTRDEN
bit 15							bit 8
R/W-0	R/W-0	R/W-0 ⁽¹⁾	U-0	R/W-0 ⁽¹⁾	R/W-0	R/W-0	R/W-0
CSF1	CSF0	ALP		CS1P	BEP	WRSP	RDSP
bit 7				0011	BEI	Witter	bit
Legend:							
R = Readable	e bit	W = Writable	bit	U = Unimpler	nented bit, read	d as '0'	
-n = Value at	POR	'1' = Bit is se	t	'0' = Bit is clea		x = Bit is unkr	nown
bit 15	1 = PMP ena	allel Master Po abled abled, no off-cl		formed			
bit 14	Unimplemen	ted: Read as	·0'				
bit 13	PSIDL: Stop	in Idle Mode b	it				
		nue module op e module opera		device enters Id ode	le mode		
	01 = Lower & PMA<1 00 = Address	3 bits of addre 10:8> and data app	ss are multiple ear on separat	e pins	7:0> pins, up	oer 3 bits are n	nultiplexed c
bit 10	PTBEEN: By 1 = PMBE pc 0 = PMBE pc	ort enabled	Enable bit (16	bit Master mo	de)		
bit 9	•	rite Enable Str	obe Port Enab	le hit			
bit o	1 = PMWR/P	PMENB port er	abled				
bit 8		ad/Write Strob		bit			
		MWR port ena					
bit 7-6	CSF1:CSF0:	Chip Select F	unction bits				
		ed functions as c functions as a					
bit 5	1 = Active-hi	s Latch Polarit gh <u>(PMALL</u> an w (PMALL and	d PMALH)				
bit 4		ted: Read as	-				
bit 3	CS1P: Chip S 1 = Active-hi	Select 1 Polarit gh <u>(PMCS1/PI</u> w (PMCS1/PN	y bit ⁽¹⁾ //CS1)				
bit 2	BEP: Byte Er	hable Polarity b ble active-high ble active-low	bit n <u>(PMBE</u>)				

REGISTER 23-1: PMCON: PARALLEL PORT CONTROL REGISTER

Note 1: These bits have no effect when their corresponding pins are used as address lines.

REGISTER 23-1: PMCON: PARALLEL PORT CONTROL REGISTER (CONTINUED)

For Slave modes and Master mode 2 (PMMODE<9:8> = 00,01	<u>,10):</u>
1 = Write strobe active-high (PMWR)	
$0 = Write strobe active-low (\overline{PMWR})$	
For Master mode 1 (PMMODE<9:8> = 11):	
1 = Enable strobe active-high (PMENB)	
0 = Enable strobe active-low (PMENB)	
bit 0 RDSP: Read Strobe Polarity bit	
	<u>,10):</u>
bit 0 RDSP: Read Strobe Polarity bit	<u>,10):</u>
bit 0 RDSP: Read Strobe Polarity bit For Slave modes and Master mode 2 (PMMODE<9:8> = 00,01	<u>,10):</u>
bit 0 RDSP: Read Strobe Polarity bit <u>For Slave modes and Master mode 2 (PMMODE<9:8> = 00,01</u> 1 = Read strobe active-high (PMRD)	<u>,10):</u>
bit 0 RDSP: Read Strobe Polarity bit <u>For Slave modes and Master mode 2 (PMMODE<9:8> = 00,01</u> 1 = Read strobe active-high (PMRD) 0 = Read strobe active-low (PMRD)	<u>,10):</u>

Note 1: These bits have no effect when their corresponding pins are used as address lines.

Register 23-2	: PMMC	DDE: PARALL	EL PORT MO	DE REGIS	STER		
R-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
BUSY	IRQN	/<1:0>	INCM<1	:0>	MODE16	MOD	E<1:0>
bit 15							bit
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
WAITB<	:1:0> (1)		WAITM<	<3:0>		WAITE	<1:0>(1)
bit 7							bit
Legend:							
R = Readable I	oit	W = Writable	bit U	= Unimple	mented bit, read	as '0'	
-n = Value at P	OR	'1' = Bit is set	'0	' = Bit is cle	eared	x = Bit is unk	nown
bit 15	BUSY: Busv	bit (Master mod	de onlv)				
	-	-	when the process	sor stall is a	active)		
	0 = Port is no	ot busy	-		·		
bit 14-13	IRQM<1:0>:	Interrupt Reque	est Mode bits				
			en Read Buffer 3				
			eration when PM processor stall a		11 (Addressable	PSP mode or	ily)
			he end of the rea		le		
		rupt generated					
bit 12-11	INCM<1:0>:	Increment Mod	e bits				
	11 = PSP rea	ad and write but	ffers auto-increm	ent (Legac	y PSP mode onl	y)	
			0> by 1 every rea				
			> by 1 every read ment of address	d/write cyclo	e		
bit 10		16-bit Mode bit					
bit 10			er is 16 bits, a rea	ad or write t	o the data regist	er invokes two	8-bit transfe
			is 8 bits, a read				
bit 9-8	MODE<1:0>:	Parallel Port N	lode Select bits				
	11 =Master n	node 1 (PMCS ²	I, PMRD/PMWR	, PMENB, F	PMBE, PMA <x:0< td=""><td>> and PMD<7</td><td>:0>)</td></x:0<>	> and PMD<7	:0>)
			I, PMRD <u>, PMW</u> F				
			signals (PMRD, ort, control signa				
	0,		Read/Write Wai				(~(
bit 7-6			tiplexed address		-		
			tiplexed address				
			tiplexed address				
	00 = Data wa	ait of 1 Tcy; mul	tiplexed address	phase of 1	Тсү		
bit 5-2	WAITM<3:0>	Read to Byte	Enable Strobe W	Vait State C	onfiguration bits		
	1111 = Wait	of additional 15	TCY				
	•						
	•						
	0001 = Wait	of additional 1 ⁻					
	0000 - N-		aloo (coordine f	orocal inte			
		dditional wait cy	· •		<i>'</i>		
bit 1-0	WAITE<1:0>	dditional wait cy : Data Hold Afte	cles (operation f er Strobe Wait St		<i>'</i>		
bit 1-0	WAITE<1:0> 11 = Wait of 4	dditional wait cy : Data Hold Afte 4 TcY	· •		<i>'</i>		
bit 1-0	WAITE<1:0>	dditional wait cy : Data Hold Afte 4 Tcy 3 Tcy	· •		<i>'</i>		

Register 23-2: PMMODE: PARALLEL PORT MODE REGISTER

Note 1: WAITB and WAITE bits are ignored whenever WAITM3:WAITM0 = 0000.

REGISTER 23-3: PMADDR: PARALLEL PORT ADDRESS REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
ADDR15	CS1			ADDF	?<13:8>		
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			ADD	R<7:0>			
bit 7							bit (
Legend:							
R = Readable I	oit	W = Writable	bit	U = Unimplemented bit, read as '0'			
-n = Value at POR '1' = Bit is set			'0' = Bit is cleared		x = Bit is unknown		

bit 15	ADDR15: Parallel Port Destination Address bits
bit 14	CS1: Chip Select 1 bit
	1 = Chip select 1 is active
	0 = Chip select 1 is inactive
bit 13-0	ADDR13:ADDR0: Parallel Port Destination Address bits

REGISTER 23-4: PMAEN: PARALLEL PORT ENABLE REGISTER

U-0	R/W-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0
—	PTEN14	—	_	_	F	PTEN<10:8> ⁽¹⁾	
bit 15							bit 8

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
PTEN<7:2> ⁽¹⁾							PTEN<1:0>	
bit 7						•	bit 0	

Legend:										
R = Readable bit -n = Value at POR		W = Writable bit	U = Unimplemented bit, read as '0'							
		'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown						
L:1 4 F	11	mented. Deed ee (o)								
bit 15	Unimple	Unimplemented: Read as '0'								
bit 14										
		 1 = PMA14 functions as either PMA<14> bit or PMCS1 0 = PMA14 pin functions as port I/O 								
bit 13-11	Unimple	Unimplemented: Read as '0'								
bit 10-2	PTEN<10	PTEN<10:2>: PMP Address Port Enable bits ⁽¹⁾								
		1 - DNA (10:2), function of DND oddrood lines								

- 1 = PMA<10:2> function as PMP address lines
 - 0 = PMA<10:2> function as port I/O
- bit 1-0 **PTEN<1:0>:** PMALH/PMALL Strobe Enable bits
 - 1 = PMA1 and PMA0 function as either PMA<1:0> or PMALH and PMALL
 - 0 = PMA1 and PMA0 pads functions as port I/O

Note 1: Devices with 28 pins do not have PMA<10:2>.

R-0	R/W-0, HS	U-0	U-0	R-0	R-0	R-0	R-0		
IBF	IBOV	_	_	IB3F	IB2F	IB1F	IB0F		
bit 15							bit 8		
R-1	R/W-0, HS	U-0	U-0	R-1	R-1	R-1	R-1		
OBE	OBUF	_	_	OB3E	OB2E	OB1E	OB0E		
bit 7							bit C		
Legend:		HS = Hardwa	re Set bit						
R = Readable	e bit	W = Writable bit U = Unimplemented bit, read as '0'							
-n = Value at POR		'1' = Bit is set		'0' = Bit is cleared		x = Bit is unknown			
bit 14	 0 = Some or all of the writable input buffer registers are empty IBOV: Input Buffer Overflow Status bit 1 = A write attempt to a full input byte register occurred (must be cleared in software) 0 = No overflow occurred 								
bit 13-12	U = No overnow occurred Unimplemented: Read as '0'								
bit 11-8	 IB3F:IB0F Input Buffer x Status Full bits 1 = Input buffer contains data that has not been read (reading buffer will clear this bit) 0 = Input buffer does not contain any unread data 								
bit 7	 OBE: Output Buffer Empty Status bit 1 = All readable output buffer registers are empty 0 = Some or all of the readable output buffer registers are full 								
bit 6	 OBUF: Output Buffer Underflow Status bits 1 = A read occurred from an empty output byte register (must be cleared in software) 0 = No underflow occurred 								
bit 5-4	Unimplement	Unimplemented: Read as '0'							
bit 3-0	 OB3E:OB0E Output Buffer x Status Empty bit 1 = Output buffer is empty (writing data to the buffer will clear this bit) 0 = Output buffer contains data that has not been transmitted 								

REGISTER 23-6: PADCFG1: PAD CONFIGURATION CONTROL REGISTER

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
	—	—	—	—		—	—
bit 15							bit 8
U-0	U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0
	—	—		—	_	RTSECSEL ⁽¹⁾	PMPTTL
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable b	bit	U = Unimpler	nented bit, read	d as '0'	
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkno	wn

bit 15-2	Unimplemented: Read as '0'
----------	----------------------------

bit 1	RTSECSEL: RTCC Seconds Clock Output Select bit ⁽¹⁾
	 1 = RTCC seconds clock is selected for the RTCC pin 0 = RTCC alarm pulse is selected for the RTCC pin
bit 0	PMPTTL: PMP Module TTL Input Buffer Select bit
	1 = PMP module uses TTL input buffers
	0 = PMP module uses Schmitt Trigger input buffers

Note 1: To enable the actual RTCC output, the RTCOE (RCFGCAL) bit needs to be set.

© 2008 Microchip Technology Inc.

NOTES:

24.0 SPECIAL FEATURES

This data sheet summarizes the features Note: PIC24HJ32GP302/304, of the PIC24HJ64GPX02/X04, and PIC24HJ128GPX02/X04 families of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to the related section in the PIC24H Family Reference Manual, which is available from the Microchip website (www.microchip.com).

PIC24HJ32GP302/304, PIC24HJ64GPX02/X04, and PIC24HJ128GPX02/X04 devices include several features intended to maximize application flexibility and reliability, and minimize cost through elimination of external components. These are:

- Flexible configuration
- Watchdog Timer (WDT)
- Code Protection and CodeGuard[™] Security
- JTAG Boundary Scan Interface
- In-Circuit Serial Programming[™] (ICSP[™])
- In-Circuit emulation

24.1 Configuration Bits

The Configuration bits can be programmed (read as '0'), or left unprogrammed (read as '1'), to select various device configurations. These bits are mapped starting at program memory location 0xF80000.

The individual Configuration bit descriptions for the FBS, FGS, FOSCSEL, FOSC, FWDT, and FPOR Configuration registers are shown in Table 24-1.

Note that address 0xF80000 is beyond the user program memory space. It belongs to the configuration memory space (0x800000-0xFFFFF), which can only be accessed using table reads and table writes.

The upper byte of all device Configuration registers should always be '1111 1111'. This makes them appear to be NOP instructions in the remote event that their locations are ever executed by accident. Since Configuration bits are not implemented in the corresponding locations, writing '1's to these locations has no effect on device operation.

To prevent inadvertent configuration changes during code execution, all programmable Configuration bits are write-once. After a bit is initially programmed during a power cycle, it cannot be written to again. Changing a device configuration requires that power to the device be cycled.

The Device Configuration register map is shown in Table 24-1.

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
0xF80000	FBS	RBS<	:1:0>	_	—		BSS<2:0>		BWRP
0xF80002	FSS	RSS<	:1:0>	_	_		SSS<2:0>		SWRP
0xF80004	FGS	_		_	_	—	GSS<1	:0>	GWRP
0xF80006	FOSCSEL	IESO		_	_	-	FNO	SC<2:0>	
0xF80008	FOSC	FCKSM	1<1:0>	IOL1WAY	_	_	OSCIOFNC	POSCN	1D<1:0>
0xF8000A	FWDT	FWDTEN	WINDIS	_	WDTPRE		WDTPOST<	<3:0>	
0xF8000C	FPOR	—	_	_	ALTI2C	_	FPW	/RT<2:0>	
0xF8000E	FICD	BKBUG	COE	JTAGEN	_	_	—	ICS<	<1:0>
0xF80010	FUID0				User Unit ID) Byte 0			
0xF80012	FUID1				User Unit ID) Byte 1			
0xF80014	FUID2				User Unit ID) Byte 2			
0xF80016	FUID3				User Unit ID) Byte 3			

TABLE 24-1: DEVICE CONFIGURATION REGISTER MAP

Bit Field	Register	Description
BWRP	FBS	Boot Segment Program Flash Write Protection 1 = Boot segment can be written 0 = Boot segment is write-protected
BSS<2:0>	FBS	Boot Segment Program Flash Code Protection Size X11 = No Boot program Flash segment
		Boot space is 1K Instruction Words (except interrupt vectors) 110 = Standard security; boot program Flash segment ends at 0x0007FE 010 = High security; boot program Flash segment ends at 0x0007FE
		Boot space is 4K Instruction Words (except interrupt vectors) 101 = Standard security; boot program Flash segment, ends at 0x001FFE
		001 = High security; boot program Flash segment ends at 0x001FFE
		Boot space is 8K Instruction Words (except interrupt vectors) 100 = Standard security; boot program Flash segment ends at 0x003FFE
RBS<1:0>(1)	FDO	000 = High security; boot program Flash segment ends at 0x003FFE
RB5<1:0>(1)	FBS	Boot Segment RAM Code Protection Size 11 = No Boot RAM defined 10 = Boot RAM is 128 bytes 01 = Boot RAM is 256 bytes 00 = Boot RAM is 1024 bytes
SWRP	FSS	Secure Segment Program Flash Write-Protect bit 1 = Secure Segment can bet written 0 = Secure Segment is write-protected
SSS<2:0>	FSS	Secure Segment Program Flash Code Protection Size (Secure segment is not implemented on 32K devices) x11 = No Secure program flash segment
		Secure space is 4K IW less BS 110 = Standard security; secure program flash segment starts at End of BS, ends at 0x001FFE
		010 = High security; secure program flash segment starts at End of BS, ends at 0x001FFE
		Secure space is 8K IW less BS 101 = Standard security; secure program flash segment starts at End of BS, ends at 0x003FFE
		001 = High security; secure program flash segment starts at End of BS, ends at 0x003FFE
		Secure space is 16K IW less BS 100 = Standard security; secure program flash segment starts at End of BS, ends at 007FFEh
		000 = High security; secure program flash segment starts at End of BS, ends at 0x007FFE
RSS<1:0> ⁽¹⁾	FSS	Secure Segment RAM Code Protection 10 = No Secure RAM defined 10 = Secure RAM is 256 Bytes less BS RAM 01 = Secure RAM is 2048 Bytes less BS RAM

TABLE 24-2: PIC24H CONFIGURATION BITS DESCRIPTION

Note 1: RAM Code Protection is only available on 64K and 128K devices and not implemented on 32K devices.

Bit Field	Register	Description
GSS<1:0>	FGS	General Segment Code-Protect bit 11 = User program memory is not code-protected 10 = Standard security 0x = High security
GWRP	FGS	General Segment Write-Protect bit 1 = User program memory is not write-protected 0 = User program memory is write-protected
IESO	FOSCSEL	 Two-speed Oscillator Start-up Enable bit 1 = Start-up device with FRC, then automatically switch to the user-selected oscillator source when ready 0 = Start-up device with user-selected oscillator source
FNOSC<2:0>	FOSCSEL	Initial Oscillator Source Selection bits 111 = Internal Fast RC (FRC) oscillator with postscaler 110 = Internal Fast RC (FRC) oscillator with divide-by-16 101 = LPRC oscillator 100 = Secondary (LP) oscillator 011 = Primary (XT, HS, EC) oscillator with PLL 010 = Primary (XT, HS, EC) oscillator 001 = Internal Fast RC (FRC) oscillator with PLL 000 = FRC oscillator
FCKSM<1:0>	FOSC	Clock Switching Mode bits 1x = Clock switching is disabled, Fail-Safe Clock Monitor is disabled 01 = Clock switching is enabled, Fail-Safe Clock Monitor is disabled 00 = Clock switching is enabled, Fail-Safe Clock Monitor is enabled
IOL1WAY	FOSC	Peripheral pin select configuration 1 = Allow only one reconfiguration 0 = Allow multiple reconfigurations
OSCIOFNC	FOSC	OSC2 Pin Function bit (except in XT and HS modes) 1 = OSC2 is clock output 0 = OSC2 is general purpose digital I/O pin
POSCMD<1:0>	FOSC	Primary Oscillator Mode Select bits 11 = Primary oscillator disabled 10 = HS Crystal Oscillator mode 01 = XT Crystal Oscillator mode 00 = EC (External Clock) mode
FWDTEN	FWDT	 Watchdog Timer Enable bit 1 = Watchdog Timer always enabled (LPRC oscillator cannot be disabled. Clearing the SWDTEN bit in the RCON register has no effect.) 0 = Watchdog Timer enabled/disabled by user software (LPRC can be disabled by clearing the SWDTEN bit in the RCON register)
WINDIS	FWDT	Watchdog Timer Window Enable bit 1 = Watchdog Timer in Non-Window mode 0 = Watchdog Timer in Window mode
WDTPRE	FWDT	Watchdog Timer Prescaler bit 1 = 1:128 0 = 1:32

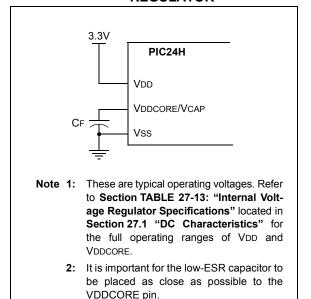
Note 1: RAM Code Protection is only available on 64K and 128K devices and not implemented on 32K devices.

Bit Field	Register	Description
WDTPOST<3:0>	FWDT	Watchdog Timer Postscaler bits 1111 = 1:32,768 1110 = 1:16,384 • • • 0001 = 1:2 0000 = 1:1
FPWRT<2:0>	FPOR	Power-on Reset Timer Value Select bits 111 = PWRT = 128 ms 110 = PWRT = 64 ms 101 = PWRT = 32 ms 100 = PWRT = 16 ms 011 = PWRT = 8 ms 010 = PWRT = 4 ms 001 = PWRT = 2 ms 000 = PWRT = Disabled
ALTI2C	FPOR	Alternate I ² C [™] pins 1 = I ² C mapped to SDA1/SCL1 pins 0 = I ² C mapped to ASDA1/ASCL1 pins
BKBUG	FICD	Background Debug Enable bit 1 = Device will reset in User mode 0 = Device will reset in Debug mode
COE	FICD	Debugger/Emulator Enable bit 1 = Device will reset in Operational mode 0 = Device will reset in Clip-On Emulation mode
JTAGEN	FICD	JTAG Enable bit 1 = JTAG enabled 0 = JTAG disabled
ICS<1:0>	FICD	ICD Communication Channel Select bits 11 = Communicate on PGC1/EMUC1 and PGD1/EMUD1 10 = Communicate on PGC2/EMUC2 and PGD2/EMUD2 01 = Communicate on PGC3/EMUC3 and PGD3/EMUD3 00 = Reserved, do not use

TABLE 24-2: PIC24H CONFIGURATION BITS DESCRIPTION (CONTINUED)

Note 1: RAM Code Protection is only available on 64K and 128K devices and not implemented on 32K devices.

24.2 On-Chip Voltage Regulator


All of the PIC24HJ32GP302/304, PIC24HJ64GPX02/ X04, and PIC24HJ128GPX02/X04 devices power their core digital logic at a nominal 2.5V. This can create a conflict for designs that are required to operate at a higher typical voltage, such as 3.3V. To simplify system design, all devices in the PIC24HJ32GP302/304, PIC24HJ64GPX02/X04, and PIC24HJ128GPX02/X04 family incorporate an on-chip regulator that allows the device to run its core logic from VDD.

The regulator provides power to the core from the other VDD pins. When the regulator is enabled, a low-ESR (less than 5 Ohms) capacitor (such as tantalum or ceramic) must be connected to the VDDCORE/VCAP pin (Figure 24-1). This helps to maintain the stability of the regulator. The recommended value for the filter capacitor is provided in Table 27-13 located in **Section 27.1** "**DC Characteristics**".

Note:	It is important for the low-ESR capacitor to
	be placed as close as possible to the
	VDDCORE pin.

On a POR, it takes approximately 20 μ s for the on-chip voltage regulator to generate an output voltage. During this time, designated as TSTARTUP, code execution is disabled. TSTARTUP is applied every time the device resumes operation after any power-down.

FIGURE 24-1: CONNECTIONS FOR THE ON-CHIP VOLTAGE REGULATOR⁽¹⁾

24.3 BOR: Brown-Out Reset

The Brown-out Reset (BOR) module is based on an internal voltage reference circuit that monitors the regulated supply voltage VDDCORE. The main purpose of the BOR module is to generate a device Reset when a brown-out condition occurs. Brown-out conditions are generally caused by glitches on the AC mains (for example, missing portions of the AC cycle waveform due to bad power transmission lines, or voltage sags due to excessive current draw when a large inductive load is turned on).

A BOR generates a Reset pulse, which resets the device. The BOR selects the clock source, based on the device Configuration bit values (FNOSC<2:0> and POSCMD<1:0>).

If an oscillator mode is selected, the BOR activates the Oscillator Start-up Timer (OST). The system clock is held until OST expires. If the PLL is used, the clock is held until the LOCK bit (OSCCON<5>) is '1'.

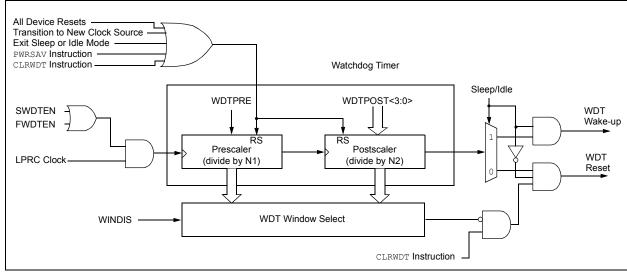
Concurrently, the PWRT time-out (TPWRT) is applied before the internal Reset is released. If TPWRT = 0 and a crystal oscillator is being used, then a nominal delay of TFSCM = 100 is applied. The total delay in this case is TFSCM.

The BOR Status bit (RCON<1>) is set to indicate that a BOR has occurred. The BOR circuit continues to operate while in Sleep or Idle modes and resets the device should VDD fall below the BOR threshold voltage.

24.4 Watchdog Timer (WDT)

For PIC24HJ32GP302/304, PIC24HJ64GPX02/X04, and PIC24HJ128GPX02/X04 devices, the WDT is driven by the LPRC oscillator. When the WDT is enabled, the clock source is also enabled.

24.4.1 PRESCALER/POSTSCALER


The nominal WDT clock source from LPRC is 32 kHz. This feeds a prescaler than can be configured for either 5-bit (divide-by-32) or 7-bit (divide-by-128) operation. The prescaler is set by the WDTPRE Configuration bit. With a 32 kHz input, the prescaler yields a nominal WDT time-out period (TWDT) of 1 ms in 5-bit mode, or 4 ms in 7-bit mode.

A variable postscaler divides down the WDT prescaler output and allows for a wide range of time-out periods. The postscaler is controlled by the WDTPOST<3:0> Configuration bits (FWDT<3:0>), which allow the selection of 16 settings, from 1:1 to 1:32,768. Using the prescaler and postscaler, time-out periods ranging from 1 ms to 131 seconds can be achieved.

The WDT, prescaler and postscaler are reset:

- On any device Reset
- On the completion of a clock switch, whether invoked by software (i.e., setting the OSWEN bit after changing the NOSC bits) or by hardware (i.e., Fail-Safe Clock Monitor)
- When a PWRSAV instruction is executed (i.e., Sleep or Idle mode is entered)
- When the device exits Sleep or Idle mode to resume normal operation
- By a CLRWDT instruction during normal execution

Note: The CLRWDT and PWRSAV instructions clear the prescaler and postscaler counts when executed.

FIGURE 24-2: WDT BLOCK DIAGRAM

24.4.2 SLEEP AND IDLE MODES

If the WDT is enabled, it continues to run during Sleep or Idle modes. When the WDT time-out occurs, the device wakes the device and code execution continues from where the PWRSAV instruction was executed. The corresponding SLEEP or IDLE bits (RCON<3,2>) needs to be cleared in software after the device wakes up.

24.4.3 ENABLING WDT

The WDT is enabled or disabled by the FWDTEN Configuration bit in the FWDT Configuration register. When the FWDTEN Configuration bit is set, the WDT is always enabled.

The WDT can be optionally controlled in software when the FWDTEN Configuration bit has been programmed to '0'. The WDT is enabled in software by setting the SWDTEN control bit (RCON<5>). The SWDTEN control bit is cleared on any device Reset. The software WDT option allows the user application to enable the WDT for critical code segments and disable the WDT during non-critical segments for maximum power savings.

Note:	If the WINDIS bit (FWDT<6>) is cleared, the CLRWDT instruction should be executed by the application software only during the last 1/4 of the WDT period. This CLRWDT win- dow can be determined by using a timer. If a CLRWDT instruction is executed before this window, a WDT Reset occurs.
-------	--

The WDT flag bit, WDTO (RCON<4>), is not automatically cleared following a WDT time-out. To detect subsequent WDT events, the flag must be cleared in software.

24.5 JTAG Interface

PIC24HJ32GP302/304, PIC24HJ64GPX02/X04, and PIC24HJ128GPX02/X04 devices implement a JTAG interface, which supports boundary scan device testing, as well as in-circuit programming. Detailed information on this interface is provided in future revisions of the document.

Note: Refer to Section 24. "Programming and Diagnostics" (DS70246) of the *PIC24H Family Reference Manual* for further information on usage, configuration and operation of the JTAG interface.

24.6 In-Circuit Serial Programming

The PIC24HJ32GP302/304, PIC24HJ64GPX02/X04, and PIC24HJ128GPX02/X04 devices can be serially programmed while in the end application circuit. This is done with two lines for clock and data and three other lines for power, ground and the programming sequence. Serial programming allows customers to manufacture boards with unprogrammed devices and then program the microcontroller just before shipping the product. Serial programming also allows the most recent firmware or a custom firmware to be programmed. Refer to the *"dsPIC33F/PIC24H Flash Programming Specification"* (DS70152) for details about In-Circuit Serial Programming (ICSP).

Any of the three pairs of programming clock/data pins can be used:

- PGC1/EMUC1 and PGD1/EMUD1
- PGC2/EMUC2 and PGD2/EMUD2
- PGC3/EMUC3 and PGD3/EMUD3

24.7 In-Circuit Debugger

When MPLAB[®] ICD 2 is selected as a debugger, the incircuit debugging functionality is enabled. This function allows simple debugging functions when used with MPLAB IDE. Debugging functionality is controlled through the EMUCx (Emulation/Debug Clock) and EMUDx (Emulation/Debug Data) pin functions.

Any of the three pairs of debugging clock/data pins can be used:

- PGC1/EMUC1 and PGD1/EMUD1
- PGC2/EMUC2 and PGD2/EMUD2
- PGC3/EMUC3 and PGD3/EMUD3

To use the in-circuit debugger function of the device, the design must implement ICSP connections to MCLR, VDD, VSS, PGC, PGD and the EMUDx/EMUCx pin pair. In addition, when the feature is enabled, some of the resources are not available for general use. These resources include the first 80 bytes of data RAM and two I/O pins.

24.8 Code Protection and CodeGuard™ Security

The PIC24HJ64GPX02/X04 and PIC24HJ128GPX02/ X04 devices offer advanced implementation of CodeGuard Security that supports BS, SS and GS while, the PIC24HJ32GP302/304 devices offer the intermediate level of CodeGuard Security that supports only BS and GS. CodeGuard Security enables multiple parties to securely share resources (memory, interrupts and peripherals) on a single chip. This feature helps protect individual Intellectual Property in collaborative system designs.

When coupled with software encryption libraries, CodeGuard Security can be used to securely update Flash even when multiple IPs reside on the single chip. The code protection features vary depending on the actual PIC24H implemented. The following sections provide an overview of these features.

Secure segment and RAM protection is implemented on the PIC24HJ64GPX02/X04 and PIC24HJ128GPX02/X04 devices. The PIC24HJ32GP302/304 devices do not support secure segment and RAM protection.

Note: Refer to Section 23. "CodeGuard™ Security" (DS70239) of the *PIC24H Family Reference Manual* for further information on usage, configuration and operation of CodeGuard Security.

	×00 8K	0x000000h 0x0001FEh	0x000200h 0x0007FEh 0x000800h	0x002000h	0x003FFEh 0x004000h 0x0057FFh	0x0157FEh
	BSS<2:0> = x00 8K	VS = 256 IW	BS = 7936 IW		GS = 3072 IW	
	= ×01 4K	0x000000h 0x0001FEh	0x000200h 0x0007FEh 0x000800h	0x002000h	0x003FFEN 0x004000h 0x0057FEh	0x0157FEh
S	BSS<2:0> = x01 4K	VS = 256 IW	BS = 3840 IW		GS = 7168 IW	
BYTE DEVICE	×10 1K	0x000000h 0x0001FEh	0x000200h 0x0007FEh 0x000800h	0x002000h	0x003FFEh 0x004000h 0x0057FEh	0x0157FEh
ENT SIZES FOR 32K BYTE DEVICES	BSS<2:0> = x10 1K	VS = 256 IW	BS = 768 IW		GS = 10240 IW	
	:×11 0K	0x000000h 0x0001FEh	0x000200h 0x0007FEh 0x000800h	0x002000h 0x002000h	0x003FFEh 0x004000h 0x0057FEh	0x0157FEh
TABLE 24-3: CODE FLASH SECURITY SEGM	BSS<2:0> = x11 0K	VS = 256 IW			GS = 11008 IW	
24-3: CODE	CONFIG BITS			TTX = 20.32000	OK	
TABLE	00			000		

PIC24HJ32GP302/304, PIC24HJ64GPX02/X04, AND PIC24HJ128GPX02/X04

	DE FLASH SECURITY SEGMEN	T SIZES FOR 64K BYTE DEVICE	ES	
CONFIG BITS	BSS<2:0> = x11 0K	BSS<2:0> = x10 1K	BSS<2:0> = x01 4K	BSS<2:0> = x00 8K
	VS = 256 IW 0x00000h 0x00001FEh	VS = 256 IW 0x00000h 0x0001FEh	VS = 256 IW 0x00000h 0x0001FEh	VS = 256 IW 0x00000h 0x0001FEh
	0x000200h 0x0007FEh 0x000800h	BS = 768 IW 0x000200h 0x0007FEh 0x00007FEh 0x0007FEh 0x0007FEh 0x000800h 0x00800h 0x008000h 0x008000h 0x008000h 0x00800h 0x008000h 0x008000h 0x008000h 0x00800h 0x0080000	BS = 3840 IW 0x000200h 0x0007FEh 0x000800h	BS = 7936 IW 0x000200h 0x0007FEh 0x000800h
SSS<2:0> = x11	0x001FFEh 0x002000h 0x003FFEh	00001FFEh 00002000h	00001FFEh 00000000000000000000000000000000000	0x0016FEb 0x002000
0K	GS = 21760 IW 0x007FFEh 0x007FFEh 0x008000h 0x008000h	GS = 20992 IW	0x004000h 0x007FFEh 0x007FFEh 0x008000h 0x008000h	GS = 13824 IW
	VS = 256 IW 0x00000h 0x0001FEh	VS = 256 IW 0x00000h 0x0001FEh	VS = 256 IW 0x00000h 0x0001FEh	VS = 256 IW 0x00000h 0x0001FEh
	0x000200h 0x0007FEh 0x000800h SS = 3840 IW	BS = 768 IW 0x000200h 0x0007FEh SS = 3072 IW 0x0007EEh	BS = 3840 IW 0x000200h 0x0007FEh 0x000800h	BS = 7936 IW 0x000200h 0x0007FEh 0x000300h
SSS<2:0> = x10	00000000000000000000000000000000000000	0x002000h 0x0027FEh	0x002000h 0x002100h 0x0031FFEh	0x0020000 0x0020000 0x003876Eh
4K	GS = 17920 IW 0x003FFEh 0x008000h 0x00ABFEh	GS = 17920 IW 0X007FFEh 0X008000h 0X00ABFEh	GS = 17920 IW 0x003FFEh 0x008000h 0x00ABFEh	GS = 13824 IW 0x0007FFEh 0x008000h 0x00ABFEh
	0x0157FEh	0x0157FEh	0x0157FEh	0x0157FEh
	VS = 256 IW 0x00000h 0x0001FEh	VS = 256 IW 0x00000h 0x0001FEh	VS = 256 IW 0x00000h 0x0001FEh	VS = 256 IW 0x000000h 0x0001FEh
	0x000200h 0x0007FEh 0x000800h	BS = 768 IW 0x000200h 0x0007FEh 0x000800h	BS = 3840 IW 0x000200h 0x0007FEh 0x000800h	BS = 7936 IW 0x000200h 0x0007FEh 0x000800h
SSS<2:0> = x 01	SS = 7936 IW 0x001FFEh 0x002000h 0x003FFEh	0x001FFEh 0x002000h 0x002000h 0x003FFEh	SS = 4096 IW 0x003FFEh 0x002000h 0x003FFEh	0x001FFEh 0x002000h 0x003FFEh
8K	0x004000h 0x007FFEh 0x007FFEh 0x00000h	0x004000h 0x007FFEh 0x007FFEh 0x00000h	GS = 13824 IV	0x004000h 0x007FFEh 0x007FFEh 0x008000h
				UXUUABFEN 0×0157EEh
	VS = 256 IW 0x000000 0x0001FEh 0x000200h	S = 256 IW	/S = 256 IW	/S = 256 IW
	0x00077Eh 0x000800h 0x001FFEh	BS = /68 IW 0x0007FEh 0x000800h 0x001FFEh	BS = 3840 IW 0x00077Eh 0x000800h 0x001FFEh	BS = 7936 IW 00007FEh 000000000 00000 00000 00000 00000 00000
00x - x0.7x000				
16K	SS = 16128 IW 00007FFEh GS = 5632 IW 00008000h 0000ABFEh	SS = 13360 1W 000000 GS = 5632 IW 0000000 0000000000000000000000000000	SS = 12288 IW 00007FFEh GS = 5632 IW 0000000h 00000ABFEh	GS = 5632 IW 0X007FFEh 0X008000h 0X008000h 0X00ABFEh
	0x0157FEh	0x0157FEh	0x0157FEh	0x0157FEh

PIC24HJ32GP302/304, PIC24HJ64GPX02/X04, AND PIC24HJ128GPX02/X04

C
ž
DEV
Δ
μ
~
ß
x.
38
-
۲
0
Ŭ,
S
ЧZ
SIZ
S
F
~
Щ
GM
Ш
3
Ľ
ITY SEC
Ŕ
5
$\overline{\mathbf{O}}$
ш
S
Т
S
₹.
Ę
CODE FLASH SE
ö
ō
ŭ
-
• •
ίŅ
4
2
щ

TABLE 24-5: CODE	JE FLASH SECURITY	LITY SEGMEN	T SIZES FOR 128K BYTE DEV	DEVICES			
CONFIG BITS	BSS<2:0> = 3	×11 0K	BSS<2:0> = x10 1K	BSS<2:0> = x01	4K	BSS<2:0> =	×00 8K
SSS<2:0> = x11	VS = 256 IW	0x000000h 0x0001FEh 0x000200h 0x0007FEh 0x0007FEh 0x0001FFEh 0x001FFEh	VS = 256 IW 0x000000h BS = 768 IW 0x0002000 0x0007FEh 0x00020600h 0x0017FEh 0x0017FEh 0x0017FEh	$\frac{VS = 256 IW}{BS = 3840 IW} \frac{0x}{0x}$	0 0x000000h 0x0001FEh 0x000200h 0x00007FEh 0x0007FEh 0x0001FFEh 0x0012FEh 0x0022000h	VS = 256 IW BS = 7936 IW	0x000000h 0x0001FEh 0x000200h 0x000800h 0x000800h 0x00200h 0x00200h
Xo	GS = 43776 IW	0x004000h 0x004000h 0x007FFEh 0x008000h 0x0105FEF 0x010000h 0x0157FEh	GS = 43008 IW 0x005656h 0x005656h 0x005656h 0x015656h 0x01575Eh	000 GS = 39936 IW 000 000	0x004505h 0x004565h 0x008505h 0x015655h 0x0157755h	GS = 35840 IW	0x004000h 0x004000h 0x008000h 0x00600h 0x010606h 0x0157FEh
SSS<2:0> = x10	VS = 256 IW SS = 3840 IW	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	VS = 256 IW 0x000000h BS = 768 IW 0x0001FEh 0x0007FEh SS = 3072 IW 0x00000fFEh 0x0007FEFh 0x0007FEFh 0x0007FEFh	VS = 256 IW 000 BS = 3840 IW 000 0000	0x000000h 0x0001FEh 0x000200h 0x000200h 0x000200h 0x001FFEh 0x001FFEh 0x00200h	VS = 256 IW BS = 7936 IW	0×000000 0×000200 0×000200 0×000800 0×001FFEP 0×001FFEP 0×001FFEP
4K	GS = 39936 IW	0x0040060 0x007FFEh 0x008000h 0x00ABFEh 0x00ABFEh	GS = 39936 IW 0x004006h 0x007FFEh 0x00ABFEh 0x00ABFEh 0x0157FEh	000 000 000 000 000 000 000 000 000 00	00000000000000000000000000000000000000	GS = 35840 IW	0x004005h 0x007FEEh 0x008000h 0x00ABFEh 0x00ABFEh
SSS<2:0> = x01 8K	VS = 256 IW SS = 7936 IW	0 × 00 00 00 1 FEF 0 × 00 00 00 1 FEF 0 × 00 00 2 1 FEF 0 × 00 00 1 FFF 0 × 00 00 1 FFFF 0 × 00 00 1 FFFFF 0 × 00 00 1 FFFFF 0 × 00 00 1 FFFFFFFFFFFFFFFFFFFFFFFFFFFF	VS = 256 IW 0x000000 BS = 768 IW 0x000766h 0x000766h 0x000766h 0x000766h 0x000766h 0x0017676h 0x0017676h 0x00000h 0x0007676h 0x0007676h	VS = 256 IW 0X BS = 3840 IW 0X SS = 4096 IW 0X 0X 0X 0X 0X 0X 0X 0X 0X 0X 0X 0X 0X 0	0x000000 0x000166h 0x000166h 0x000166h 0x0001666h 0x0021666h 0x0021666h 0x002666h 0x002666h	VS = 256 IW BS = 7936 IW	0x000000 0x0000014FFF 0x000017FFF 0x00000000000 0x0000000000000000 0x000000
	GS = 35840 IW	0x00FFFEh 0x010000h 0x0157FEh	GS = 35840 IW 0x00FFFEh 0x010000h 0x0157FEh	GS = 35840 IW 0x0 0x0	0x0955555h 0x0157555h 0x0157555h	GS = 35840 IW	0x010000h 0x010000h 0x0157FEh
SSS<2:0> = x00	VS = 256 IW	0x000000h 0x0001FEh 0x000200h 0x0007FEh 0x0001FFEh 0x001FFEh 0x002000h	VS = 256 IW 0x000000 BS = 768 IW 0x0001FEh 0x0007FEh 0x0007FEh 0x000800h 0x0016FEh 0x00200h	VS = 256 IW 0X BS = 3840 IW 0XX 0XX	0x000000 0x0001FEh 0x000200h 0x00027FEh 0x0007FEh 0x001FFEh 0x0016FEh	VS = 256 IW BS = 7936 IW	0x000000 0x0001FEF 0x000200h 0x0007FFFh 0x0001FFFh 0x00200h 0x00200h
16K	SS = 16128 IW GS = 27648 IW	8x8035555h 8x8035555h 8x80355555h 8x80355555 8x8035555 8x8035555 8x8035555 8x8035555 8x8035555 8x8035555 8x8035555 8x8035555 8x8035555 8x8035555 8x8035555 8x803555 8x8035555 8x8035555 8x803555 8x8035555 8x8035555 8x8035555 8x8035555 8x8035555 8x8035555 8x8035555 8x8035555 8x8035555 8x8035555 8x8035555 8x8035555 8x8035555 8x8035555 8x8055555 8x8055555 8x805555 8x805555 8x805555 8x805555 8x805555 8x805555 8x805555 8x805555 8x805555 8x805555 8x805555 8x805555 8x805555 8x805555 8x805555 8x805555 8x8055555 8x8055555 8x8055555 8x8055555 8x8055555 8x80555555 8x80555555 8x805555555 8x805555555 8x80555555555 8x805555555555	SS = 15360 IW 0x0035FEh 0x0036FFh 0x003600h SS = 27648 IW 0x001006FFh 0x010000h GS = 27648 IW 0x010506Fh 0x0157FEh	SS = 12288 IW 000 CGS = 27648 IW 0000 CSS = 27648 IW 00000000000000000000000000000000000	8x883656h 8x8836565h 8x8985656h 8x8965656 9x8965656 0x8965656 0x815775Eh	SS = 8192 IW GS = 27648 IW	8x8035555h 8x8035555h 8x805555h 9x80155555h 9x80155555h 0x0157755h

PIC24HJ32GP302/304, PIC24HJ64GPX02/X04, AND PIC24HJ128GPX02/X04

25.0 INSTRUCTION SET SUMMARY

Note:	This data sheet summarizes the features
	of the PIC24HJ32GP302/304,
	PIC24HJ64GPX02/X04, and
	PIC24HJ128GPX02/X04 families of
	devices. It is not intended to be a
	comprehensive reference source. To
	complement the information in this data
	sheet, refer to the related section in the
	PIC24H Family Reference Manual,
	which is available from the Microchip
	website (www.microchip.com).

The PIC24H instruction set is identical to that of the PIC24F, and is a subset of the dsPIC30F/33F instruction set.

Most instructions are a single program memory word (24 bits). Only three instructions require two program memory locations.

Each single-word instruction is a 24-bit word, divided into an 8-bit opcode, which specifies the instruction type and one or more operands, which further specify the operation of the instruction.

The instruction set is highly orthogonal and is grouped into five basic categories:

- Word or byte-oriented operations
- · Bit-oriented operations
- · Literal operations
- · Control operations

Table 25-1 shows the general symbols used in describing the instructions.

The PIC24H instruction set summary in Table 25-2 lists all the instructions, along with the status flags affected by each instruction.

Most word or byte-oriented W register instructions (including barrel shift instructions) have three operands:

- The first source operand which is typically a register 'Wb' without any address modifier
- The second source operand which is typically a register 'Ws' with or without an address modifier
- The destination of the result which is typically a register 'Wd' with or without an address modifier

However, word or byte-oriented file register instructions have two operands:

- The file register specified by the value 'f'
- The destination, which could either be the file register 'f' or the W0 register, which is denoted as 'WREG'

Most bit-oriented instructions (including simple rotate/shift instructions) have two operands:

- The W register (with or without an address modifier) or file register (specified by the value of 'Ws' or 'f')
- The bit in the W register or file register (specified by a literal value or indirectly by the contents of register 'Wb')

The literal instructions that involve data movement may use some of the following operands:

- A literal value to be loaded into a W register or file register (specified by the value of 'k')
- The W register or file register where the literal value is to be loaded (specified by 'Wb' or 'f')

However, literal instructions that involve arithmetic or logical operations use some of the following operands:

- The first source operand which is a register 'Wb' without any address modifier
- The second source operand which is a literal value
- The destination of the result (only if not the same as the first source operand) which is typically a register 'Wd' with or without an address modifier

The control instructions may use some of the following operands:

- A program memory address
- The mode of the table read and table write instructions

All instructions are a single word, except for certain double word instructions, which were made double word instructions so that all the required information is available in these 48 bits. In the second word, the 8 MSbs are '0's. If this second word is executed as an instruction (by itself), it will execute as a NOP.

Most single-word instructions are executed in a single instruction cycle, unless a conditional test is true, or the program counter is changed as a result of the instruction. In these cases, the execution takes two instruction cycles with the additional instruction cycle(s) executed as a NOP. Notable exceptions are the BRA (unconditional/computed branch), indirect CALL/GOTO, all table reads and writes and RETURN/RETFIE instructions, which are single-word instructions but take two or three cycles. Certain instructions that involve skipping over the subsequent instruction require either two or three cycles if the skip is performed, depending on whether the instruction being skipped is a single-word or double word instruction. Moreover, double word moves require two cycles. The double word instructions execute in two instruction cycles.

Note: For more details on the instruction set, refer to the *"dsPIC30F/33F Programmer's Reference Manual"* (DS70157).

TABLE 25-1: SYMBOLS USED IN OPCODE DESCRIPTIONS

Field	Description	
#text	Means literal defined by "text"	
(text)	Means "content of text"	
[text]	Means "the location addressed by text"	
{ }	Optional field or operation	
<n:m></n:m>	Register bit field	
.b	Byte mode selection	
.d	Double Word mode selection	
.S	Shadow register select	
.w	Word mode selection (default)	
bit4	4-bit bit selection field (used in word addressed instructions) $\in \{015\}$	
C, DC, N, OV, Z	MCU Status bits: Carry, Digit Carry, Negative, Overflow, Sticky Zero	
Expr	Absolute address, label or expression (resolved by the linker)	
f	File register address ∈ {0x00000x1FFF}	
lit1	1-bit unsigned literal ∈ {0,1}	
lit4	4-bit unsigned literal ∈ {015}	
lit5	5-bit unsigned literal ∈ {031}	
lit8	8-bit unsigned literal ∈ {0255}	
lit10	10-bit unsigned literal \in {0255} for Byte mode, {0:1023} for Word mode	
lit14	14-bit unsigned literal ∈ {016384}	
lit16	16-bit unsigned literal ∈ {065535}	
lit23	23-bit unsigned literal ∈ {08388608}; LSB must be '0'	
None	Field does not require an entry, may be blank	
PC	Program Counter	
Slit10	10-bit signed literal \in {-512511}	
Slit16	16-bit signed literal ∈ {-3276832767}	
Slit6	6-bit signed literal ∈ {-1616}	
Wb	Base W register ∈ {W0W15}	
Wd	Destination W register ∈ { Wd, [Wd], [Wd++], [Wd], [++Wd], [Wd] }	
Wdo	Destination W register ∈ { Wnd, [Wnd], [Wnd++], [Wnd], [++Wnd], [Wnd], [Wnd+Wb] }	
Wm,Wn	Dividend, Divisor working register pair (direct addressing)	
Wm*Wm	Multiplicand and Multiplier working register pair for Square instructions ∈ {W4 * W4,W5 * W5,W6 * W6,W7 * W7}	
Wn	One of 16 working registers ∈ {W0W15}	
Wnd	One of 16 destination working registers ∈ {W0W15}	
Wns	One of 16 source working registers ∈ {W0W15}	
WREG	W0 (working register used in file register instructions)	
Ws	Source W register ∈ { Ws, [Ws], [Ws++], [Ws], [++Ws], [Ws] }	
Wso	Source W register ∈ { Wns, [Wns], [Wns++], [Wns], [++Wns], [Wns], [Wns+Wb] }	

Base Instr #	Assembly Mnemonic		Assembly Syntax	Description	# of Words	# of Cycles	Status Flags Affected
1	ADD	ADD	f	f = f + WREG	1	1	C,DC,N,OV,Z
		ADD	f,WREG	WREG = f + WREG	1	1	C,DC,N,OV,Z
		ADD	#lit10,Wn	Wd = lit10 + Wd	1	1	C,DC,N,OV,Z
		ADD	Wb,Ws,Wd	Wd = Wb + Ws	1	1	C,DC,N,OV,Z
		ADD	Wb,#lit5,Wd	Wd = Wb + lit5	1	1	C,DC,N,OV,Z
2	ADDC	ADDC	f	f = f + WREG + (C)	1	1	C,DC,N,OV,Z
		ADDC	f,WREG	WREG = $f + WREG + (C)$	1	1	C,DC,N,OV,Z
		ADDC	#lit10,Wn	Wd = Iit10 + Wd + (C)	1	1	C,DC,N,OV,Z
		ADDC	Wb,Ws,Wd	Wd = Wb + Ws + (C)	1	1	C,DC,N,OV,Z
		ADDC	Wb,#lit5,Wd	Wd = Wb + lit5 + (C)	1	1	C,DC,N,OV,Z
3	AND	AND	f	f = f .AND. WREG	1	1	N,Z
		AND	f,WREG	WREG = f .AND. WREG	1	1	N,Z
		AND	#lit10,Wn	Wd = lit10 .AND. Wd	1	1	N,Z
		AND	Wb,Ws,Wd	Wd = Wb .AND. Ws	1	1	N,Z
		AND	Wb,#lit5,Wd	Wd = Wb .AND. lit5	1	1	N,Z
4	ASR	ASR	f	f = Arithmetic Right Shift f	1	1	C,N,OV,Z
		ASR	f,WREG	WREG = Arithmetic Right Shift f	1	1	C,N,OV,Z
		ASR	Ws,Wd	Wd = Arithmetic Right Shift Ws	1	1	C,N,OV,Z
		ASR	Wb,Wns,Wnd	Wnd = Arithmetic Right Shift Wb by Wns	1	1	N,Z
		ASR	Wb,#lit5,Wnd	Wnd = Arithmetic Right Shift Wb by lit5	1	1	N,Z
5	BCLR	BCLR	f,#bit4	Bit Clear f	1	1	None
		BCLR	Ws,#bit4	Bit Clear Ws	1	1	None
6	BRA	BRA	C,Expr	Branch if Carry	1	1 (2)	None
		BRA	GE,Expr	Branch if greater than or equal	1	1 (2)	None
		BRA	GEU, Expr	Branch if unsigned greater than or equal	1	1 (2)	None
		BRA	GT,Expr	Branch if greater than	1	1 (2)	None
		BRA	GTU, Expr	Branch if unsigned greater than	1	1 (2)	None
		BRA	LE,Expr	Branch if less than or equal	1	1 (2)	None
		BRA	LEU,Expr	Branch if unsigned less than or equal	1	1 (2)	None
		BRA	LT,Expr	Branch if less than	1	1 (2)	None
		BRA	LTU,Expr	Branch if unsigned less than	1	1 (2)	None
		BRA	N,Expr	Branch if Negative	1	1 (2)	None
		BRA	NC,Expr	Branch if Not Carry	1	1 (2)	None
		BRA	NN, Expr	Branch if Not Negative	1	1 (2)	None
		BRA	NZ,Expr	Branch if Not Zero	1	1 (2)	None
		BRA	Expr	Branch Unconditionally	1	2	None
		BRA	Z,Expr	Branch if Zero	1	1 (2)	None
		BRA	Wn	Computed Branch	1	2	None
7	BSET	BSET	f,#bit4	Bit Set f	1	1	None
		BSET	Ws,#bit4	Bit Set Ws	1	1	None
8	BSW	BSW.C	Ws,Wb	Write C bit to Ws <wb></wb>	1	1	None
		BSW.Z	Ws,Wb	Write Z bit to Ws <wb></wb>	1	1	None
9	BTG	BTG	f,#bit4	Bit Toggle f	1	1	None
		BTG	Ws,#bit4	Bit Toggle Ws	1	1	None
10	BTSC	BTSC	f,#bit4	Bit Test f, Skip if Clear	1	1 (2 or 3)	None
		BTSC	Ws,#bit4	Bit Test Ws, Skip if Clear	1	1 (2 or 3)	None
11	BTSS	BTSS	f,#bit4	Bit Test f, Skip if Set	1	1 (2 or 3)	None
	1				_	(= 0. 0)	

Base Instr #	Assembly Mnemonic		Assembly Syntax	Description	# of Words	# of Cycles	Status Flags Affected
12	BTST	BTST	f,#bit4	Bit Test f	1	1	Z
		BTST.C	Ws,#bit4	Bit Test Ws to C	1	1	С
		BTST.Z	Ws,#bit4	Bit Test Ws to Z	1	1	Z
		BTST.C	Ws,Wb	Bit Test Ws <wb> to C</wb>	1	1	С
		BTST.Z	Ws,Wb	Bit Test Ws <wb> to Z</wb>	1	1	Z
13	BTSTS	BTSTS	f,#bit4	Bit Test then Set f	1	1	Z
		BTSTS.C	Ws,#bit4	Bit Test Ws to C, then Set	1	1	С
		BTSTS.Z	Ws,#bit4	Bit Test Ws to Z, then Set	1	1	Z
14	CALL	CALL	lit23	Call subroutine	2	2	None
		CALL	Wn	Call indirect subroutine	1	2	None
15	CLR	CLR	f	f = 0x0000	1	1	None
		CLR	WREG	WREG = 0x0000	1	1	None
		CLR	Ws	Ws = 0x0000	1	1	None
16	CLRWDT	CLRWDT		Clear Watchdog Timer	1	1	WDTO,Sleep
17	COM	COM	f	f = f	1	1	N,Z
		COM	f,WREG	WREG = f	1	1	N,Z
		COM	Ws,Wd	$Wd = \overline{Ws}$	1	1	N,Z
18	CP	CP	f	Compare f with WREG	1	1	C,DC,N,OV,Z
		CP	Wb,#lit5	Compare Wb with lit5	1	1	C,DC,N,OV,Z
		CP	Wb,Ws	Compare Wb with Ws (Wb - Ws)	1	1	C,DC,N,OV,Z
19	CP0	CP0	f	Compare f with 0x0000	1	1	C,DC,N,OV,Z
		CP0	Ws	Compare Ws with 0x0000	1	1	C,DC,N,OV,Z
20	CPB	CPB	f	Compare f with WREG, with Borrow	1	1	C,DC,N,OV,Z
		CPB	Wb,#lit5	Compare Wb with lit5, with Borrow	1	1	C,DC,N,OV,Z
		CPB	Wb,Ws	Compare Wb with Ws, with Borrow (Wb – Ws – \overline{C})	1	1	C,DC,N,OV,Z
21	CPSEQ	CPSEQ	Wb, Wn	Compare Wb with Wn, skip if =	1	1 (2 or 3)	None
22	CPSGT	CPSGT	Wb, Wn	Compare Wb with Wn, skip if >	1	1 (2 or 3)	None
23	CPSLT	CPSLT	Wb, Wn	Compare Wb with Wn, skip if <	1	1 (2 or 3)	None
24	CPSNE	CPSNE	Wb, Wn	Compare Wb with Wn, skip if ≠	1	1 (2 or 3)	None
25	DAW	DAW	Wn	Wn = decimal adjust Wn	1	1	С
26	DEC	DEC	f	f = f - 1	1	1	C,DC,N,OV,Z
		DEC	f,WREG	WREG = f – 1	1	1	C,DC,N,OV,Z
		DEC	Ws,Wd	Wd = Ws - 1	1	1	C,DC,N,OV,Z
27	DEC2	DEC2	f	f = f - 2	1	1	C,DC,N,OV,Z
		DEC2	f,WREG	WREG = f - 2	1	1	C,DC,N,OV,Z
00		DEC2	Ws,Wd	Wd = Ws - 2	1	1	C,DC,N,OV,Z
28	DISI	DISI	#lit14	Disable Interrupts for k instruction cycles	1	1	None
29	DIV	DIV.S	Wm,Wn	Signed 16/16-bit Integer Divide	1	18	N,Z,C,OV
		DIV.SD	Wm,Wn	Signed 32/16-bit Integer Divide	1	18	N,Z,C,OV
		DIV.U	Wm,Wn	Unsigned 16/16-bit Integer Divide	1	18	N,Z,C,OV
20		DIV.UD	Wm,Wn	Unsigned 32/16-bit Integer Divide	1	18	N,Z,C,OV
30	EXCH	EXCH	Wns,Wnd	Swap Wns with Wnd	1	1	None
31	FBCL	FBCL	Ws,Wnd	Find Bit Change from Left (MSb) Side	1	1	C
00		FF1L	Ws,Wnd	Find First One from Left (MSb) Side	1	1	С
32	FF1L			Fight Fight O. (-
32 33 34	FF1R GOTO	FF1R GOTO	Ws,Wnd Expr	Find First One from Right (LSb) Side Go to address	1	1 2	C None

Base Instr #	Assembly Mnemonic		Assembly Syntax	Description	# of Words	# of Cycles	Status Flags Affected
35	INC	INC	f	f = f + 1	1	1	C,DC,N,OV,Z
		INC	f,WREG	WREG = f + 1	1	1	C,DC,N,OV,Z
		INC	Ws,Wd	Wd = Ws + 1	1	1	C,DC,N,OV,Z
36	INC2	INC2	f	f = f + 2	1	1	C,DC,N,OV,Z
INC2 INC2 37 IOR		INC2	f,WREG	WREG = f + 2	1	1	C,DC,N,OV,Z
		INC2	Ws,Wd	Wd = Ws + 2	1	1	C,DC,N,OV,Z
37	IOR	IOR	f	f = f .IOR. WREG	1	1	N,Z
		IOR	f,WREG	WREG = f .IOR. WREG	1	1	N,Z
		IOR	#lit10,Wn	Wd = lit10 .IOR. Wd	1	1	N,Z
		IOR	Wb,Ws,Wd	Wd = Wb .IOR. Ws	1	1	N,Z
		IOR	Wb,#lit5,Wd	Wd = Wb .IOR. lit5	1	1	N,Z
38	LNK	LNK	#lit14	Link Frame Pointer	1	1	None
39	LSR	LSR	f	f = Logical Right Shift f	1	1	C,N,OV,Z
		LSR	f,WREG	WREG = Logical Right Shift f	1	1	C,N,OV,Z
		LSR	Ws,Wd	Wd = Logical Right Shift Ws	1	1	C,N,OV,Z
		LSR	Wb,Wns,Wnd	Wnd = Logical Right Shift Wb by Wns	1	1	N,Z
		LSR	Wb,#lit5,Wnd	Wnd = Logical Right Shift Wb by lit5	1	1	N,Z
40	MOV	MOV	f,Wn	Move f to Wn	1	1	None
		MOV	f	Move f to f	1	1	N,Z
		MOV	f,WREG	Move f to WREG	1	1	N,Z
		MOV	#lit16,Wn	Move 16-bit literal to Wn	1	1	None
		MOV.b	#lit8,Wn	Move 8-bit literal to Wn	1	1	None
		MOV	Wn,f	Move Wn to f	1	1	None
		MOV	Wso,Wdo	Move Ws to Wd	1	1	None
		MOV	WREG, f	Move WREG to f	1	1	N,Z
		MOV.D	Wns,Wd	Move Double from W(ns):W(ns + 1) to Wd	1	2	None
		MOV.D	Ws,Wnd	Move Double from Ws to W(nd + 1):W(nd)	1	2	None
41	MUL	MUL.SS	Wb,Ws,Wnd	{Wnd + 1, Wnd} = signed(Wb) * signed(Ws)	1	1	None
		MUL.SU	Wb,Ws,Wnd	{Wnd + 1, Wnd} = signed(Wb) * unsigned(Ws)	1	1	None
		MUL.US	Wb,Ws,Wnd	{Wnd + 1, Wnd} = unsigned(Wb) * signed(Ws)	1	1	None
		MUL.UU	Wb,Ws,Wnd	{Wnd + 1, Wnd} = unsigned(Wb) * unsigned(Ws)	1	1	None
		MUL.SU	Wb,#lit5,Wnd	{Wnd + 1, Wnd} = signed(Wb) * unsigned(lit5)	1	1	None
		MUL.UU	Wb,#lit5,Wnd	{Wnd + 1, Wnd} = unsigned(Wb) * unsigned(lit5)	1	1	None
		MUL	f	W3:W2 = f * WREG	1	1	None
42	NEG	NEG	f	$f = \overline{f} + 1$	1	1	C,DC,N,OV,Z
		NEG	f,WREG	WREG = \overline{f} + 1	1	1	C,DC,N,OV,Z
		NEG	Ws,Wd	$Wd = \overline{Ws} + 1$	1	1	C,DC,N,OV,Z
43	NOP	NOP		No Operation	1	1	None
		NOPR		No Operation	1	1	None
44	POP	POP	f	Pop f from Top-of-Stack (TOS)	1	1	None
		POP	Wdo	Pop from Top-of-Stack (TOS) to Wdo	1	1	None
		POP.D	Wnd	Pop from Top-of-Stack (TOS) to W(nd):W(nd + 1)	1	2	None
		POP.S		Pop Shadow Registers	1	1	All
45	PUSH	PUSH	f	Push f to Top-of-Stack (TOS)	1	1	None
		PUSH	Wso	Push Wso to Top-of-Stack (TOS)	1	1	None
		PUSH.D	Wns	Push W(ns):W(ns + 1) to Top-of-Stack (TOS)	1	2	None
		PUSH.S		Push Shadow Registers	1	1	None
46	PWRSAV	PWRSAV	#lit1	Go into Sleep or Idle mode	1	1	WDTO,Sleep
47	RCALL	RCALL	Expr	Relative Call	1	2	None
		RCALL	Wn	Computed Call	1	2	None

Base Instr #	Assembly Mnemonic		Assembly Syntax	Description	# of Words	# of Cycles	Status Flags Affected
48	REPEAT	REPEAT	#lit14	Repeat Next Instruction lit14 + 1 times	1	1	None
		REPEAT	Wn	Repeat Next Instruction (Wn) + 1 times	1	1	None
49	RESET	RESET		Software device Reset	1	1	None
50	RETFIE	RETFIE		Return from interrupt	1	3 (2)	None
51	RETLW	RETLW	#lit10,Wn	Return with literal in Wn	1	3 (2)	None
52	RETURN	RETURN		Return from Subroutine	1	3 (2)	None
53	RLC	RLC	f	f = Rotate Left through Carry f	1	1	C,N,Z
		RLC	f,WREG	WREG = Rotate Left through Carry f	1	1	C,N,Z
		RLC	Ws,Wd	Wd = Rotate Left through Carry Ws	1	1	C,N,Z
54	RLNC	RLNC	f	f = Rotate Left (No Carry) f	1	1	N,Z
		RLNC	f,WREG	WREG = Rotate Left (No Carry) f	1	1	N,Z
		RLNC	Ws,Wd	Wd = Rotate Left (No Carry) Ws	1	1	N,Z
55	RRC	RRC	f	f = Rotate Right through Carry f	1	1	C,N,Z
		RRC	f,WREG	WREG = Rotate Right through Carry f	1	1	C,N,Z
		RRC	Ws,Wd	Wd = Rotate Right through Carry Ws	1	1	C,N,Z
56	RRNC	RRNC	f	f = Rotate Right (No Carry) f	1	1	N,Z
		RRNC	f,WREG	WREG = Rotate Right (No Carry) f	1	1	N,Z
		RRNC	Ws,Wd	Wd = Rotate Right (No Carry) Ws	1	1	N,Z
57	SE	SE	Ws,Wnd	Wnd = sign-extended Ws	1	1	C,N,Z
58	SETM	SETM	f	f = 0xFFFF	1	1	None
		SETM	WREG	WREG = 0xFFFF	1	1	None
		SETM	Ws	Ws = 0xFFFF	1	1	None
59	SL	SL	f	f = Left Shift f	1	1	C,N,OV,Z
		SL	f,WREG	WREG = Left Shift f	1	1	C,N,OV,Z
		SL	Ws,Wd	Wd = Left Shift Ws	1	1	C,N,OV,Z
		SL	Wb,Wns,Wnd	Wnd = Left Shift Wb by Wns	1	1	N,Z
		SL	Wb,#lit5,Wnd	Wnd = Left Shift Wb by lit5	1	1	N,Z
60	SUB	SUB	f	f = f - WREG 1		1	C,DC,N,OV,Z
		SUB	f,WREG	WREG = f - WREG 1 1 Wn = Wn - lit10 1 1		C,DC,N,OV,Z	
		SUB	#lit10,Wn	Wn = Wn - lit10 1 Wd = Wb - Ws 1		1	C,DC,N,OV,Z
		SUB	Wb,Ws,Wd	Wd = Wb – Ws	1	1	C,DC,N,OV,Z
		SUB	Wb,#lit5,Wd	Wd = Wb – lit5	1	1	C,DC,N,OV,Z
61	SUBB	SUBB	f	$f = f - WREG - (\overline{C})$	1	1	C,DC,N,OV,Z
		SUBB	f,WREG	WREG = $f - WREG - (\overline{C})$	1	1	C,DC,N,OV,Z
		SUBB	#lit10,Wn	$Wn = Wn - lit10 - (\overline{C})$	1	1	C,DC,N,OV,Z
		SUBB	Wb,Ws,Wd	$Wd = Wb - Ws - (\overline{C})$	1	1	C,DC,N,OV,Z
		SUBB	Wb,#lit5,Wd	$Wd = Wb - lit5 - (\overline{C})$	1	1	C,DC,N,OV,Z
62	SUBR	SUBR	f	f = WREG – f	1	1	C,DC,N,OV,Z
		SUBR	f,WREG	WREG = WREG – f	1	1	C,DC,N,OV,Z
		SUBR	Wb,Ws,Wd	Wd = Ws – Wb	1	1	C,DC,N,OV,Z
		SUBR	Wb,#lit5,Wd	Wd = lit5 – Wb	1	1	C,DC,N,OV,Z
63	SUBBR	SUBBR	f	$f = WREG - f - (\overline{C})$	1	1	C,DC,N,OV,Z
		SUBBR	f,WREG	WREG = WREG – f – (\overline{C})	1	1	C,DC,N,OV,Z
		SUBBR	Wb,Ws,Wd	$Wd = Ws - Wb - (\overline{C})$	1	1	C,DC,N,OV,Z
		SUBBR		$Wd = Wb = (C)$ $Wd = lit5 - Wb - (\overline{C})$	1	1	C,DC,N,OV,Z
64	SWAP	SUBBR SWAP.b	Wb,#lit5,Wd	Wn = nibble swap Wn	1	1	None
	SWAL	SWAP.D	Wn Wn	Wn = byte swap Wn	1	1	None
65	TBLRDH	TBLRDH	Wh Ws,Wd	Read Prog<23:16> to Wd<7:0>	1	2	None
66	TBLRDL	TBLRDH	Ws,Wd Ws,Wd	Read Prog<25.10 to Wd<7.0	1	2	None
00	TRAFE			-			
67	TBLWTH	TBLWTH	Ws,Wd	Write Ws<7:0> to Prog<23:16>	1	2	None

Base Instr #	Assembly Mnemonic		Assembly Syntax	Description	# of Words	# of Cycles	Status Flags Affected
69	ULNK	ULNK		Unlink Frame Pointer	1	1	None
70	XOR	XOR	f	f = f .XOR. WREG	1	1	N,Z
		XOR	f,WREG	WREG = f .XOR. WREG	1	1	N,Z
		XOR	#lit10,Wn	Wd = lit10 .XOR. Wd	1	1	N,Z
		XOR	Wb,Ws,Wd	Wd = Wb .XOR. Ws	1	1	N,Z
		XOR	Wb,#lit5,Wd	Wd = Wb .XOR. lit5	1	1	N,Z
71	ZE	ZE	Ws,Wnd	Wnd = Zero-extend Ws	1	1	C,Z,N

NOTES:

26.0 DEVELOPMENT SUPPORT

The $\mathsf{PIC}^{\circledast}$ microcontrollers are supported with a full range of hardware and software development tools:

- · Integrated Development Environment
 - MPLAB® IDE Software
- Assemblers/Compilers/Linkers
 - MPASM[™] Assembler
 - MPLAB C18 and MPLAB C30 C Compilers
 - MPLINK[™] Object Linker/
 - MPLIB™ Object Librarian
 - MPLAB ASM30 Assembler/Linker/Library
- Simulators
 - MPLAB SIM Software Simulator
- · Emulators
 - MPLAB ICE 2000 In-Circuit Emulator
 - MPLAB REAL ICE™ In-Circuit Emulator
- In-Circuit Debugger
- MPLAB ICD 2
- Device Programmers
 - PICSTART[®] Plus Development Programmer
 - MPLAB PM3 Device Programmer
 - PICkit[™] 2 Development Programmer
- Low-Cost Demonstration and Development Boards and Evaluation Kits

26.1 MPLAB Integrated Development Environment Software

The MPLAB IDE software brings an ease of software development previously unseen in the 8/16-bit microcontroller market. The MPLAB IDE is a Windows[®] operating system-based application that contains:

- · A single graphical interface to all debugging tools
 - Simulator
 - Programmer (sold separately)
 - Emulator (sold separately)
 - In-Circuit Debugger (sold separately)
- · A full-featured editor with color-coded context
- A multiple project manager
- Customizable data windows with direct edit of contents
- · High-level source code debugging
- Visual device initializer for easy register initialization
- · Mouse over variable inspection
- Drag and drop variables from source to watch windows
- · Extensive on-line help
- Integration of select third party tools, such as HI-TECH Software C Compilers and IAR C Compilers

The MPLAB IDE allows you to:

- Edit your source files (either assembly or C)
- One touch assemble (or compile) and download to PIC MCU emulator and simulator tools (automatically updates all project information)
- · Debug using:
 - Source files (assembly or C)
 - Mixed assembly and C
 - Machine code

MPLAB IDE supports multiple debugging tools in a single development paradigm, from the cost-effective simulators, through low-cost in-circuit debuggers, to full-featured emulators. This eliminates the learning curve when upgrading to tools with increased flexibility and power.

26.2 MPASM Assembler

The MPASM Assembler is a full-featured, universal macro assembler for all PIC MCUs.

The MPASM Assembler generates relocatable object files for the MPLINK Object Linker, Intel[®] standard HEX files, MAP files to detail memory usage and symbol reference, absolute LST files that contain source lines and generated machine code and COFF files for debugging.

The MPASM Assembler features include:

- Integration into MPLAB IDE projects
- User-defined macros to streamline assembly code
- Conditional assembly for multi-purpose source files
- Directives that allow complete control over the assembly process

26.3 MPLAB C18 and MPLAB C30 C Compilers

The MPLAB C18 and MPLAB C30 Code Development Systems are complete ANSI C compilers for Microchip's PIC18 and PIC24 families of microcontrollers and the dsPIC30 and dsPIC33 family of digital signal controllers. These compilers provide powerful integration capabilities, superior code optimization and ease of use not found with other compilers.

For easy source level debugging, the compilers provide symbol information that is optimized to the MPLAB IDE debugger.

26.4 MPLINK Object Linker/ MPLIB Object Librarian

The MPLINK Object Linker combines relocatable objects created by the MPASM Assembler and the MPLAB C18 C Compiler. It can link relocatable objects from precompiled libraries, using directives from a linker script.

The MPLIB Object Librarian manages the creation and modification of library files of precompiled code. When a routine from a library is called from a source file, only the modules that contain that routine will be linked in with the application. This allows large libraries to be used efficiently in many different applications.

The object linker/library features include:

- Efficient linking of single libraries instead of many smaller files
- Enhanced code maintainability by grouping related modules together
- Flexible creation of libraries with easy module listing, replacement, deletion and extraction

26.5 MPLAB ASM30 Assembler, Linker and Librarian

MPLAB ASM30 Assembler produces relocatable machine code from symbolic assembly language for dsPIC30F devices. MPLAB C30 C Compiler uses the assembler to produce its object file. The assembler generates relocatable object files that can then be archived or linked with other relocatable object files and archives to create an executable file. Notable features of the assembler include:

- · Support for the entire dsPIC30F instruction set
- · Support for fixed-point and floating-point data
- Command line interface
- Rich directive set
- Flexible macro language
- MPLAB IDE compatibility

26.6 MPLAB SIM Software Simulator

The MPLAB SIM Software Simulator allows code development in a PC-hosted environment by simulating the PIC MCUs and dsPIC[®] DSCs on an instruction level. On any given instruction, the data areas can be examined or modified and stimuli can be applied from a comprehensive stimulus controller. Registers can be logged to files for further run-time analysis. The trace buffer and logic analyzer display extend the power of the simulator to record and track program execution, actions on I/O, most peripherals and internal registers.

The MPLAB SIM Software Simulator fully supports symbolic debugging using the MPLAB C18 and MPLAB C30 C Compilers, and the MPASM and MPLAB ASM30 Assemblers. The software simulator offers the flexibility to develop and debug code outside of the hardware laboratory environment, making it an excellent, economical software development tool.

26.7 MPLAB ICE 2000 High-Performance In-Circuit Emulator

The MPLAB ICE 2000 In-Circuit Emulator is intended to provide the product development engineer with a complete microcontroller design tool set for PIC microcontrollers. Software control of the MPLAB ICE 2000 In-Circuit Emulator is advanced by the MPLAB Integrated Development Environment, which allows editing, building, downloading and source debugging from a single environment.

The MPLAB ICE 2000 is a full-featured emulator system with enhanced trace, trigger and data monitoring features. Interchangeable processor modules allow the system to be easily reconfigured for emulation of different processors. The architecture of the MPLAB ICE 2000 In-Circuit Emulator allows expansion to support new PIC microcontrollers.

The MPLAB ICE 2000 In-Circuit Emulator system has been designed as a real-time emulation system with advanced features that are typically found on more expensive development tools. The PC platform and Microsoft[®] Windows[®] 32-bit operating system were chosen to best make these features available in a simple, unified application.

26.8 MPLAB REAL ICE In-Circuit Emulator System

MPLAB REAL ICE In-Circuit Emulator System is Microchip's next generation high-speed emulator for Microchip Flash DSC and MCU devices. It debugs and programs PIC[®] Flash MCUs and dsPIC[®] Flash DSCs with the easy-to-use, powerful graphical user interface of the MPLAB Integrated Development Environment (IDE), included with each kit.

The MPLAB REAL ICE probe is connected to the design engineer's PC using a high-speed USB 2.0 interface and is connected to the target with either a connector compatible with the popular MPLAB ICD 2 system (RJ11) or with the new high-speed, noise tolerant, Low-Voltage Differential Signal (LVDS) interconnection (CAT5).

MPLAB REAL ICE is field upgradeable through future firmware downloads in MPLAB IDE. In upcoming releases of MPLAB IDE, new devices will be supported, and new features will be added, such as software breakpoints and assembly code trace. MPLAB REAL ICE offers significant advantages over competitive emulators including low-cost, full-speed emulation, real-time variable watches, trace analysis, complex breakpoints, a ruggedized probe interface and long (up to three meters) interconnection cables.

26.9 MPLAB ICD 2 In-Circuit Debugger

Microchip's In-Circuit Debugger, MPLAB ICD 2, is a powerful, low-cost, run-time development tool, connecting to the host PC via an RS-232 or high-speed USB interface. This tool is based on the Flash PIC MCUs and can be used to develop for these and other PIC MCUs and dsPIC DSCs. The MPLAB ICD 2 utilizes the in-circuit debugging capability built into the Flash devices. This feature, along with Microchip's In-Circuit Serial Programming[™] (ICSP[™]) protocol, offers costeffective, in-circuit Flash debugging from the graphical user interface of the MPLAB Integrated Development Environment. This enables a designer to develop and debug source code by setting breakpoints, single stepping and watching variables, and CPU status and peripheral registers. Running at full speed enables testing hardware and applications in real time. MPLAB ICD 2 also serves as a development programmer for selected PIC devices.

26.10 MPLAB PM3 Device Programmer

The MPLAB PM3 Device Programmer is a universal, CE compliant device programmer with programmable voltage verification at VDDMIN and VDDMAX for maximum reliability. It features a large LCD display (128 x 64) for menus and error messages and a modular, detachable socket assembly to support various package types. The ICSP™ cable assembly is included as a standard item. In Stand-Alone mode, the MPLAB PM3 Device Programmer can read, verify and program PIC devices without a PC connection. It can also set code protection in this mode. The MPLAB PM3 connects to the host PC via an RS-232 or USB cable. The MPLAB PM3 has high-speed communications and optimized algorithms for quick programming of large memory devices and incorporates an SD/MMC card for file storage and secure data applications.

26.11 PICSTART Plus Development Programmer

The PICSTART Plus Development Programmer is an easy-to-use, low-cost, prototype programmer. It connects to the PC via a COM (RS-232) port. MPLAB Integrated Development Environment software makes using the programmer simple and efficient. The PICSTART Plus Development Programmer supports most PIC devices in DIP packages up to 40 pins. Larger pin count devices, such as the PIC16C92X and PIC17C76X, may be supported with an adapter socket. The PICSTART Plus Development Programmer is CE compliant.

26.12 PICkit 2 Development Programmer

The PICkit[™] 2 Development Programmer is a low-cost programmer and selected Flash device debugger with an easy-to-use interface for programming many of Microchip's baseline, mid-range and PIC18F families of Flash memory microcontrollers. The PICkit 2 Starter Kit includes a prototyping development board, twelve sequential lessons, software and HI-TECH's PICC[™] Lite C compiler, and is designed to help get up to speed quickly using PIC[®] microcontrollers. The kit provides everything needed to program, evaluate and develop applications using Microchip's powerful, mid-range Flash memory family of microcontrollers.

26.13 Demonstration, Development and Evaluation Boards

A wide variety of demonstration, development and evaluation boards for various PIC MCUs and dsPIC DSCs allows quick application development on fully functional systems. Most boards include prototyping areas for adding custom circuitry and provide application firmware and source code for examination and modification.

The boards support a variety of features, including LEDs, temperature sensors, switches, speakers, RS-232 interfaces, LCD displays, potentiometers and additional EEPROM memory.

The demonstration and development boards can be used in teaching environments, for prototyping custom circuits and for learning about various microcontroller applications.

In addition to the PICDEM[™] and dsPICDEM[™] demonstration/development board series of circuits, Microchip has a line of evaluation kits and demonstration software for analog filter design, KEELOQ[®] security ICs, CAN, IrDA[®], PowerSmart battery management, SEEVAL[®] evaluation system, Sigma-Delta ADC, flow rate sensing, plus many more.

Check the Microchip web page (www.microchip.com) for the complete list of demonstration, development and evaluation kits.

27.0 ELECTRICAL CHARACTERISTICS

This section provides an overview of PIC24HJ32GP302/304, PIC24HJ64GPX02/X04, and PIC24HJ128GPX02/X04 electrical characteristics. Additional information is provided in future revisions of this document as it becomes available.

Absolute maximum ratings for the PIC24HJ32GP302/304, PIC24HJ64GPX02/X04, and PIC24HJ128GPX02/X04 family are listed below. Exposure to these maximum rating conditions for extended periods can affect device reliability. Functional operation of the device at these or any other conditions above the parameters indicated in the operation listings of this specification is not implied.

Absolute Maximum Ratings⁽¹⁾

Ambient temperature under bias	40°C to +125°C
Storage temperature	
Voltage on VDD with respect to Vss	0.3V to +4.0V
Voltage on any combined analog and digital pin and MCLR, with respect to Vss	0.3V to (VDD + 0.3V)
Voltage on any digital-only pin with respect to Vss	0.3V to +5.6V
Voltage on VDDCORE with respect to Vss	2.25V to 2.75V
Maximum current out of Vss pin	
Maximum current into Vod pin ⁽²⁾	250 mA
Maximum output current sunk by any I/O pin ⁽³⁾	4 mA
Maximum output current sourced by any I/O pin ⁽³⁾	4 mA
Maximum current sunk by all ports	200 mA
Maximum current sourced by all ports ⁽²⁾	200 mA

- **Note 1:** Stresses above those listed under "Absolute Maximum Ratings" can cause permanent damage to the device. This is a stress rating only, and functional operation of the device at those or any other conditions above those indicated in the operation listings of this specification is not implied. Exposure to maximum rating conditions for extended periods can affect device reliability.
 - 2: Maximum allowable current is a function of device maximum power dissipation (see Table 27-2).
 - **3:** Exceptions are CLKOUT, which is able to sink/source 25 mA, and the VREF+, VREF-, SCLx, SDAx, PGCx and PGDx pins, which are able to sink/source 12 mA.

27.1 DC Characteristics

TABLE 27-1: OPERATING MIPS VS. VOLTAGE

			Max MIPS
Characteristic	•		PIC24HJ32GP302/304, PIC24HJ64GPX02/X04, and PIC24HJ128GPX02/X04
	3.0-3.6V	-40°C to +85°C	40
	3.0-3.6V	-40°C to +125°C	40

TABLE 27-2: THERMAL OPERATING CONDITIONS

Rating	Symbol	Min	Тур	Max	Unit
Industrial Temperature Devices					
Operating Junction Temperature Range	TJ	-40		+125	°C
Operating Ambient Temperature Range	TA	-40	—	+85	°C
Extended Temperature Devices					
Operating Junction Temperature Range	TJ	-40		+140	°C
Operating Ambient Temperature Range	TA	-40		+125	°C
Power Dissipation: Internal chip power dissipation: $PINT = VDD x (IDD - \Sigma IOH)$	PD		PINT + PI/(D	W
I/O Pin Power Dissipation: I/O = Σ ({VDD - VOH} x IOH) + Σ (VOL x IOL)					
Maximum Allowed Power Dissipation	PDMAX	(W		

TABLE 27-3: THERMAL PACKAGING CHARACTERISTICS

Characteristic	Symbol	Тур	Мах	Unit	Notes
Package Thermal Resistance, 44-pin QFN	θja	24.5	_	°C/W	1
Package Thermal Resistance, 44-pin TFQP	θja	45.8	_	°C/W	1
Package Thermal Resistance, 28-pin SPDIP	θja	60	_	°C/W	1
Package Thermal Resistance, 28-pin SOIC	θја	80.2	_	°C/W	1
Package Thermal Resistance, 28-pin QFN-S	θja	29	_	°C/W	1

Note 1: Junction to ambient thermal resistance, Theta-JA (θ JA) numbers are achieved by package simulations.

DC CHARACTERISTICS			$\begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^\circ C \leq TA \leq +85^\circ C \mbox{ for Industrial} \\ & -40^\circ C \leq TA \leq +125^\circ C \mbox{ for Extended} \end{array}$						
Param No.	Symbol	Characteristic	Min	Typ ⁽¹⁾	Мах	Units	Conditions		
Operati	ng Voltag	e							
DC10	Supply Voltage								
	Vdd		3.0	_	3.6	V	Industrial and Extended		
DC12	Vdr	RAM Data Retention Voltage ⁽²⁾	1.1	_	1.8	V			
DC16	VPOR	VDD Start Voltage to ensure internal Power-on Reset signal	_	_	Vss	V			
DC17	SVDD	VDD Rise Rate to ensure internal Power-on Reset signal	0.03	—	_	V/ms	0-3.0V in 0.1s		
DC18	VCORE	VDD Core ⁽³⁾ Internal regulator voltage	2.25	—	2.75	V	Voltage is dependent on load, temperature and VDD		

TABLE 27-4: DC TEMPERATURE AND VOLTAGE SPECIFICATIONS

Note 1: Data in "Typ" column is at 3.3V, 25°C unless otherwise stated.

2: This is the limit to which VDD can be lowered without losing RAM data.

3: These parameters are characterized but not tested in manufacturing.

© 2008 Microchip Technology Inc.

DC CHARACT	ERISTICS		$\begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ & -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$						
Parameter No.	Typical ⁽¹⁾	Max	Units	Conditions					
Operating Cur	rent (IDD) ⁽²⁾								
DC20d	19	30	mA	-40°C					
DC20a	19	30	mA	+25°C	3.3∨	10 MIPS			
DC20b	19	30	mA	+85°C	3.3V	10 101195			
DC20c	19	35	mA	+125°C	_				
DC21d	29	40	mA	-40°C					
DC21a	29	40	mA	+25°C	3.3∨	16 MIPS			
DC21b	28	45	mA	+85°C	3.3V	10 101195			
DC21c	28	45	mA	+125°C	_				
DC22d	33	50	mA	-40°C					
DC22a	33	50	mA	+25°C	2.21/				
DC22b	33	55	mA	+85°C	- 3.3V	20 MIPS			
DC22c	33	55	mA	+125°C	_				
DC23d	47	70	mA	-40°C					
DC23a	48	70	mA	+25°C	2.21/				
DC23b	48	70	mA	+85°C	- 3.3V	30 MIPS			
DC23c	48	70	mA	+125°C					
DC24d	60	90	mA	-40°C					
DC24a	60	90	mA	+25°C	2.21/				
DC24b	60	90	mA	+85°C	- 3.3V	40 MIPS			
DC24c	60	90	mA	+125°C					

TABLE 27-5: DC CHARACTERISTICS: OPERATING CURRENT (IDD)

Note 1: Data in "Typical" column is at 3.3V, 25°C unless otherwise stated.

2: The supply current is mainly a function of the operating voltage and frequency. Other factors, such as I/O pin loading and switching rate, oscillator type, internal code execution pattern and temperature, also have an impact on the current consumption. The test conditions for all IDD measurements are as follows: OSC1 driven with external square wave from rail to rail. All I/O pins are configured as inputs and pulled to Vss. MCLR = VDD, WDT and FSCM are disabled. CPU, SRAM, program memory and data memory are operational. No peripheral modules are operating; however, every peripheral is being clocked (PMD bits are all zeroed).

DC CHARACT	ERISTICS		$\begin{array}{ll} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$							
Parameter No.	Typical ⁽¹⁾	Max	Units	Conditions						
Idle Current (IIDLE): Core OFF Clock ON Base Current ⁽²⁾										
DC40d	4	25	mA	-40°C						
DC40a	4	25	mA	+25°C	7	10 MIPS				
DC40b	4	25	mA	+85°C	3.3V	10 MIPS				
DC40c	4	25	mA	+125°C						
DC41d	6	25	mA	-40°C						
DC41a	6	25	mA	+25°C	- 3.3V	16 MIPS				
DC41b	6	25	mA	+85°C	3.3V	10 1011-3				
DC41c	6	25	mA	+125°C						
DC42d	9	25	mA	-40°C		20 MIPS				
DC42a	9	25	mA	+25°C	3.3V					
DC42b	9	25	mA	+85°C	3.3V	20 10117-3				
DC42c	9	25	mA	+125°C						
DC43a	16	25	mA	+25°C						
DC43d	16	25	mA	-40°C	3.3V	30 MIPS				
DC43b	16	25	mA	+85°C	3.3V	30 IVIIF 3				
DC43c	16	25	mA	+125°C						
DC44d	18	25	mA	-40°C						
DC44a	18	25	mA	+25°C	- 3.3V	40 MIPS				
DC44b	19	25	mA	+85°C	3.3V	40 101153				
DC44c	19	25	mA	+125°C]					

Note 1: Data in "Typical" column is at 3.3V, 25°C unless otherwise stated.

2: Base IIDLE current is measured with core off, clock on and all modules turned off. Peripheral Module Disable SFR registers are zeroed. All I/O pins are configured as inputs and pulled to Vss.

TABLE 27-7: DC CHARACTERISTICS: POWER-DOWN CURRENT (IPD)

DC CHARACI	ERISTICS		(unless oth	$\begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ & -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$						
Parameter No.	Typical ⁽¹⁾	Max	Units	Conditions						
Power-Down	Current (IPD) ⁽	2)								
DC60d	24	500	μA	-40°C						
DC60a	28	500	μA	+25°C	2.21/	Base Power-Down Current ^(3,4)				
DC60b	124	500	μA	+85°C	3.3V	Base Power-Down Current				
DC60c	350	500	μA	+125°C						
DC61d	8	13	μA	-40°C						
DC61a	10	15	μA	+25°C	0.01/	Match dog Timor Currents Alwor(3)				
DC61b	12	20	μA	+85°C	3.3V	Watchdog Timer Current: ∆IwDT ⁽³⁾				
DC61c	13	25	μA	+125°C						

Note 1: Data in the Typical column is at 3.3V, 25°C unless otherwise stated.

2: Base IPD is measured with all peripherals and clocks shut down. All I/Os are configured as inputs and pulled to Vss. WDT, etc., are all switched off.

3: The ∆ current is the additional current consumed when the module is enabled. This current should be added to the base IPD current.

4: These currents are measured on the device containing the most memory in this family.

TABLE 27-8: DC CHARACTERISTICS: DOZE CURRENT (IDOZE)

DC CHARACTERI	DC CHARACTERISTICS				$\begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^\circ C \leq TA \leq +85^\circ C \mbox{ for Industrial} \\ & -40^\circ C \leq TA \leq +125^\circ C \mbox{ for Extended} \end{array}$				
Parameter No. Typical ⁽¹⁾ Max			Doze Ratio	Units		Conditions			
DC73a	42	50	1:2	mA					
DC73f	23	30	1:64	mA	-40°C	3.3V	40 MIPS		
DC73g	23	30	1:128	mA					
DC70a	42	50	1:2	mA		3.3V	40 MIPS		
DC70f	26	30	1:64	mA	+25°C				
DC70g	25	30	1:128	mA					
DC71a	41	50	1:2	mA					
DC71f	25	30	1:64	mA	+85°C	3.3V	40 MIPS		
DC71g	24	30	1:128	mA					
DC72a	42	50	1:2	mA			40 MIPS		
DC72f	26	30	1:64	mA	+125°C	3.3V			
DC72g	25	30	1:128	mA					

Note 1: Data in the Typical column is at 3.3V, 25°C unless otherwise stated.

DC CHA	RACTER	ISTICS	Standard Opera (unless otherwi Operating tempe	,			
Param No.	Symbol	Characteristic	Min	Typ ⁽¹⁾	Мах	Units	Conditions
	VIL	Input Low Voltage					
DI10		I/O pins	Vss	—	0.2 VDD	V	
DI11		PMP pins	Vss	—	0.15 Vdd	V	PMPTTL = 1
DI15		MCLR	Vss	—	0.2 VDD	V	
DI16		OSC1 (XT mode)	Vss	—	0.2 Vdd	V	
DI17		OSC1 (HS mode)	Vss	—	0.2 Vdd	V	
DI18		SDAx, SCLx	Vss	—	0.3 Vdd	V	SMbus disabled
DI19		SDAx, SCLx	Vss	—	0.2 Vdd	V	SMbus enabled
	Vih	Input High Voltage					
DI20		I/O pins: with analog functions ⁽⁴⁾ digital-only ⁽⁴⁾	0.8 Vdd 0.8 Vdd		Vdd 5.5	V V	
DI21		PMP pins: with analog functions ⁽⁴⁾ digital-only ⁽⁴⁾	0.24 Vdd + 0.8 0.24 Vdd + 0.8		Vdd 5.5	V V	PMPTTL = 1
DI25		MCLR	0.8 Vdd		Vdd	V	
DI26		OSC1 (XT mode)	0.7 Vdd	—	Vdd	V	
DI27		OSC1 (HS mode)	0.7 Vdd	—	Vdd	V	
DI28		SDAx, SCLx	0.7 Vdd	—	Vdd	V	SMbus disabled
DI29		SDAx, SCLx	0.8 Vdd	—	Vdd	V	SMbus enabled
DI30	ICNPU	CNx Pull-up Current	50	250	400	μA	Vdd = 3.3V, Vpin = Vss

TABLE 27-9: DC CHARACTERISTICS: I/O PIN INPUT SPECIFICATIONS

Note 1: Data in "Typ" column is at 3.3V, 25°C unless otherwise stated.

2: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current can be measured at different input voltages.

3: Negative current is defined as current sourced by the pin.

4: See Table 10-1 for a list of digital-only and analog pins.

DC CHA	RACTER	Standard Opera (unless otherw Operating temp	ise state	nditions: 3.0V to 3.6V d) $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial $-40^{\circ}C \le TA \le +125^{\circ}C$ for Extended			
Param No.	Symbol	Characteristic	Min	Typ ⁽¹⁾	Мах	Units	Conditions
	lil	Input Leakage Cur- rent ⁽²⁾⁽³⁾					
DI50		I/O ports	_	_	±2	μA	$\label{eq:VSS} \begin{split} &V{\sf SS} \leq V{\sf PIN} \leq V{\sf DD}, \\ &P{\sf in} \mbox{ at high-impedance } \end{split}$
DI51		Analog Input Pins	_	_	±1	μA	$\label{eq:VSS} \begin{array}{l} Vss \leq V \text{PIN} \leq V \text{DD}, \ Pin \\ at \ high-impedance, \\ 40^\circ C \leq \ TA \leq +85^\circ C \end{array}$
DI51a		Analog Input Pins	_	_	±2	μA	Analog pins shared with external refer- ence pins, $40^{\circ}C \le TA \le +85^{\circ}C$
DI51b		Analog Input Pins	_	_	±3.5	μA	$\label{eq:VSS} \begin{array}{l} VSS \leq VPIN \leq VDD, \ Pin \\ at \ high-impedance, \\ -40^\circ C \leq TA \leq +125^\circ C \end{array}$
DI51c		Analog Input Pins	_	_	±8	μA	Analog pins shared with external refer- ence pins, $-40^{\circ}C \le TA \le +125^{\circ}C$
DI55		MCLR	—	—	±2	μA	$Vss \leq V \text{PIN} \leq V \text{DD}$
DI56		OSC1	—	_	±2	μA	$\label{eq:VSS} \begin{array}{l} VSS \leq VPIN \leq VDD, \\ XT \text{ and } HS \text{ modes} \end{array}$

TABLE 27-9: DC CHARACTERISTICS: I/O PIN INPUT SPECIFICATIONS (CONTINUED)

Note 1: Data in "Typ" column is at 3.3V, 25°C unless otherwise stated.

2: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current can be measured at different input voltages.

3: Negative current is defined as current sourced by the pin.

4: See Table 10-1 for a list of digital-only and analog pins.

DC CHARACTERISTICS			$\begin{tabular}{lllllllllllllllllllllllllllllllllll$						
Param No.	Symbol	Characteristic	Min Typ Max Units Conditions						
	Vol	Output Low Voltage							
DO10		I/O ports	_	_	0.4	V	Iol = 2 mA, Vdd = 3.3V		
DO16		OSC2/CLKO	—	—	0.4	V	Iol = 2 mA, Vdd = 3.3V		
	Voн	Output High Voltage							
DO20		I/O ports	2.40	—	—	V	Iон = -2.3 mA, Vdd = 3.3V		
DO26		OSC2/CLKO	2.41 — V IOH = -1.3 mA, VDD = 3.3V						

TABLE 27-10: DC CHARACTERISTICS: I/O PIN OUTPUT SPECIFICATIONS

TABLE 27-11: ELECTRICAL CHARACTERISTICS: BOR

DC CHARACTERISTICS		(unless otherw	$\begin{array}{llllllllllllllllllllllllllllllllllll$					
Param No.	Symbol	Characteristic		Min ⁽¹⁾	Тур	Max ⁽¹⁾	Units	Conditions
BO10	VBOR	BOR Event on VDD transition high-to-low BOR event is tied to VDD core voltage decrease		2.40	_	2.55	V	

Note 1: Parameters are for design guidance only and are not tested in manufacturing.

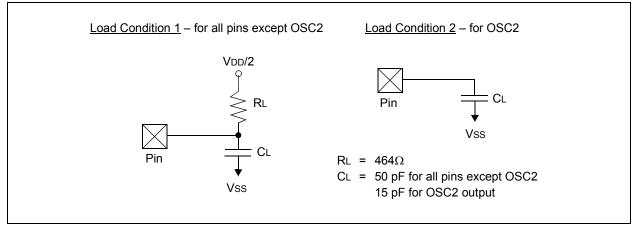
DC CHARACTERISTICS			Standard Operating Con (unless otherwise state Operating temperature			d)			
Param No.	Symbol	Characteristic	Min Typ ⁽¹⁾ Max Un			Units	Conditions		
		Program Flash Memory							
D130a	Eр	Cell Endurance	10,000	—	—	E/W	-40°C to +125°C		
D131	Vpr	VDD for Read	VMIN	—	3.6	V	VMIN = Minimum operating voltage		
D132B	VPEW	VDD for Self-Timed Write	VMIN	—	3.6	V	VMIN = Minimum operating voltage		
D134	TRETD	Characteristic Retention	20	—		Year	Provided no other specifications are violated		
D135	IDDP	Supply Current during Programming	—	10		mA			
D136	Trw	Row Write Time	1.6	—	_	ms			
D137	TPE	Page Erase Time	20	—	—	ms			
D138	Tww	Word Write Cycle Time	20	—	40	μS			

TABLE 27-12: DC CHARACTERISTICS: PROGRAM MEMORY

Note 1: Data in "Typ" column is at 3.3V, 25°C unless otherwise stated.

TABLE 27-13: INTERNAL VOLTAGE REGULATOR SPECIFICATIONS

Standard Operating Conditions (unless otherwise stated):Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial $-40^{\circ}C \le TA \le +125^{\circ}C$ for Extended								
Param No.	Symbol	Characteristics	Min	Тур	Max	Units	Comments	
	Cefc	External Filter Capacitor Value	1	10	_	μF	Capacitor must be low series resistance (< 5 Ohms)	


27.2 AC Characteristics and Timing Parameters

This section defines PIC24HJ32GP302/304, PIC24HJ64GPX02/X04, and PIC24HJ128GPX02/X04 AC characteristics and timing parameters.

TABLE 27-14: TEMPERATURE AND VOLTAGE SPECIFICATIONS - AC

	Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated)						
AC CHARACTERISTICS	$\begin{array}{llllllllllllllllllllllllllllllllllll$						
	Operating voltage VDD range as described in Section 27.0 "Electrical Characteristics".						

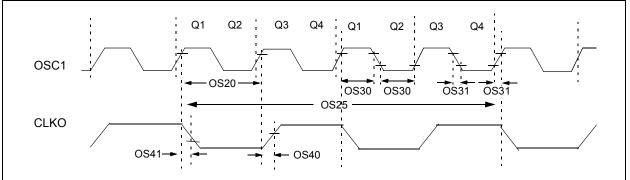

FIGURE 27-1: LOAD CONDITIONS FOR DEVICE TIMING SPECIFICATIONS

TABLE 27-15: CAPACITIVE LOADING REQUIREMENTS ON OUTPUT PINS

Param No.	Symbol	Characteristic	Min	Тур	Max	Units	Conditions
DO50	Cosc2	OSC2/SOSC2 pin	_	—	15	pF	In XT and HS modes when external clock is used to drive OSC1
DO56	Сю	All I/O pins and OSC2	—	—	50	pF	EC mode
DO58	Св	SCLx, SDAx	_	—	400	pF	In I ² C™ mode

FIGURE 27-2: EXTERNAL CLOCK TIMING

TABLE 27-16: EXTERNAL CLOCK TIMING REQUIREMENTS

			$\begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^\circ C \leq TA \leq +85^\circ C \mbox{ for Industrial} \\ -40^\circ C \leq TA \leq +125^\circ C \mbox{ for Extended} \end{array}$						
Param No.	Symb	Characteristic	Min	Min Typ ⁽¹⁾ Ma		Units	Conditions		
OS10	Fin	External CLKI Frequency (External clocks allowed only in EC and ECPLL modes)	DC	_	40	MHz	EC		
		Oscillator Crystal Frequency	3.5 10		10 40 33	MHz MHz kHz	XT HS SOSC		
OS20	Tosc	Tosc = 1/Fosc	12.5		DC	ns			
OS25	TCY	Instruction Cycle Time ⁽²⁾	25		DC	ns			
OS30	TosL, TosH	External Clock in (OSC1) High or Low Time	0.375 x Tosc	—	0.625 x Tosc	ns	EC		
OS31	TosR, TosF	External Clock in (OSC1) Rise or Fall Time	-	—	20	ns	EC		
OS40	TckR	CLKO Rise Time ⁽³⁾	_	5.2	—	ns			
OS41	TckF	CLKO Fall Time ⁽³⁾		5.2	—	ns			

Note 1: Data in "Typ" column is at 3.3V, 25°C unless otherwise stated.

2: Instruction cycle period (TCY) equals two times the input oscillator time-base period. All specified values are based on characterization data for that particular oscillator type under standard operating conditions with the device executing code. Exceeding these specified limits may result in an unstable oscillator operation and/or higher than expected current consumption. All devices are tested to operate at "min." values with an external clock applied to the OSC1/CLKI pin. When an external clock input is used, the "max." cycle time limit is "DC" (no clock) for all devices.

3: Measurements are taken in EC mode. The CLKO signal is measured on the OSC2 pin.

АС СНА	RACTERI	STICS		$\begin{array}{ll} \mbox{Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated)} \\ \mbox{Operating temperature} & -40^\circ C \leq Ta \leq +85^\circ C \mbox{ for Industrial} \\ -40^\circ C \leq Ta \leq +125^\circ C \mbox{ for Extended} \end{array}$						
Param No. Symbol Characteristic			Min	Typ ⁽¹⁾	Max	Units	Conditions			
OS50	Fplli	PLL Voltage Controll Oscillator (VCO) Inpu Frequency Range		0.8	_	8	MHz	ECPLL, HSPLL, XTPLL modes		
OS51	Fsys	On-Chip VCO Syster Frequency	n	100	—	200	MHz			
OS52	TLOCK	PLL Start-up Time (L	ock Time)	0.9	1.5	3.1	mS			
OS53	DCLK	CLKO Stability (Jitter	.)	-3	0.5	3	%	Measured over 100 ms period		

Note 1: Data in "Typ" column is at 3.3V, 25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

TABLE 27-18: AC CHARACTERISTICS: INTERNAL RC ACCURACY

AC CHA	RACTERISTICS	$\begin{array}{ll} \mbox{Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated)} \\ \mbox{Operating temperature} & -40^\circ C \leq TA \leq +85^\circ C \mbox{ for Industrial} \\ -40^\circ C \leq TA \leq +125^\circ C \mbox{ for Extended} \end{array}$								
Param No.	Characteristic	Min	Тур	Max	Units Conditions					
	Internal FRC Accuracy @	0 7.3728	MHz ^(1,2)							
F20	FRC	-2	_	+2	%	$-40^\circ C \le T A \le +85^\circ C$	VDD = 3.0-3.6V			
	FRC	-5		+5	%	VDD = 3.0-3.6V				

Note 1: Frequency calibrated at 25°C and 3.3V. TUN bits can be used to compensate for temperature drift.

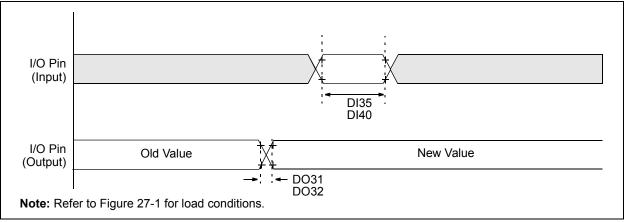

2: FRC is set to initial frequency of 7.37 MHz (±2%) at 25°C.

TABLE 27-19: INTERNAL RC ACCURACY

АС СН	ARACTERISTICS	$\begin{array}{llllllllllllllllllllllllllllllllllll$								
Param No.	Characteristic	Min	Тур	Max	Units	Conditions				
	LPRC @ 32.768 kHz ⁽¹⁾									
F21	LPRC	-20	±6	+20	%	$-40^{\circ}C \le TA \le +85^{\circ}C \qquad VDD = 3.0-3.6V$				
	LPRC	-70	—	+70	%	$-40^\circ C \le T A \le +125^\circ C$	VDD = 3.0-3.6V			

Note 1: Change of LPRC frequency as VDD changes.

FIGURE 27-3: CLKO AND I/O TIMING CHARACTERISTICS

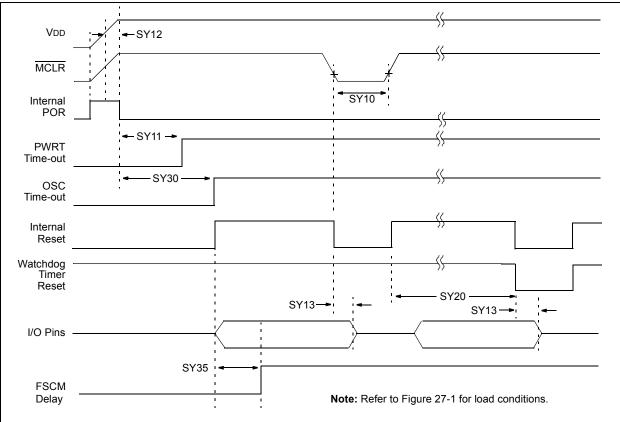
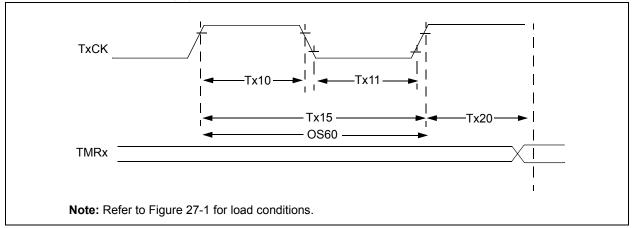


TABLE 27-20: I/O TIMING REQUIREMENTS

AC CHARACTERISTICS			$\begin{array}{llllllllllllllllllllllllllllllllllll$					
Param No.	Symbol	Character	Characteristic		Typ ⁽¹⁾	Max	Units	Conditions
DO31	TIOR	Port Output Rise Tim	e		10	25	ns	_
DO32	TIOF	Port Output Fall Time)	—	10	25	ns	—
DI35	TINP	INTx Pin High or Low	r Time (output)	20	_		ns	—
DI40 TRBP CNx High or Low Time (input)			ie (input)	2		_	Тсү	

Note 1: Data in "Typ" column is at 3.3V, 25°C unless otherwise stated.

TABLE 27-21:RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER, POWER-UP TIMERTIMING REQUIREMENTS


АС СНА	AC CHARACTERISTICS			$\begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^\circ C \leq TA \leq +85^\circ C \mbox{ for Industrial} \\ -40^\circ C \leq TA \leq +125^\circ C \mbox{ for Extended} \end{array}$						
Param No.	Symbol	Characteristic ⁽¹⁾	Min	Тур ⁽²⁾	Max	Units	Conditions			
SY10	ТмсL	MCLR Pulse Width (low)	2	—	_	μS	-40°C to +85°C			
SY11	Tpwrt	Power-up Timer Period	_	2 4 16 32 64 128		ms	-40°C to +85°C User programmable			
SY12	TPOR	Power-on Reset Delay	3	10	30	μS	-40°C to +85°C			
SY13	Tioz	I/O High-Impedance from MCLR Low or Watchdog Timer Reset	0.68	0.72	1.2	μS				
SY20	Twdt1	Watchdog Timer Time-out Period (No Prescaler)	1.7	2.1	2.6	ms	VDD = 3V, -40°C to +85°C			
SY30	Tost	Oscillator Start-up Timer Period	—	1024 Tosc	_		Tosc = OSC1 period			
SY35	TFSCM	Fail-Safe Clock Monitor Delay		500	900	μS	-40°C to +85°C			

Note 1: These parameters are characterized but not tested in manufacturing.

2: Data in "Typ" column is at 3.3V, 25°C unless otherwise stated.

PIC24HJ32GP302/304, PIC24HJ64GPX02/X04, AND PIC24HJ128GPX02/X04

FIGURE 27-5: TIMER1, 2, 3 AND 4 EXTERNAL CLOCK TIMING CHARACTERISTICS

TABLE 27-22: TIMER1 EXTERNAL CLOCK TIMING REQUIREMENTS⁽¹⁾

АС СНА					$\begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ & -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$						
Param No.	Symbol	Characte	eristic		Min	Тур	Max	Units	Conditions		
TA10	ТтхН	TxCK High Time	Synchronous, no prescaler Synchronous, with prescaler		0.5 Tcy + 20	—	-	ns	Must also meet parameter TA15		
					10	—	—	ns			
			Asynchro	nous	10	_	_	ns			
TA11	ΤτxL	TxCK Low Time	Synchronous, no prescaler		0.5 Tcy + 20	_	_	ns	Must also meet parameter TA15		
			Synchronous, with prescaler		10	_		ns			
			Asynchro	nous	10	_	_	ns			
TA15	ΤτχΡ	TxCK Input Period	Synchron no presca		Tcy + 40	_	_	ns			
			Synchron with prese		Greater of: 20 ns or (TcY + 40)/N	_	_		N = prescale value (1, 8, 64, 256)		
			Asynchro	nous	20	—	—	ns			
OS60	Ft1	SOSC1/T1CK Osci frequency Range (o by setting bit TCS (oscillator enabled		DC	—	50	kHz			
TA20	TCKEXTMRL	Delay from Externa Edge to Timer Incre		ock	0.5 TCY		1.5 TCY				

Note 1: Timer1 is a Type A.

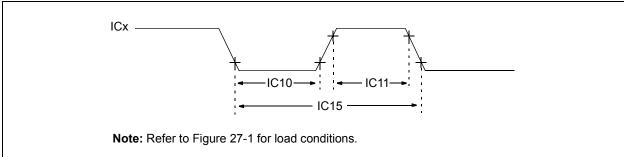

АС СНА	AC CHARACTERISTICS			$\begin{array}{llllllllllllllllllllllllllllllllllll$						
Param No.	Symbol	Charact	eristic		Min	Тур	Max	Units	Conditions	
TB10	TtxH	TxCK High Time	Synchro no prese		0.5 Tcy + 20	I	_	ns	Must also meet parameter TB15	
			Synchronous, with prescaler		10		_	ns		
TB11	TtxL	TxCK Low Time	Synchro no prese		0.5 TCY + 20		_	ns	Must also meet parameter TB15	
			Synchro with pre		10		—	ns		
TB15	TtxP	TxCK Input Period	Synchro no prese		Tcy + 40		—	ns	N = prescale value	
			Synchronous, with prescaler		Greater of: 20 ns or (TCY + 40)/N				(1, 8, 64, 256)	
TB20	TCKEXT- MRL	Delay from Externa Edge to Timer Incr		Clock	0.5 Tcy		1.5 TCY	_		

TABLE 27-23: TIMER2 AND TIMER4 EXTERNAL CLOCK TIMING REQUIREMENTS

TABLE 27-24: TIMER3 AND TIMER5 EXTERNAL CLOCK TIMING REQUIREMENTS

AC CHARACTERISTICS				$\begin{array}{llllllllllllllllllllllllllllllllllll$						
Param No.	Symbol	ymbol Characteristic			Min	Тур	Max	Units	Conditions	
TC10	TtxH	TxCK High Time	Synchro	nous	0.5 Tcy + 20			ns	Must also meet parameter TC15	
TC11	TtxL	TxCK Low Time	Synchro	nous	0.5 TCY + 20			ns	Must also meet parameter TC15	
TC15	TtxP	TxCK Input Period	Synchro no preso		Tcy + 40			ns	N = prescale value	
			Synchronous, with prescaler		Greater of: 20 ns or (Tcy + 40)/N				(1, 8, 64, 256)	
TC20	TCKEXTMRL	Delay from Externa Edge to Timer Incre		lock	0.5 TCY	_	1.5 Тсү	—		

FIGURE 27-6: INPUT CAPTURE (CAPx) TIMING CHARACTERISTICS

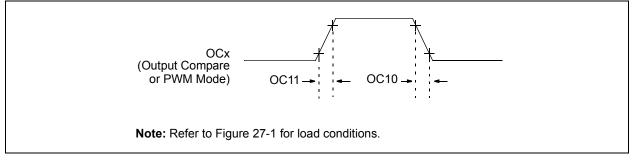
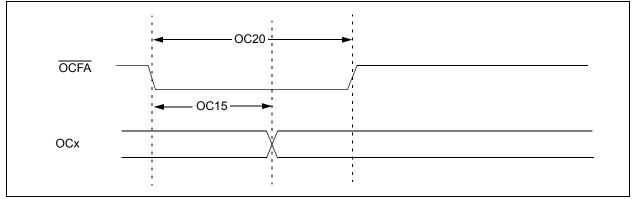


TABLE 27-25: INPUT CAPTURE TIMING REQUIREMENTS

AC CHARACTERISTICS			(unless otherwis	$\begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$							
Param No.	Symbol	Characte	ristic ⁽¹⁾	Min	Мах	Units	Conditions				
IC10	TccL	ICx Input Low Time	No Prescaler	0.5 Tcy + 20	_	ns					
			With Prescaler	10	—	ns					
IC11	TccH	ICx Input High Time	No Prescaler	0.5 Tcy + 20	—	ns					
			With Prescaler	10	_	ns					
IC15	TccP	ICx Input Period		(Tcy + 40)/N	—	ns	N = prescale value (1, 4, 16)				

Note 1: These parameters are characterized but not tested in manufacturing.

FIGURE 27-7: OUTPUT COMPARE MODULE (OCx) TIMING CHARACTERISTICS


TABLE 27-26: OUTPUT COMPARE MODULE TIMING REQUIREMENTS

			$\begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ & -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$						
Param No.	Symbol	Characteristic ⁽¹⁾	Min	Тур	Мах	Units	Conditions		
OC10	TccF	OCx Output Fall Time	—	— — ns See parameter D032					
OC11	TccR	OCx Output Rise Time	— — ns See parameter D031						

Note 1: These parameters are characterized but not tested in manufacturing.

^{© 2008} Microchip Technology Inc.

FIGURE 27-8: OC/PWM MODULE TIMING CHARACTERISTICS

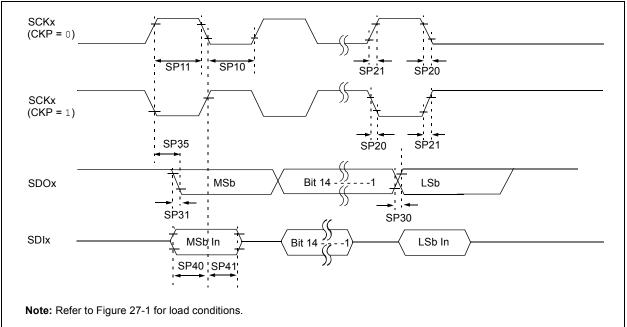
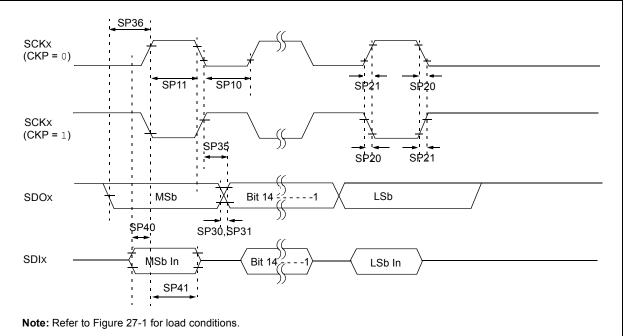


TABLE 27-27: SIMPLE OC/PWM MODE TIMING REQUIREMENTS

AC CHARACTERISTICS			$\begin{array}{llllllllllllllllllllllllllllllllllll$					
Param No.	Symbol	Characteristic ⁽¹⁾	Min Typ Max Units Conditions					
OC15	Tfd	Fault Input to PWM I/O Change	_	—	50	ns	_	
OC20	TFLT	Fault Input Pulse Width	50	—	—	ns	—	

Note 1: These parameters are characterized but not tested in manufacturing.

TABLE 27-28: SPIx MASTER MODE (CKE = 0) TIMING REQUIREMENTS

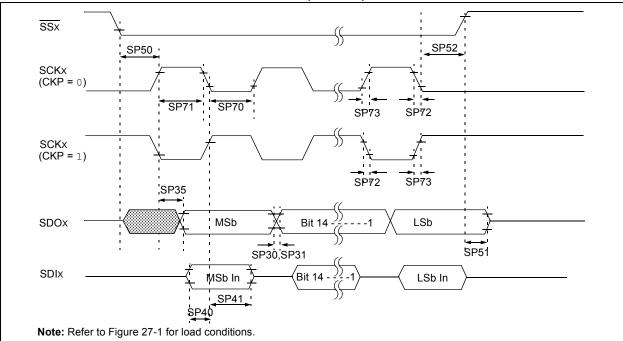

АС СНА	AC CHARACTERISTICS			$\begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ & -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$					
Param No.	Symbol	Characteristic ⁽¹⁾	Min Typ ⁽²⁾ Max Units Conditions						
SP10	TscL	SCKx Output Low Time	Tcy/2	_	_	ns	See Note 3		
SP11	TscH	SCKx Output High Time	Tcy/2	—	_	ns	See Note 3		
SP20	TscF	SCKx Output Fall Time	_	—	_	ns	See parameter D032 and Note 4		
SP21	TscR	SCKx Output Rise Time	—	—	_	ns	See parameter D031 and Note 4		
SP30	TdoF	SDOx Data Output Fall Time	—	—	_	ns	See parameter D032 and Note 4		
SP31	TdoR	SDOx Data Output Rise Time	—	—	_	ns	See parameter D031 and Note 4		
SP35	TscH2doV, TscL2doV	SDOx Data Output Valid after SCKx Edge	—	6	20	ns	—		
SP40	TdiV2scH, TdiV2scL	Setup Time of SDIx Data Input to SCKx Edge	23	—	_	ns	—		
SP41	TscH2diL, TscL2diL	Hold Time of SDIx Data Input to SCKx Edge	30	—		ns	—		

Note 1: These parameters are characterized but not tested in manufacturing.

2: Data in "Typ" column is at 3.3V, 25°C unless otherwise stated.

- **3:** The minimum clock period for SCKx is 100 ns. Therefore, the clock generated in Master mode must not violate this specification.
- 4: Assumes 50 pF load on all SPIx pins.

TABLE 27-29: SPIX MODULE MASTER MODE (CKE = 1) TIMING REQUIREMENTS

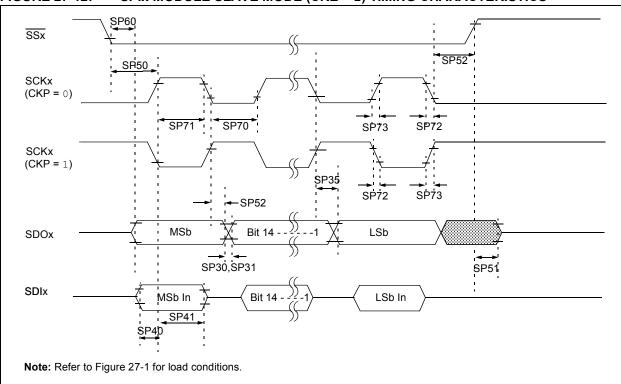

АС СНА	AC CHARACTERISTICS			$\begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ & -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$						
Param No.	Symbol	Characteristic ⁽¹⁾	Min	Тур ⁽²⁾	Max	Units	Conditions			
SP10	TscL	SCKx Output Low Time ⁽³⁾	Tcy/2	_	-	ns	See Note 3			
SP11	TscH	SCKx Output High Time ⁽³⁾	Tcy/2	_	_	ns	See Note 3			
SP20	TscF	SCKx Output Fall Time ⁽⁴⁾	—	—	_	ns	See parameter D032 and Note 4			
SP21	TscR	SCKx Output Rise Time ⁽⁴⁾	—	—	_	ns	See parameter D031 and Note 4			
SP30	TdoF	SDOx Data Output Fall Time ⁽⁴⁾	—	—	_	ns	See parameter D032 and Note 4			
SP31	TdoR	SDOx Data Output Rise Time ⁽⁴⁾	—	—	_	ns	See parameter D031 and Note 4			
SP35	TscH2doV, TscL2doV	SDOx Data Output Valid after SCKx Edge	—	6	20	ns	—			
SP36	TdoV2sc, TdoV2scL	SDOx Data Output Setup to First SCKx Edge	30	—	_	ns	—			
SP40	TdiV2scH, TdiV2scL	Setup Time of SDIx Data Input to SCKx Edge	23	_		ns	_			
SP41	TscH2diL, TscL2diL	Hold Time of SDIx Data Input to SCKx Edge	30			ns				

Note 1: These parameters are characterized but not tested in manufacturing.

2: Data in "Typ" column is at 3.3V, 25°C unless otherwise stated.

- **3:** The minimum clock period for SCKx is 100 ns. The clock generated in Master mode must not violate this specification.
- **4:** Assumes 50 pF load on all SPIx pins.

FIGURE 27-11: SPIX MODULE SLAVE MODE (CKE = 0) TIMING CHARACTERISTICS


TABLE 27-30: SPIX MODULE SLAVE MODE (CKE = 0) TIMING REQUIREMENTS

AC CHARACTERISTICS			$\begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$					
Param No.	Symbol	Characteristic ⁽¹⁾	Min	Тур ⁽²⁾	Мах	Units	Conditions	
SP70	TscL	SCKx Input Low Time	30	_	_	ns	—	
SP71	TscH	SCKx Input High Time	30	_	_	ns	—	
SP72	TscF	SCKx Input Fall Time ⁽³⁾	—	10	25	ns	See Note 3	
SP73	TscR	SCKx Input Rise Time ⁽³⁾	—	10	25	ns	See Note 3	
SP30	TdoF	SDOx Data Output Fall Time ⁽³⁾	—	—	_	ns	See parameter D032 and Note 3	
SP31	TdoR	SDOx Data Output Rise Time ⁽³⁾	—	—	_	ns	See parameter D031 and Note 3	
SP35	TscH2doV, TscL2doV	SDOx Data Output Valid after SCKx Edge	—	_	30	ns	—	
SP40	TdiV2scH, TdiV2scL	Setup Time of SDIx Data Input to SCKx Edge	20	_	_	ns	—	
SP41	TscH2diL, TscL2diL	Hold Time of SDIx Data Input to SCKx Edge	20	_	_	ns	—	
SP50	TssL2scH, TssL2scL	$\overline{SSx} \downarrow$ to SCKx \uparrow or SCKx Input	120	_	_	ns	_	
SP51	TssH2doZ	SSx ↑ to SDOx Output High-Impedance ⁽³⁾	10	—	50	ns	See Note 3	
SP52	TscH2ssH TscL2ssH	SSx after SCKx Edge	1.5 Tcy +40	—	_	ns	—	

Note 1: These parameters are characterized but not tested in manufacturing.

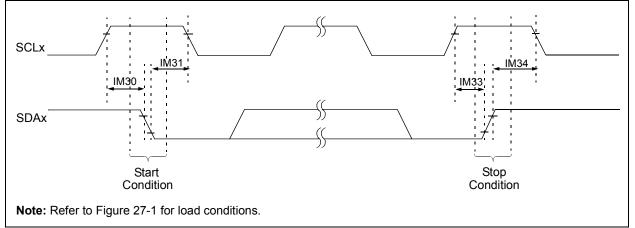
2: Data in "Typ" column is at 3.3V, 25°C unless otherwise stated.

3: Assumes 50 pF load on all SPIx pins.

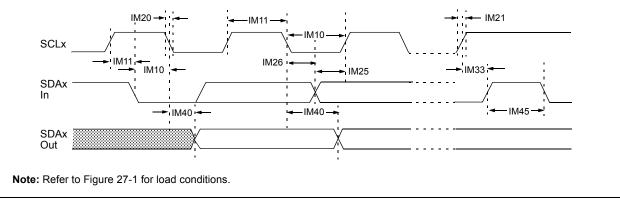
FIGURE 27-12: SPIX MODULE SLAVE MODE (CKE = 1) TIMING CHARACTERISTICS

AC CHARACTERISTICS			$\begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^\circ C \leq TA \leq +85^\circ C \mbox{ for Industrial} \\ & -40^\circ C \leq TA \leq +125^\circ C \mbox{ for Extended} \end{array}$					
Param No.	Symbol	Characteristic ⁽¹⁾	Min	Тур ⁽²⁾	Мах	Units	Conditions	
SP70	TscL	SCKx Input Low Time	30		_	ns	—	
SP71	TscH	SCKx Input High Time	30		_	ns	—	
SP72	TscF	SCKx Input Fall Time ⁽³⁾	_	10	25	ns	See Note 3	
SP73	TscR	SCKx Input Rise Time ⁽³⁾	—	10	25	ns	See Note 3	
SP30	TdoF	SDOx Data Output Fall Time ⁽³⁾	_		_	ns	See parameter D032 and Note 3	
SP31	TdoR	SDOx Data Output Rise Time ⁽³⁾	_	_	_	ns	See parameter D031 and Note 3	
SP35	TscH2doV, TscL2doV	SDOx Data Output Valid after SCKx Edge	—		30	ns	—	
SP40	TdiV2scH, TdiV2scL	Setup Time of SDIx Data Input to SCKx Edge	20	_	_	ns	_	
SP41	TscH2diL, TscL2diL	Hold Time of SDIx Data Input to SCKx Edge	20			ns	_	
SP50	TssL2scH, TssL2scL	$\overline{SSx} \downarrow$ to SCKx \downarrow or SCKx \uparrow Input	120	_	_	ns	_	
SP51	TssH2doZ	SSx ↑ to SDOx Output High-Impedance ⁽⁴⁾	10	_	50	ns	_	
SP52	TscH2ssH TscL2ssH	SSx ↑ after SCKx Edge	1.5 TCY + 40	_	_	ns	See Note 4	
SP60	TssL2doV	SDOx Data Output Valid after SSx Edge	—	—	50	ns	_	

TABLE 27-31: SPIX MODULE SLAVE MODE (CKE = 1) TIMING REQUIREMENTS


Note 1: These parameters are characterized but not tested in manufacturing.

2: Data in "Typ" column is at 3.3V, 25°C unless otherwise stated.


3: The minimum clock period for SCKx is 100 ns. The clock generated in Master mode must not violate this specification.

4: Assumes 50 pF load on all SPIx pins.

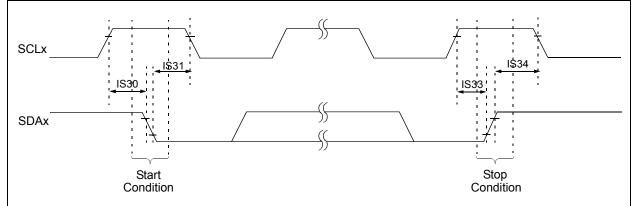
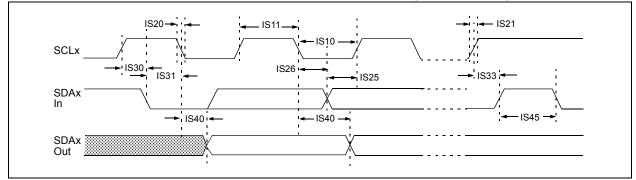
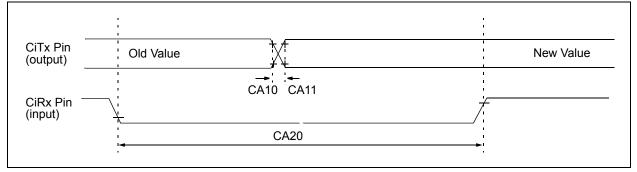

AC CHA	ARACTER	ISTICS		Standard Operatin (unless otherwise Operating tempera	stated) iture -40)°C ≤ Ta :	V to 3.6V ≤ +85°C for Industrial ; +125°C for Extended
Param No.	Symbol	Characteristic		Min ⁽¹⁾	Max	Units	Conditions
IM10	TLO:SCL	Clock Low Time	100 kHz mode	Tcy/2 (BRG + 1)	_	μs	_
			400 kHz mode	Tcy/2 (BRG + 1)	_	μS	_
			1 MHz mode ⁽²⁾	Tcy/2 (BRG + 1)		μs	—
IM11	THI:SCL	Clock High Time	100 kHz mode	Tcy/2 (BRG + 1)	_	μs	—
			400 kHz mode	Tcy/2 (BRG + 1)	_	μs	_
			1 MHz mode ⁽²⁾	Tcy/2 (BRG + 1)		μs	—
IM20	TF:SCL	SDAx and SCLx	100 kHz mode	_	300	ns	CB is specified to be
		Fall Time	400 kHz mode	20 + 0.1 Св	300	ns	from 10 to 400 pF
			1 MHz mode ⁽²⁾	_	100	ns	
IM21	TR:SCL	SDAx and SCLx	100 kHz mode	_	1000	ns	CB is specified to be
		Rise Time	400 kHz mode	20 + 0.1 Св	300	ns	from 10 to 400 pF
			1 MHz mode ⁽²⁾	_	300	ns	
IM25	TSU:DAT	Data Input	100 kHz mode	250		ns	—
		Setup Time	400 kHz mode	100	_	ns	
			1 MHz mode ⁽²⁾	40	_	ns	
IM26	THD:DAT	Data Input Hold Time	100 kHz mode	0		μs	—
			400 kHz mode	0	0.9	μs	
			1 MHz mode ⁽²⁾	0.2	_	μs	
IM30	TSU:STA	Start Condition Setup Time	100 kHz mode	Tcy/2 (BRG + 1)	_	μs	Only relevant for Repeated Start
			400 kHz mode	Tcy/2 (BRG + 1)		μs	
			1 MHz mode ⁽²⁾	Tcy/2 (BRG + 1)	_	μs	condition
IM31	THD:STA	Start Condition	100 kHz mode	Tcy/2 (BRG + 1)	_	μs	After this period the
		Hold Time	400 kHz mode	Tcy/2 (BRG + 1)		μs	first clock pulse is
			1 MHz mode ⁽²⁾	Tcy/2 (BRG + 1)	_	μs	generated
IM33	Tsu:sto	Stop Condition	100 kHz mode	Tcy/2 (BRG + 1)	_	μs	—
		Setup Time	400 kHz mode	Tcy/2 (BRG + 1)	_	μs	
			1 MHz mode ⁽²⁾	Tcy/2 (BRG + 1)	—	μS	
IM34	THD:STO	Stop Condition	100 kHz mode	Tcy/2 (BRG + 1)	_	ns	—
		Hold Time	400 kHz mode	Tcy/2 (BRG + 1)	_	ns	
			1 MHz mode ⁽²⁾	Tcy/2 (BRG + 1)	—	ns	
IM40	TAA:SCL	Output Valid	100 kHz mode		3500	ns	_
		From Clock	400 kHz mode		1000	ns	_
			1 MHz mode ⁽²⁾		400	ns	
IM45	TBF:SDA	Bus Free Time	100 kHz mode	4.7		μs	Time the bus must be
			400 kHz mode	1.3		μs	free before a new
			1 MHz mode ⁽²⁾	0.5		μs	transmission can star
IM50	Св	Bus Capacitive L	oading		400	pF	

TABLE 27-32: I2Cx BUS DATA TIMING REQUIREMENTS (MASTER MODE)


Note 1: BRG is the value of the I²C Baud Rate Generator. Refer to Section 19. "Inter-Integrated Circuit (I²C[™])" in the "*PIC24H Family Reference Manual*". Please see the Microchip website (www.microchip.com) for the latest PIC24H Family Reference Manual chapters.

^{2:} Maximum pin capacitance = 10 pF for all I2Cx pins (for 1 MHz mode only).

FIGURE 27-16: I2Cx BUS DATA TIMING CHARACTERISTICS (SLAVE MODE)



AC CHA	RACTERI	STICS		Standard Op (unless other Operating ten	rwise sta	ated) e -40°C	bns: 3.0V to 3.6V $C \le TA \le +85^{\circ}C$ for Industrial $C \le TA \le +125^{\circ}C$ for Extended
Param.	Symbol	Charac	Min	Max	Units	Conditions	
IS10	TLO:SCL	Clock Low Time	100 kHz mode	4.7	—	μS	Device must operate at a minimum of 1.5 MHz
			400 kHz mode	1.3	—	μS	Device must operate at a minimum of 10 MHz
			1 MHz mode ⁽¹⁾	0.5		μs	—
IS11	THI:SCL	Clock High Time	100 kHz mode	4.0	—	μS	Device must operate at a minimum of 1.5 MHz
			400 kHz mode	0.6	_	μS	Device must operate at a minimum of 10 MHz
			1 MHz mode ⁽¹⁾	0.5		μS	_
IS20	TF:SCL	SDAx and SCLx	100 kHz mode	_	300	ns	CB is specified to be from
		Fall Time	400 kHz mode	20 + 0.1 Св	300	ns	10 to 400 pF
			1 MHz mode ⁽¹⁾	—	100	ns	
IS21	TR:SCL	SDAx and SCLx	100 kHz mode	—	1000	ns	CB is specified to be from
		Rise Time	400 kHz mode	20 + 0.1 Св	300	ns	10 to 400 pF
			1 MHz mode ⁽¹⁾		300	ns	
IS25	TSU:DAT	Data Input	100 kHz mode	250		ns	_
		Setup Time	400 kHz mode	100		ns	
			1 MHz mode ⁽¹⁾	100		ns	
IS26	THD:DAT	Data Input	100 kHz mode	0		μS	_
		Hold Time	400 kHz mode	0	0.9	μs	
			1 MHz mode ⁽¹⁾	0	0.3	μs	
IS30	TSU:STA	Start Condition	100 kHz mode	4.7		μs	Only relevant for Repeated
		Setup Time	400 kHz mode	0.6		μS	Start condition
			1 MHz mode ⁽¹⁾	0.25		μS	
IS31	THD:STA	Start Condition	100 kHz mode	4.0		μs	After this period, the first
		Hold Time	400 kHz mode	0.6	—	μs	clock pulse is generated
			1 MHz mode ⁽¹⁾	0.25	—	μS	
IS33	TSU:STO	Stop Condition	100 kHz mode	4.7	—	μS	
		Setup Time	400 kHz mode	0.6	—	μS	
			1 MHz mode ⁽¹⁾	0.6	—	μS	
IS34	THD:ST	Stop Condition	100 kHz mode	4000		ns	—
	0	Hold Time	400 kHz mode	600		ns	
			1 MHz mode ⁽¹⁾	250		ns	
IS40	TAA:SCL	Output Valid	100 kHz mode	0	3500	ns	—
		From Clock	400 kHz mode	0	1000	ns	
			1 MHz mode ⁽¹⁾	0	350	ns	
IS45	TBF:SDA	Bus Free Time	100 kHz mode	4.7		μS	Time the bus must be free
			400 kHz mode	1.3		μS	before a new transmission can start
			1 MHz mode ⁽¹⁾	0.5	_	μS	
IS50	Св	Bus Capacitive Lo	ading	<u> </u>	400	pF	<u> </u>

TABLE 27-33:	I2Cx BUS DATA	TIMING REQUIREMENTS	(SLAVE MODE)

Note 1: Maximum pin capacitance = 10 pF for all I2Cx pins (for 1 MHz mode only).

FIGURE 27-17: ECAN[™] MODULE I/O TIMING CHARACTERISTICS

TABLE 27-34: ECAN™ MODULE I/O TIMING REQUIREMENTS

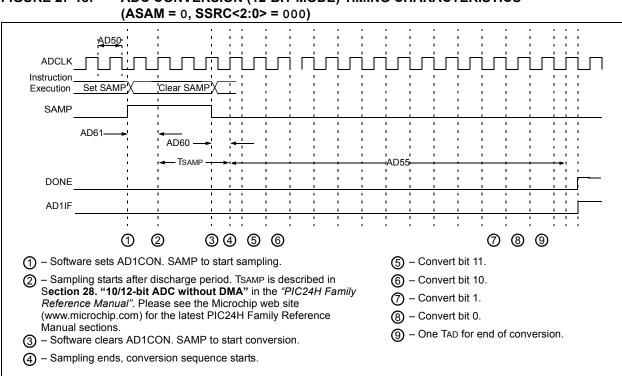
			$\begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature } -40^\circ C \leq TA \leq +85^\circ C \mbox{ for Industrial} \\ -40^\circ C \leq TA \leq +125^\circ C \mbox{ for Extended} \end{array}$					
Param No.	Symbol	Characteristic ⁽¹⁾	Min Typ ⁽²⁾ Max Units Conditions					
CA10	TioF	Port Output Fall Time	—	_		ns	See parameter D032	
CA11	TioR	Port Output Rise Time	— — — ns See parameter D0				See parameter D031	
CA20	Tcwf	Pulse Width to Trigger CAN Wake-up Filter	120 ns —				_	

Note 1: These parameters are characterized but not tested in manufacturing.

2: Data in "Typ" column is at 3.3V, 25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

AC CHA	ARACTER	RISTICS	$\begin{tabular}{lllllllllllllllllllllllllllllllllll$										
Param No.	Symbol	Characteristic	Min. Typ Max. Units			Units	Conditions						
	Device Supply												
AD01	AVDD	Module VDD Supply	Greater of VDD – 0.3 or 3.0	—	Lesser of VDD + 0.3 or 3.6	V	_						
AD02	AVss	Module Vss Supply	Vss – 0.3		Vss + 0.3	V	—						
			Reference	Inputs									
AD05	VREFH	Reference Voltage High	AVss + 2.7	—	AVdd	V	See Note 1						
AD05a			3.0		3.6	V	Vrefh = AVdd Vrefl = AVss = 0						
AD06	VREFL	Reference Voltage Low	AVss		AVDD – 2.7	V	See Note 1						
AD06a			0		0	V	Vrefh = AVdd Vrefl = AVss = 0						
AD07	VREF	Absolute Reference Voltage	2.7		3.6	V	VREF = VREFH - VREFL						
AD08	IREF	Current Drain	—	400	550 10	μΑ μΑ	ADC operating ADC off						
			Analog I	nput									
AD12	VINH	Input Voltage Range Vінн	Vinl	_	Vrefh	V	This voltage reflects Sample and Hold Channels 0, 1, 2, and 3 (CH0-CH3), positive input						
AD13	VINL	Input Voltage Range Vın∟	VREFL		AVss + 1V	V	This voltage reflects Sample and Hold Channels 0, 1, 2, and 3 (CH0-CH3), negative input						
AD17	Rin	Recommended Impedance of Analog Voltage Source			200 200	Ω Ω	10-bit ADC 12-bit ADC						

TABLE 27-35: ADC MODULE SPECIFICATIONS


Note 1: These parameters are not characterized or tested in manufacturing.

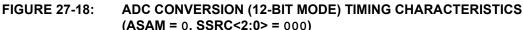

АС СНА	RACTERIS	TICS	$\begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ & -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$						
Param No.	Symbol	Characteristic	Min.	Тур	Max.	Units	Conditions		
		ADC Accuracy (12-bit Mode	e) – Meas	uremen	ts with e	xternal	VREF+/VREF-		
AD20a	Nr	Resolution	12 data bits		bits				
AD21a	INL	Integral Nonlinearity	-2		+2	LSb	Vinl = AVss = Vrefl = 0V, AVdd = Vrefh = 3.6V		
AD22a	DNL	Differential Nonlinearity	>-1	_	<1	LSb	VINL = AVSS = VREFL = 0V, AVDD = VREFH = 3.6V		
AD23a	Gerr	Gain Error	1.25	1.5	3	LSb	Vinl = AVss = Vrefl = 0V, AVdd = Vrefh = 3.6V		
AD24a	EOFF	Offset Error	1.25	1.52	2	LSb	Vinl = AVss = Vrefl = 0V, AVdd = Vrefh = 3.6V		
AD25a	—	Monotonicity		-	_		Guaranteed		
		ADC Accuracy (12-bit Mode	e) – Meas	uremen	ts with ir	nternal V	VREF+/VREF-		
AD20a	Nr	Resolution	1:	2 data bi	ts	bits			
AD21a	INL	Integral Nonlinearity	-2		+2	LSb	VINL = AVSS = 0V, AVDD = 3.6V		
AD22a	DNL	Differential Nonlinearity	>-1		<1	LSb	VINL = AVSS = 0V, AVDD = 3.6V		
AD23a	Gerr	Gain Error	2	3	7	LSb	VINL = AVSS = 0V, AVDD = 3.6V		
AD24a	EOFF	Offset Error	2	3	5	LSb	VINL = AVSS = 0V, AVDD = 3.6V		
AD25a	—	Monotonicity	_	_	_	—	Guaranteed		
		Dynamic I	Performa	nce (12	-bit Mode	e)			
AD30a	THD	Total Harmonic Distortion	-77	-69	-61	dB			
AD31a	SINAD	Signal to Noise and Distortion	59	63	64	dB	_		
AD32a	SFDR	Spurious Free Dynamic Range	63	72	74	dB	_		
AD33a	Fnyq	Input Signal Bandwidth		_	250	kHz	—		
AD34a	ENOB	Effective Number of Bits	10.95	11.1		bits	—		

TABLE 27-36: ADC MODULE SPECIFICATIONS (12-BIT MODE)

АС СНА	RACTERIS	TICS	$\begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ & -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$						
Param No.	Symbol	Characteristic	Min.	Тур	Max.	Units	Conditions		
		ADC Accuracy (10-bit Mode	e) – Meas	uremen	ts with e	xternal	VREF+/VREF-		
AD20b	Nr	Resolution	1	0 data bi	its	bits			
AD21b	INL	Integral Nonlinearity	-1.5	—	+1.5	LSb	Vinl = AVss = Vrefl = 0V, AVdd = Vrefh = 3.6V		
AD22b	DNL	Differential Nonlinearity	>-1	-	<1	LSb	Vinl = AVss = Vrefl = 0V, AVdd = Vrefh = 3.6V		
AD23b	Gerr	Gain Error	1	3	6	LSb	Vinl = AVss = Vrefl = 0V, AVdd = Vrefh = 3.6V		
AD24b	EOFF	Offset Error	1	2	5	LSb	Vinl = AVss = Vrefl = 0V, AVdd = Vrefh = 3.6V		
AD25b	—	Monotonicity	—	_	—	_	Guaranteed		
		ADC Accuracy (10-bit Mode	e) – Meas	uremen	its with i	nternal V	VREF+/VREF-		
AD20b	Nr	Resolution	1	0 data bi	its	bits			
AD21b	INL	Integral Nonlinearity	-1	—	+1	LSb	VINL = AVSS = 0V, AVDD = 3.6V		
AD22b	DNL	Differential Nonlinearity	>-1	_	<1	LSb	VINL = AVSS = 0V, AVDD = 3.6V		
AD23b	Gerr	Gain Error	1	5	6	LSb	VINL = AVSS = 0V, AVDD = 3.6V		
AD24b	EOFF	Offset Error	1	2	3	LSb	VINL = AVSS = 0V, AVDD = 3.6V		
AD25b	—	Monotonicity	—	—	—		Guaranteed		
		Dynamic	Performa	ance (10	-bit Mod	e)			
AD30b	THD	Total Harmonic Distortion		-64	-67	dB	—		
AD31b	SINAD	Signal to Noise and Distortion	—	57	58	dB	_		
AD32b	SFDR	Spurious Free Dynamic Range	—	60	62	dB	_		
AD33b	Fnyq	Input Signal Bandwidth		—	550	kHz			
AD34b	ENOB	Effective Number of Bits	9.1	9.7	9.8	bits			

TABLE 27-37: ADC MODULE SPECIFICATIONS (10-BIT MODE)

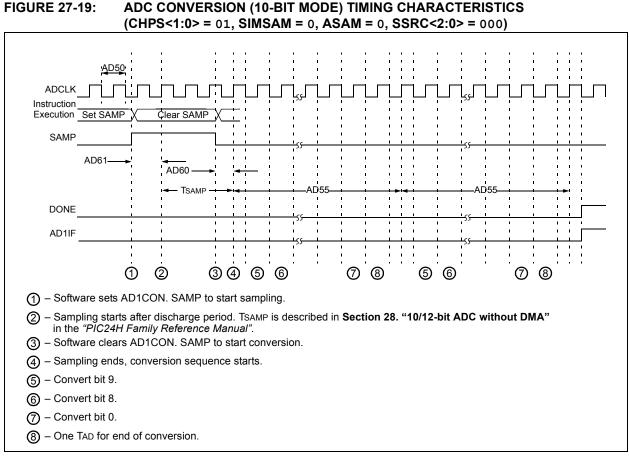
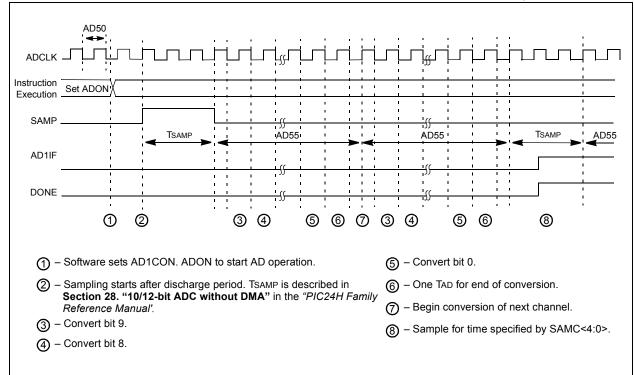

AC CHARACTERISTICS			$\begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ & -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$									
Param No.	Symbol	Characteristic	Min.	Тур ⁽²⁾	Max.	Units	Conditions					
	Clock Parameters ⁽¹⁾											
AD50	Tad	ADC Clock Period	117.6			ns						
AD51	tRC	ADC Internal RC Oscillator Period	—	250		ns						
Conversion Rate												
AD55	tCONV	Conversion Time	_	14 Tad		ns						
AD56	FCNV	Throughput Rate	—	_	500	Ksps						
AD57	TSAMP	Sample Time	3 Tad	—		—						
		Timir	ng Parame	eters								
AD60	tPCS	Conversion Start from Sample Trigger ⁽²⁾	2 Tad		3 Tad		Auto convert trigger not selected					
AD61	tPSS	Sample Start from Setting Sample (SAMP) bit ⁽²⁾	2 Tad	—	3 Tad		_					
AD62	tcss	Conversion Completion to Sample Start (ASAM = 1) ⁽²⁾	—	0.5 Tad		_	—					
AD63	tdpu	Time to Stabilize Analog Stage from ADC Off to ADC On ^(2,3)			20	μS	_					

TABLE 27-38: ADC CONVERSION (12-BIT MODE) TIMING REQUIREMENTS


Note 1: Because the sample caps eventually loses charge, clock rates below 10 kHz may affect linearity performance, especially at elevated temperatures.

2: These parameters are characterized but not tested in manufacturing.

3: The tDPU is the time required for the ADC module to stabilize at the appropriate level when the module is turned on (ADxCON1<ADON>='1'). During this time, the ADC result is indeterminate.

FIGURE 27-20: ADC CONVERSION (10-BIT MODE) TIMING CHARACTERISTICS (CHPS<1:0> = 01, SIMSAM = 0, ASAM = 1, SSRC<2:0> = 111, SAMC<4:0> = 00001)

TABLE 27-39: ADC CONVERSION (10-BIT MODE) TIMING REQUIREMENTS

АС СН	ARACTE	RISTICS	$\begin{tabular}{lllllllllllllllllllllllllllllllllll$							
Param No.	Symbol	Characteristic	Min.	Min. Typ ⁽¹⁾ Max. Units Condi						
Clock Parameters										
AD50	TAD	ADC Clock Period	76			ns				
AD51	tRC	ADC Internal RC Oscillator Period		250	_	ns				
Conversion Rate										
AD55	tCONV	Conversion Time	_	12 Tad	_	_				
AD56	FCNV	Throughput Rate		_	1.1	Msps				
AD57	TSAMP	Sample Time	2 Tad	—	—	_				
		Timin	g Param	eters						
AD60	tPCS	Conversion Start from Sample Trigger ⁽¹⁾	2 Tad	_	3 Tad		Auto-Convert Trigger not selected			
AD61	tPSS	Sample Start from Setting Sample (SAMP) bit ⁽¹⁾	2 Tad	_	3 Tad	_	_			
AD62	tcss	Conversion Completion to Sample Start (ASAM = 1) ⁽¹⁾	—	0.5 Tad	—	_	—			
AD63	tdpu	Time to Stabilize Analog Stage from ADC Off to ADC On ^(1,3)			20	μS	—			

Note 1: These parameters are characterized but not tested in manufacturing.

2: Because the sample caps eventually loses charge, clock rates below 10 kHz may affect linearity performance, especially at elevated temperatures.

3: The tDPU is the time required for the ADC module to stabilize at the appropriate level when the module is turned on (ADxCON1<ADON>='1'). During this time, the ADC result is indeterminate.

TABLE 27-40: COMPARATOR TIMING SPECIFICATIONS

АС СНА	RACTERIS	TICS	(unless	otherw	Deperating Conditions: 3.0V to 3.6Vherwise stated)cemperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial $-40^{\circ}C \le TA \le +125^{\circ}C$ for Extended			
Param No.	Symbol	Characteristic	Min.	Тур	Max.	Units	Conditions	
300	TRESP	Response Time ^(1,2)	_	150	400	ns		
301	Тмс2о∨	Comparator Mode Change to Output Valid ⁽¹⁾	—	_	10	μS		

Note 1: Parameters are characterized but not tested.

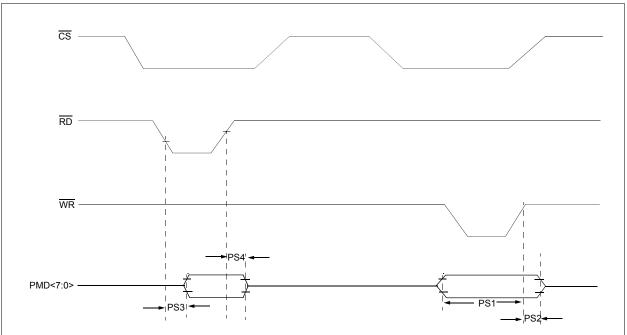
2: Response time measured with one comparator input at (VDD - 1.5)/2, while the other input transitions from Vss to VDD.

DC CHA		STICS	Standard Operating Conditions: 3.0V to 3.6V(unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for In $-40^{\circ}C \le TA \le +125^{\circ}C$ for Estimation			+85°C for Industrial	
Param No.	Symbol	Characteristic	Min. Typ Max. Units Conditions				
D300	VIOFF	Input Offset Voltage ⁽¹⁾	_	±10	—	mV	
D301	VICM	Input Common Mode Voltage ⁽¹⁾	0	_	AVDD-1.5V	V	
D302	CMRR	Common Mode Rejection Ratio ⁽¹⁾	-54		—	dB	

TABLE 27-41: COMPARATOR MODULE SPECIFICATIONS

Note 1: Parameters are characterized but not tested.


TABLE 27-42: COMPARATOR REFERENCE VOLTAGE SETTLING TIME SPECIFICATIONS


AC CHARACTERISTICS			$\begin{tabular}{lllllllllllllllllllllllllllllllllll$					
Param No.	Symbol	Characteristic	Min. Typ Max. Units Conditions					
VR310	TSET	Settling Time ⁽¹⁾	— — 10 μs					

Note 1: Setting time measured while CVRR = 1 and CVR3:CVR0 bits transition from '0000' to '1111'.

TABLE 27-43: COMPARATOR REFERENCE VOLTAGE SPECIFICATIONS

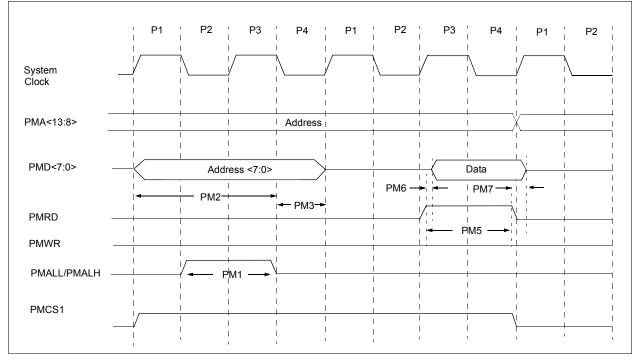

DC CHAI	RACTERIS	TICS	Standard Operating Conditions: 3.0V to 3.6V(unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial $-40^{\circ}C \le TA \le +125^{\circ}C$ for Extended				
Param No.	Symbol	Characteristic	Min. Typ Max. Units Conditions				
VRD310	CVRES	Resolution	CVRSRC/24 — CVRSRC/32 LSb				
VRD311	CVRAA	Absolute Accuracy	— — 0.5 LSb				
VRD312	CVRur	Unit Resistor Value (R)	—	2k	_	Ω	

TABLE 27-44: SETTING TIME SPECIFICATIONS	ABLE 27-44:
--	-------------

			Standard Operating Conditions: 3.0V to 3.6V(unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industr $-40^{\circ}C \le TA \le +125^{\circ}C$ for Extended				85°C for Industrial
Param No.	Symbol	Characteristic	Min. Typ Max. Units Condit				Conditions
PS1	TdtV2wrH	Data in Valid before WR or CS Inactive (setup time)	20	_	_	ns	
PS2	TwrH2dtl	$\overline{\text{WR}}$ or $\overline{\text{CS}}$ Inactive to Data-In Invalid (hold time)	20	—	_	ns	
PS3	TrdL2dtV	RD and CS to Active Data-Out	—	_	80	ns	
PS4	TrdH2dtl	RD Active or CS Inactive to Data-Out Invalid	10	—	30	ns	

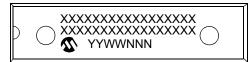
FIGURE 27-22: PARALLEL MASTER PORT READ TIMING DIAGRAM

TABLE 27-45: PARALLEL MASTER PORT READ TIMING REQUIREMENTS

АС СНА	ARACTERISTICS	(unless oth	erwise stat	ted) -40°C ≤	onditions: 3.0V to 3.6V ed) -40°C ≤ TA ≤ +85°C for Industri -40°C ≤ TA ≤ +125°C for Extend		
Param No.	Characteristic		Тур	Max.	Units	Conditions	
PM1	PMALL/PMALH Pulse Width	_	0.5 TCY	_	ns		
PM2	Address Out Valid to PMALL/PMALH Invalid (address setup time)	—	0.75 TCY	—	ns		
PM3	PMALL/PMALH Invalid to Address Out Invalid (address hold time)	—	0.25 TCY	_	ns		
PM5	PMRD Pulse Width	_	0.5 TCY		ns		
PM6	PMRD or PMENB Active to Data In Valid (data setup time)	—	—	_	ns		
PM7	PMRD or PMENB Inactive to Data In Invalid (data hold time)	—	—		ns		

PIC24HJ32GP302/304, PIC24HJ64GPX02/X04, AND PIC24HJ128GPX02/X04

FIGURE 27-23: PARALLEL MASTER PORT WRITE TIMING DIAGRAM


TABLE 27-46: PARALLEL MASTER PORT WRITE TIMING REQUIREMENTS

АС СНА	ARACTERISTICS	TICS Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Ir $-40^{\circ}C \le TA \le +125^{\circ}C$ for E			5°C for Industrial	
Param No.	Characteristic	Characteristic Min. Typ			Units	Conditions
PM11	PMWR Pulse Width	—	0.5 TCY		ns	
PM12	Data Out Valid before PMWR or PMENB goes Inactive (data setup time)	—	—	_	ns	
PM13	PMWR or PMEMB Invalid to Data Out Invalid (data hold time)	—	—	_	ns	
PM16	PMCSx Pulse Width	TCY - 5	—	—	ns	

NOTES:

28.0 PACKAGING INFORMATION

28-Lead SPDIP

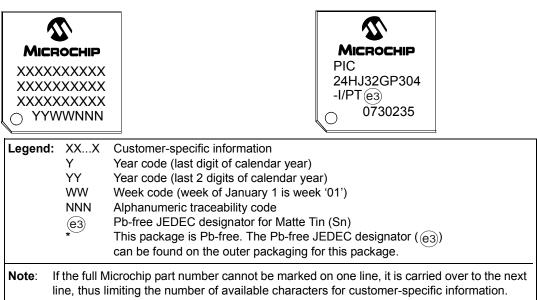
28-Lead SOIC (.300")

28-Lead QFN-S

44-Lead QFN

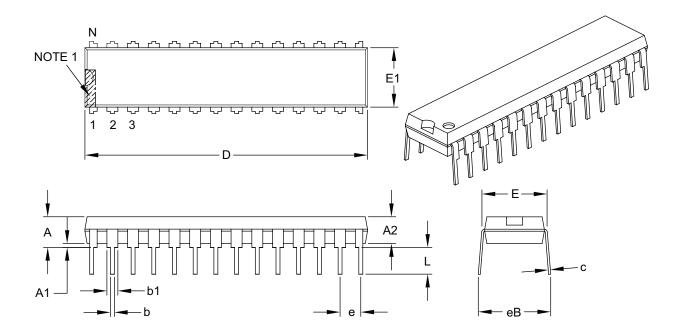
44-Lead TQFP

Example


Example

Example

Example



© 2008 Microchip Technology Inc.

28.1 Package Details

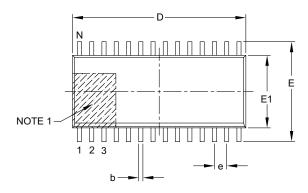
28-Lead Skinny Plastic Dual In-Line (SP) – 300 mil Body [SPDIP]

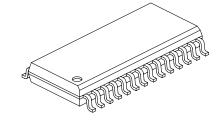
Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

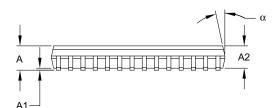
	Units						
Dimensior	Dimension Limits			MAX			
Number of Pins	Ν		28				
Pitch	е		.100 BSC				
Top to Seating Plane	Α	-	-	.200			
Molded Package Thickness	A2	.120	.135	.150			
Base to Seating Plane	A1	.015	-	-			
Shoulder to Shoulder Width	E	.290	.310	.335			
Molded Package Width	E1	.240	.285	.295			
Overall Length	D	1.345	1.365	1.400			
Tip to Seating Plane	L	.110	.130	.150			
Lead Thickness	С	.008	.010	.015			
Upper Lead Width	b1	.040	.050	.070			
Lower Lead Width	b	.014	.018	.022			
Overall Row Spacing §	eB	_	_	.430			

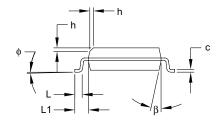
Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.


- 2. § Significant Characteristic.
- 3. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010" per side.
- 4. Dimensioning and tolerancing per ASME Y14.5M.


BSC: Basic Dimension. Theoretically exact value shown without tolerances.


Microchip Technology Drawing C04-070B


28-Lead Plastic Small Outline (SO) – Wide, 7.50 mm Body [SOIC]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

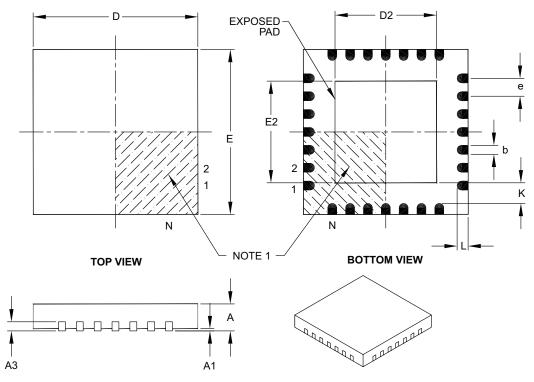
	Units	MILLMETERS				
	Dimension Limits			MAX		
Number of Pins	N	28				
Pitch	е	1.27 BSC				
Overall Height	A	-	-	2.65		
Molded Package Thickness	A2	2.05	-	-		
Standoff §	A1	0.10	-	0.30		
Overall Width	E	10.30 BSC				
Molded Package Width	E1	7.50 BSC				
Overall Length	D	17.90 BSC				
Chamfer (optional)	h	0.25	-	0.75		
Foot Length	L	0.40	-	1.27		
Footprint	L1		1.40 REF			
Foot Angle Top	φ	0°	-	8°		
Lead Thickness	С	0.18 – 0.33				
Lead Width	b	0.31	-	0.51		
Mold Draft Angle Top	α	5°	-	15°		
Mold Draft Angle Bottom	β	5°	_	15°		

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. § Significant Characteristic.

3. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.15 mm per side.


- 4. Dimensioning and tolerancing per ASME Y14.5M.
 - BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-052B

28-Lead Plastic Quad Flat, No Lead Package (MM) – 6x6x0.9 mm Body [QFN-S] with 0.40 mm Contact Length

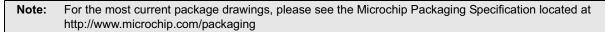
Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

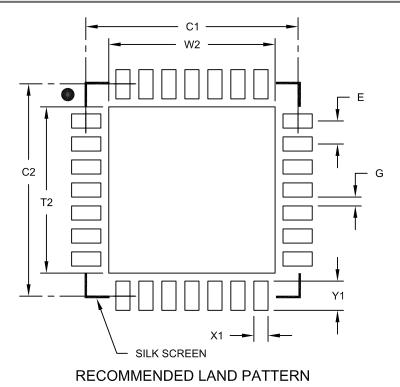
	Units	MILLIMETERS		
Dimensio	Dimension Limits		NOM	MAX
Number of Pins	Ν	28		
Pitch	е	0.65 BSC		
Overall Height	Α	0.80	0.90	1.00
Standoff	A1	0.00	0.02	0.05
Contact Thickness	A3	0.20 REF		
Overall Width	Е	6.00 BSC		
Exposed Pad Width	E2	3.65	3.70	4.70
Overall Length	D	6.00 BSC		
Exposed Pad Length	D2	3.65	3.70	4.70
Contact Width	b	0.23	0.38	0.43
Contact Length	L	0.30	0.40	0.50
Contact-to-Exposed Pad	К	0.20	-	-

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Package is saw singulated.


3. Dimensioning and tolerancing per ASME Y14.5M.


BSC: Basic Dimension. Theoretically exact value shown without tolerances.

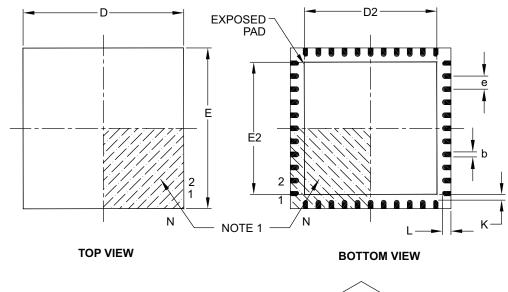
REF: Reference Dimension, usually without tolerance, for information purposes only.

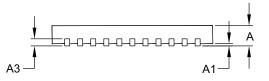
Microchip Technology Drawing C04-124B

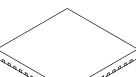
28-Lead Plastic Quad Flat, No Lead Package (MM) – 6x6x0.9 mm Body [QFN-S] with 0.40 mm Contact Length

Units		MILLIMETERS			
Dimension Limits		MIN	NOM	MAX	
Contact Pitch	E	0.65 BSC			
Optional Center Pad Width	W2			4.70	
Optional Center Pad Length	T2			4.70	
Contact Pad Spacing	C1		6.00		
Contact Pad Spacing	C2		6.00		
Contact Pad Width (X28)	X1			0.40	
Contact Pad Length (X28)	Y1			0.85	
Distance Between Pads	G	0.25			

Notes:


1. Dimensioning and tolerancing per ASME Y14.5M


BSC: Basic Dimension. Theoretically exact value shown without tolerances.


Microchip Technology Drawing No. C04-2124A

44-Lead Plastic Quad Flat, No Lead Package (ML) – 8x8 mm Body [QFN]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

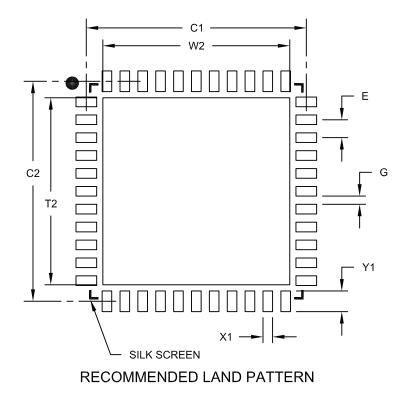
	Units		MILLIMETERS		
D	Dimension Limits		NOM	MAX	
Number of Pins	N	44			
Pitch	е	0.65 BSC			
Overall Height	А	0.80	0.90	1.00	
Standoff	A1	0.00	0.02	0.05	
Contact Thickness	A3	0.20 REF			
Overall Width	E	8.00 BSC			
Exposed Pad Width	E2	6.30	6.45	6.80	
Overall Length	D	8.00 BSC			
Exposed Pad Length	D2	6.30	6.45	6.80	
Contact Width	b	0.25	0.30	0.38	
Contact Length	L	0.30	0.40	0.50	
Contact-to-Exposed Pad	К	0.20	-	-	

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Package is saw singulated.

3. Dimensioning and tolerancing per ASME Y14.5M.


BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

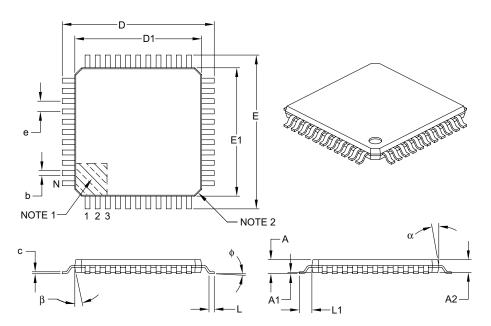
Microchip Technology Drawing C04-103B

44-Lead Plastic Quad Flat, No Lead Package (ML) – 8x8 mm Body [QFN]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Units		MILLIMETERS			
Dimension Limits		MIN	NOM	MAX	
Contact Pitch			0.65 BSC		
Optional Center Pad Width	W2			6.80	
Optional Center Pad Length	T2			6.80	
Contact Pad Spacing	C1		8.00		
Contact Pad Spacing	C2		8.00		
Contact Pad Width (X44)	X1			0.35	
Contact Pad Length (X44)	Y1			0.80	
Distance Between Pads	G	0.25			

Notes:


1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2103A

44-Lead Plastic Thin Quad Flatpack (PT) – 10x10x1 mm Body, 2.00 mm Footprint [TQFP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

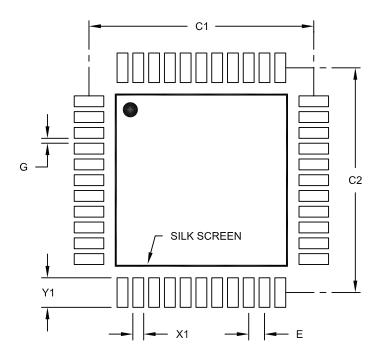
Units		MILLIMETERS		
Dimension Limits		MIN	NOM	MAX
Number of Leads	N	44		
Lead Pitch	е		0.80 BSC	
Overall Height	A	-	-	1.20
Molded Package Thickness	A2	0.95	1.00	1.05
Standoff	A1	0.05	-	0.15
Foot Length	L	0.45	0.60	0.75
Footprint	L1	1.00 REF		
Foot Angle	¢	0°	3.5°	7°
Overall Width	E	12.00 BSC		
Overall Length	D	12.00 BSC		
Molded Package Width	E1	10.00 BSC		
Molded Package Length	D1	10.00 BSC		
Lead Thickness	С	0.09	-	0.20
Lead Width	b	0.30	0.37	0.45
Mold Draft Angle Top	α	11°	12°	13°
Mold Draft Angle Bottom	β	11°	12°	13°

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Chamfers at corners are optional; size may vary.

3. Dimensions D1 and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.25 mm per side.


- 4. Dimensioning and tolerancing per ASME Y14.5M.
 - BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-076B

44-Lead Plastic Thin Quad Flatpack (PT) – 10x10x1 mm Body, 2.00 mm [TQFP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

RECOMMENDED LAND PATTERN

Units		MILLIMETERS		
Dimension Limits		MIN	NOM	MAX
Contact Pitch E		0.80 BSC		
Contact Pad Spacing	C1		11.40	
Contact Pad Spacing	C2		11.40	
Contact Pad Width (X44)	X1			0.55
Contact Pad Length (X44)	Y1			1.50
Distance Between Pads	G	0.25		

Notes:

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2076A

^{1.} Dimensioning and tolerancing per ASME Y14.5M

NOTES:

APPENDIX A: REVISION HISTORY

Revision A (September 2007)

Initial release of this document.

Revision B (March 2008)

This revision includes minor typographical and formatting changes throughout the data sheet text. In addition, redundant information was removed that is now available in the respective chapters of the *PIC24H Family Reference Manual*, which can be obtained from the Microchip website (www.microchip.com).

The major changes are referenced by their respective section in the following table.

Section Name	Update Description		
"High-Performance, 16-bit Microcontrollers"	Note 1 added to all pin diagrams (see "Pin Diagrams")		
	Updated the "PIC24HJ32GP302/304, PIC24HJ64GPX02/X04, and PIC24HJ128GPX02/X04 Controller Families " table as follows:		
	PIC24HJ128GP804 changed to PIC24HJ128GP504		
	 PIC24HJ128GP804 changed to PIC24HJ128GP504 		
	Added new column: External Interrupts		
	Added Note 3		
Section 1.0 "Device Overview"	Updated parameters PMA0, PMA1, and PMD0 through PMPD7 (Table 1-1)		
Section 6.0 "Interrupt Controller"	IFS0-IFSO4 changed to IFSx (see Section 6.3.2 "IFSx")		
	IEC0-IEC4 changed to IECx (see Section 6.3.3 "IECx")		
	IPC0-IPC19 changed to IPCx (see Section 6.3.4 "IPCx")		
Section 7.0 "Direct Memory Access (DMA)"	Updated parameter PMP (see Table 7-1)		
Section 8.0 "Oscillator Configuration"	Updated the third clock source item (External Clock) in Section 8.1.1 "System Clock Sources"		
	Updated TUN<5:0> (OSCTUN<5:0>) bit description (see Register 8-4)		
Section 19.0 "10-bit/12-bit Analog-to-Digital Converter (ADC1)"	Added Note 2 to Figure 19-3		
Section 24.0 "Special Features"	Added Note 2 to Figure 24-1		
	Added Note after second paragraph in Section 24.2 "On-Chip Voltage Regulator"		

TABLE A-1: MAJOR SECTION UPDATES

Section Name	Update Description		
Section 27.0 "Electrical Characteristics"	Updated Max MIPS for temperature range of -40°C to +125°C in Table 27-1		
	Updated typical values in Thermal Packaging Characteristics in Table 27-3		
	Added parameters DI11 and DI12 to Table 27-9		
	Updated miminum values for parameters D136 (TRW) and D137 (TPE) and removed typical values in Table 27-12 $$		
	Added Extended temperature range to Table 27-13		
	Updated parameter AD63 and added Note 3 to Table 27-38 and Table 27-39		

TABLE A-1: MAJOR SECTION UPDATES (CONTINUED)

INDEX

Α	
A/D Converter	
DMA	
Initialization	
Key Features	
AC Characteristics	
Internal RC Accuracy	
Load Conditions	
ADC Module	
ADC11 Register Map	
Alternate Vector Table (AIVT)	61
Arithmetic Logic Unit (ALU)	
MPASM Assembler	

В

Block Diagrams	
16-bit Timer1 Module 153	5
A/D Module214, 215)
Connections for On-Chip Voltage Regulator	,
Device Clock 113, 115	,
ECAN Module 188	5
Input Capture 161	
Output Compare 163	5
PIC24HJ32GP302/304,	
PIC24HJ64GPX02/X04,	
and PIC24HJ128GPX02/X0410)
PIC24HJ32GP302/304,	
PIC24HJ64GPX02/X04,	
and PIC24HJ128GPX02/X04 CPU Core	ł
PLL	;
Reset System53	;
Shared Port Structure 125	,
SPI 167	'
Timer2 (16-bit) 155	;
Timer2/3 (32-bit) 157	'
UART 181	
Watchdog Timer (WDT)258	;

С

C Compilers	
MPLAB C18	
MPLAB C30	
Clock Switching	
Enabling	122
Sequence	122
Code Examples	
Erasing a Program Memory Page	51
Initiating a Programming Sequence	
Loading Write Buffers	
Port Write/Read	127
PWRSAV Instruction Syntax	
Code Protection	253, 259
Configuration Bits	
Configuration Register Map	
Configuring Analog Port Pins	
CPU	
Control Register	16
CPU Clocking System	114
PLL Configuration	
Selection	
Sources	114
Customer Change Notification Service	
Customer Notification Service	
Customer Support	

D

Data Address Space	21
Alignment	21
Memory Map for PIC24HJ128GP202/204	
and PIC24HJ64GP202/204 Devices	
with 8 KB RAM	23
Memory Map for PIC24HJ32GP302/304	
Devices with 4 KB RAM	22
Near Data Space	
Software Stack	
Width	
DC Characteristics	
I/O Pin Input Specifications	
I/O Pin Output Specifications	
Idle Current (IDOZE)	
Idle Current (IIDLE)	
Operating Current (IDD)	
Power-Down Current (IPD)	
Program Memory	
Temperature and Voltage Specifications	
Development Support	
DMA Module	
DMA Register Map	
DMAC Registers	
DMAXCNT	
DMAxCON	103
DMAxPAD	103
DMAxREQ	103
DMAxSTA	103
DMAxSTB	103
Doze Mode	124
F	
E	
ECAN Module	

Α	IN MODULE	
	CiBUFPNT1 register	199
	CiBUFPNT2 register	200
	CiBUFPNT3 register	200
	CiBUFPNT4 register	201
	CiCFG1 register	197
	CiCFG2 register	198
	CiCTRL1 register	190
	CiCTRL2 register	191
	CiEC register	197
	CiFCTRL register	193
	CiFEN1 register	199
	CiFIFO register	
	CiFMSKSEL1 register	203
	CiFMSKSEL2 register	204
	CiINTE register	196
	CiINTF register	195
	CiRXFnEID register	203
	CiRXFnSID register	202
	CiRXFUL1 register	206
	CiRXFUL2 register	206
	CiRXMnEID register	205
	CiRXMnSID register	205
	CiRXOVF1 register	207
	CiRXOVF2 register	
	CiTRmnCON register	208
	CiVEC register	192
	ECAN1 Register Map (C1CTRL1.WIN = 0 or 1)	
	ECAN1 Register Map (C1CTRL1.WIN = 0)	
	ECAN1 Register Map (C1CTRL1.WIN = 1)	
	Frame Types	187
	Modes of Operation	189
	Overview	187

PIC24HJ32GP302/304, PIC24HJ64GPX02/X04, AND PIC24HJ128GPX02/X04

ECAN Registers
Acceptance Filter Enable Register (CiFEN1)
Acceptance Filter Extended Identifier
Register n (CiRXFnEID)
Acceptance Filter Mask Extended Identifier
, Register n (CiRXMnEID)205
Acceptance Filter Mask Standard Identifier
Register n (CiRXMnSID)205
Acceptance Filter Standard Identifier
Register n (CiRXFnSID)202
Baud Rate Configuration Register 1 (CiCFG1) 197
Baud Rate Configuration Register 2 (CiCFG2) 198
Control Register 1 (CiCTRL1)190
Control Register 2 (CiCTRL2)191
FIFO Control Register (CiFCTRL) 193
FIFO Status Register (CiFIFO)194
Filter 0-3 Buffer Pointer Register (CiBUFPNT1) 199
Filter 12-15 Buffer Pointer Register
(CiBUFPNT4)201
Filter 15-8 Mask Selection Register
(CiFMSKSEL2)
Filter 4-7 Buffer Pointer Register (CiBUFPNT2) 200
Filter 7-0 Mask Selection Register
(CiFMSKSEL1)
Filter 8-11 Buffer Pointer Register
(CiBUFPNT3)200
Interrupt Code Register (CiVEC)
Interrupt Enable Register (CIINTE)
Interrupt Flag Register (CiINTF)
Receive Buffer Full Register 1 (CiRXFUL1)
Receive Buffer Full Register 2 (CiRXFUL2)
Receive Buffer Overflow Register 2
(CiRXOVF2)
Receive Overflow Register (CiRXOVF1)
ECAN Transmit/Receive Error Count
Register (CiEC)
ECAN TX/RX Buffer m Control Register
(CiTRmnCON)
Electrical Characteristics
Enhanced CAN Module
Equations Device Operating Frequency114
Errata
Liidla
F
Flash Program Memory47
Control Registers
Operations
Programming Algorithm
RTSP Operation
Table Instructions
Flexible Configuration
I

I	

I/O Ports	125
Parallel I/O (PIO)	125
Write/Read Timing	126
l ² C	
Operating Modes	
Registers	
In-Circuit Debugger	
In-Circuit Emulation	
In-Circuit Serial Programming (ICSP)	253, 259
Input Capture	
Registers	
Input Change Notification	127

Instruction Addressing Modes	41
File Register Instructions	41
Fundamental Modes Supported	
MCU Instructions	41
Move and Accumulator Instructions	42
Other Instructions	
Instruction Set	
Overview	265
Summary	263
Instruction-Based Power-Saving Modes	123
Idle	124
Sleep	123
Internal RC Oscillator	
Use with WDT	258
Internet Address	335
Interrupt Control and Status Registers	65
IECx	65
IFSx	65
INTCON1	65
INTCON2	65
IPCx	65
Interrupt Setup Procedures	
Initialization	
Interrupt Disable	
Interrupt Service Routine	
Trap Service Routine	
Interrupt Vector Table (IVT)	
Interrupts Coincident with Power Save Instructions	124

J

JTAG Boundary Scan Interface	253
JTAG Interface	259

Μ

Memory Organization	
Microchip Internet Web Site	335
Modes of Operation	
Disable	189
Initialization	189
Listen All Messages	189
Listen Only	
Loopback	
Normal Operation	
MPLAB ASM30 Assembler, Linker, Librarian	
MPLAB ICD 2 In-Circuit Debugger	273
MPLAB ICE 2000 High-Performance Universal	
In-Circuit Emulator	273
MPLAB Integrated Development Environment	
Software	271
MPLAB PM3 Device Programmer	
MPLAB REAL ICE In-Circuit Emulator System	
MPLINK Object Linker/MPLIB Object Librarian	
Multi-Bit Data Shifter	

Ν

NVM Module Register Map	40
0	
Open-Drain Configuration	126
Output Compare	163

PIC24HJ32GP302/304, PIC24HJ64GPX02/X04, AND PIC24HJ128GPX02/X04

Ρ

Packaging
Details
Marking
Peripheral Module Disable (PMD)124
PICSTART Plus Development Programmer
Pinout I/O Descriptions (table)
PMD Module
Register Map40
PORTA
Register Map
PORTB
Register Map
Power-on Reset (POR)
Power-Saving Features 123
Clock Frequency and Switching 123
Program Address Space
Construction
Data Access from Program Memory
Using Program Space Visibility46
Data Access from Program Memory Using
Table Instructions
Data Access from, Address Generation
Memory Map 19
Table Read Instructions
TBLRDH45
TBLRDL
Visibility Operation46
Program Memory
Interrupt Vector
Organization20
Reset Vector
R

Reader Response	336
CRC	38
Dual Comparator	
Parallel Master/Slave Port	
Real-Time Clock and Calendar	
Registers	
AD1CHS0 (ADC1 Input Channel 0 Select	223
AD1CHS123 (ADC1 Input Channel 1, 2,	
3 Select)	222
AD1CON1 (ADC1 Control 1)	
AD1CON2 (ADC1 Control 2)	
AD1CON3 (ADC1 Control 3)	220
AD1CON4 (ADC1 Control 4)	
AD1CSSL (ADC1 Input Scan Select Low)	224
AD1PCFGL (ADC1 Port Configuration Low)	224
CiBUFPNT1 (ECAN Filter 0-3 Buffer Pointer)	199
CiBUFPNT2 (ECAN Filter 4-7 Buffer Pointer)	200
CiBUFPNT3 (ECAN Filter 8-11 Buffer Pointer).	200
CiBUFPNT4 (ECAN Filter 12-15 Buffer	
Pointer)	201
CiCFG1 (ECAN Baud Rate Configuration 1)	197
CiCFG2 (ECAN Baud Rate Configuration 2)	
CiCTRL1 (ECAN Control 1)	190
CiCTRL2 (ECAN Control 2)	
CiEC (ECAN Transmit/Receive Error Count)	
CIFCTRL (ECAN FIFO Control)	
CiFEN1 (ECAN Acceptance Filter Enable)	
CiFIFO (ECAN FIFO Status)	194
CiFMSKSEL1 (ECAN Filter 7-0 Mask	
Selection)	
CiINTE (ECAN Interrupt Enable)	196

CiINTF (ECAN Interrupt Flag)	195
CiRXFnEID (ECAN Acceptance Filter n	
Extended Identifier)	203
CiRXFnSID (ECAN Acceptance Filter n	
Standard Identifier)	
CiRXFUL1 (ECAN Receive Buffer Full 1)	
CiRXFUL2 (ECAN Receive Buffer Full 2)	206
CiRXMnEID (ECAN Acceptance Filter	
Mask n Extended Identifier)	205
CiRXMnSID (ECAN Acceptance Filter	
Mask n Standard Identifier)	205
CiRXOVF1 (ECAN Receive Buffer Overflow 1)	
CiRXOVF2 (ECAN Receive Buffer Overflow 2)	
CiTRBnSID (ECAN Buffer n Standard	
Identifier)	10 212
CiTRmnCON (ECAN TX/RX	,
Buffer m Control)	208
CiVEC (ECAN Interrupt Code)	
CLKDIV (Clock Divisor)	
CORCON (Core Control)	
DMACS0 (DMA Controller Status 0)	
DMACS1 (DMA Controller Status 1)	
DMACOT (DMA Controller Status T)	
DMAXCON (DMA Channel x Transfer Count)	
DMAXCON (DMA Channel x Control)	104
	107
Address)	107
DMAxREQ (DMA Channel x IRQ Select)	105
DMAxSTA (DMA Channel x RAM Start Address A)	100
Start Address A)	106
DMAxSTB (DMA Channel x RAM Start Address B)	100
DSADR (Most Recent DMA RAM Address)	
I2CxCON (I2Cx Control)	175
10CVMCK (10CV Clove Made Address Mask)	
I2CxMSK (I2Cx Slave Mode Address Mask)	179
I2CxSTAT (I2Cx Status)	179 177
I2CxSTAT (I2Cx Status) IFS0 (Interrupt Flag Status 0)	179 177 . 70, 77
I2CxSTAT (I2Cx Status) IFS0 (Interrupt Flag Status 0) IFS1 (Interrupt Flag Status 1)	179 177 . 70, 77 . 72, 79
I2CxSTAT (I2Cx Status) IFS0 (Interrupt Flag Status 0) IFS1 (Interrupt Flag Status 1) IFS2 (Interrupt Flag Status 2)	179 177 . 70, 77 . 72, 79 . 74, 81
I2CxSTAT (I2Cx Status) IFS0 (Interrupt Flag Status 0) IFS1 (Interrupt Flag Status 1) IFS2 (Interrupt Flag Status 2) IFS3 (Interrupt Flag Status 3)	179 177 . 70, 77 . 72, 79 . 74, 81 . 75, 82
I2CxSTAT (I2Cx Status) IFS0 (Interrupt Flag Status 0) IFS1 (Interrupt Flag Status 1) IFS2 (Interrupt Flag Status 2) IFS3 (Interrupt Flag Status 3) IFS4 (Interrupt Flag Status 4)	179 177 . 70, 77 . 72, 79 . 74, 81 . 75, 82 . 76, 83
I2CxSTAT (I2Cx Status) IFS0 (Interrupt Flag Status 0) IFS1 (Interrupt Flag Status 1) IFS2 (Interrupt Flag Status 2) IFS3 (Interrupt Flag Status 3) IFS4 (Interrupt Flag Status 4) INTCON1 (Interrupt Control 1)	179 177 . 70, 77 . 72, 79 . 74, 81 . 75, 82 . 76, 83 68
I2CxSTAT (I2Cx Status) IFS0 (Interrupt Flag Status 0) IFS1 (Interrupt Flag Status 1) IFS2 (Interrupt Flag Status 2) IFS3 (Interrupt Flag Status 3) IFS4 (Interrupt Flag Status 4) INTCON1 (Interrupt Control 1) INTCON2 (Interrupt Control 2)	179 177 . 70, 77 . 72, 79 . 74, 81 . 75, 82 . 76, 83 68
I2CxSTAT (I2Cx Status) IFS0 (Interrupt Flag Status 0) IFS1 (Interrupt Flag Status 1) IFS2 (Interrupt Flag Status 2) IFS3 (Interrupt Flag Status 3) IFS4 (Interrupt Flag Status 4) INTCON1 (Interrupt Control 1) INTCON2 (Interrupt Control 2) INTTREG Interrupt Control and	179 177 . 70, 77 . 72, 79 . 74, 81 . 75, 82 . 76, 83 68 69
I2CxSTAT (I2Cx Status) IFS0 (Interrupt Flag Status 0) IFS1 (Interrupt Flag Status 1) IFS2 (Interrupt Flag Status 2) IFS3 (Interrupt Flag Status 3) IFS4 (Interrupt Flag Status 4) INTCON1 (Interrupt Control 1) INTCON2 (Interrupt Control 2) INTTREG Interrupt Control and Status Register	179 177 . 70, 77 . 72, 79 . 74, 81 . 75, 82 . 76, 83 68 69
I2CxSTAT (I2Cx Status) IFS0 (Interrupt Flag Status 0) IFS1 (Interrupt Flag Status 1) IFS2 (Interrupt Flag Status 2) IFS3 (Interrupt Flag Status 3) IFS4 (Interrupt Flag Status 4) INTCON1 (Interrupt Control 1) INTCON2 (Interrupt Control 2) INTTREG Interrupt Control and Status Register IPC0 (Interrupt Priority Control 0)	179 177 . 70, 77 . 72, 79 . 74, 81 . 75, 82 . 76, 83 68 68 69 98 84
I2CxSTAT (I2Cx Status) IFS0 (Interrupt Flag Status 0) IFS1 (Interrupt Flag Status 1) IFS2 (Interrupt Flag Status 2) IFS3 (Interrupt Flag Status 3) IFS4 (Interrupt Flag Status 4) INTCON1 (Interrupt Control 1) INTCON2 (Interrupt Control 2) INTTREG Interrupt Control and Status Register IPC0 (Interrupt Priority Control 0) IPC1 (Interrupt Priority Control 1)	179 177 . 70, 77 . 72, 79 . 74, 81 . 75, 82 . 76, 83 68 69 98 84 85
I2CxSTAT (I2Cx Status) IFS0 (Interrupt Flag Status 0) IFS1 (Interrupt Flag Status 1) IFS2 (Interrupt Flag Status 2) IFS3 (Interrupt Flag Status 3) IFS4 (Interrupt Flag Status 4) INTCON1 (Interrupt Control 1) INTCON2 (Interrupt Control 2) INTTREG Interrupt Control 2) INTTREG Interrupt Control and Status Register IPC0 (Interrupt Priority Control 0) IPC1 (Interrupt Priority Control 1)	179 177 . 70, 77 . 72, 79 . 74, 81 . 75, 82 . 76, 83 68 69 98 84 85 94
I2CxSTAT (I2Cx Status) IFS0 (Interrupt Flag Status 0) IFS1 (Interrupt Flag Status 1) IFS2 (Interrupt Flag Status 2) IFS3 (Interrupt Flag Status 3) IFS4 (Interrupt Flag Status 4) INTCON1 (Interrupt Control 1) INTCON2 (Interrupt Control 2) INTTREG Interrupt Control 2) INTTREG Interrupt Priority Control 0) IPC0 (Interrupt Priority Control 0) IPC1 (Interrupt Priority Control 1) IPC15 (Interrupt Priority Control 15)	179 177 . 70, 77 . 72, 79 . 74, 81 . 75, 82 . 76, 83 68 69 98 84 85 94 95
I2CxSTAT (I2Cx Status) IFS0 (Interrupt Flag Status 0) IFS1 (Interrupt Flag Status 1) IFS2 (Interrupt Flag Status 2) IFS3 (Interrupt Flag Status 3) IFS4 (Interrupt Flag Status 4) INTCON1 (Interrupt Control 1) INTCON2 (Interrupt Control 2) INTTREG Interrupt Control and Status Register IPC0 (Interrupt Priority Control 0) IPC1 (Interrupt Priority Control 1) IPC11 (Interrupt Priority Control 11) IPC15 (Interrupt Priority Control 15) IPC16 (Interrupt Priority Control 16)	179 177 . 70, 77 . 72, 79 . 74, 81 . 75, 82 . 76, 83 68 69 98 84 85 94 95 96
I2CxSTAT (I2Cx Status) IFS0 (Interrupt Flag Status 0) IFS1 (Interrupt Flag Status 1) IFS2 (Interrupt Flag Status 2) IFS3 (Interrupt Flag Status 3) IFS4 (Interrupt Flag Status 4) INTCON1 (Interrupt Control 1) INTCON2 (Interrupt Control 2) INTTREG Interrupt Control and Status Register IPC0 (Interrupt Priority Control 0) IPC1 (Interrupt Priority Control 1) IPC11 (Interrupt Priority Control 11) IPC15 (Interrupt Priority Control 15) IPC16 (Interrupt Priority Control 16)	179 177 . 70, 77 . 72, 79 . 74, 81 . 75, 82 . 76, 83 68 69 98 84 94 95 96 97
I2CxSTAT (I2Cx Status) IFS0 (Interrupt Flag Status 0) IFS1 (Interrupt Flag Status 1) IFS2 (Interrupt Flag Status 2) IFS3 (Interrupt Flag Status 3) IFS4 (Interrupt Flag Status 4) INTCON1 (Interrupt Control 1) INTCON2 (Interrupt Control 2) INTTREG Interrupt Control 2) INTTREG Interrupt Control and Status Register IPC0 (Interrupt Priority Control 0) IPC1 (Interrupt Priority Control 1) IPC11 (Interrupt Priority Control 1) IPC15 (Interrupt Priority Control 15) IPC16 (Interrupt Priority Control 16) IPC17 (Interrupt Priority Control 17) IPC2 (Interrupt Priority Control 2)	179 177 . 70, 77 . 72, 79 . 74, 81 . 75, 82 . 76, 83 68 69 98 98 94 95 96 97 86
I2CxSTAT (I2Cx Status) IFS0 (Interrupt Flag Status 0) IFS1 (Interrupt Flag Status 1) IFS2 (Interrupt Flag Status 2) IFS3 (Interrupt Flag Status 3) IFS4 (Interrupt Flag Status 4) INTCON1 (Interrupt Control 1) INTCON2 (Interrupt Control 2) INTTREG Interrupt Control 2) INTTREG Interrupt Priority Control 0) IPC0 (Interrupt Priority Control 1) IPC1 (Interrupt Priority Control 1) IPC11 (Interrupt Priority Control 1) IPC15 (Interrupt Priority Control 15) IPC16 (Interrupt Priority Control 16) IPC17 (Interrupt Priority Control 2) IPC3 (Interrupt Priority Control 3)	179 177 . 70, 77 . 72, 79 . 74, 81 . 75, 82 . 76, 83 68 69 98 84 95 94 95 96 97 86 97 96 97 98 98 94 95 96 97 96 97 98 96 97 96 97 96 97 96 97 96 97 96 97 9
 I2CxSTAT (I2Cx Status) IFS0 (Interrupt Flag Status 0) IFS1 (Interrupt Flag Status 1) IFS2 (Interrupt Flag Status 2) IFS3 (Interrupt Flag Status 3) IFS4 (Interrupt Flag Status 4) INTCON1 (Interrupt Control 1) INTCON2 (Interrupt Control 2) INTTREG Interrupt Control 2) INTTREG Interrupt Priority Control 0) IPC1 (Interrupt Priority Control 1) IPC11 (Interrupt Priority Control 1) IPC15 (Interrupt Priority Control 15) IPC16 (Interrupt Priority Control 16) IPC17 (Interrupt Priority Control 17) IPC2 (Interrupt Priority Control 3) IPC4 (Interrupt Priority Control 3) 	179 177 . 70, 77 . 72, 79 . 74, 81 . 75, 82 . 76, 83 68 69 98 84 95 94 95 96 97 86 87 88
 I2CxSTAT (I2Cx Status) IFS0 (Interrupt Flag Status 0) IFS1 (Interrupt Flag Status 1) IFS2 (Interrupt Flag Status 2) IFS3 (Interrupt Flag Status 3) IFS4 (Interrupt Flag Status 4) INTCON1 (Interrupt Control 1) INTCON2 (Interrupt Control 2) INTTREG Interrupt Control 2) INTTREG Interrupt Priority Control 0) IPC1 (Interrupt Priority Control 1) IPC11 (Interrupt Priority Control 1) IPC15 (Interrupt Priority Control 15) IPC16 (Interrupt Priority Control 16) IPC17 (Interrupt Priority Control 17) IPC2 (Interrupt Priority Control 2) IPC3 (Interrupt Priority Control 3) IPC4 (Interrupt Priority Control 3) IPC5 (Interrupt Priority Control 5) 	179 177 . 70, 77 . 72, 79 . 74, 81 . 75, 82 . 76, 83 68 69 98 84 95 94 95 96 97 86 87 88 89
 I2CxSTAT (I2Cx Status) IFS0 (Interrupt Flag Status 0) IFS1 (Interrupt Flag Status 1) IFS2 (Interrupt Flag Status 2) IFS3 (Interrupt Flag Status 3) IFS4 (Interrupt Flag Status 4) INTCON1 (Interrupt Control 1) INTCON2 (Interrupt Control 2) INTTREG Interrupt Control 2) INTTREG Interrupt Priority Control 0) IPC1 (Interrupt Priority Control 1) IPC11 (Interrupt Priority Control 1) IPC15 (Interrupt Priority Control 15) IPC16 (Interrupt Priority Control 16) IPC17 (Interrupt Priority Control 17) IPC2 (Interrupt Priority Control 2) IPC3 (Interrupt Priority Control 3) IPC4 (Interrupt Priority Control 3) IPC5 (Interrupt Priority Control 5) IPC6 (Interrupt Priority Control 5) 	179 177 . 70, 77 . 72, 79 . 74, 81 . 75, 82 . 76, 83 68 69 98 84 95 94 95 96 96 96 87 88 89 90
 I2CxSTAT (I2Cx Status) IFS0 (Interrupt Flag Status 0) IFS1 (Interrupt Flag Status 1) IFS2 (Interrupt Flag Status 2) IFS3 (Interrupt Flag Status 3) IFS4 (Interrupt Flag Status 4) INTCON1 (Interrupt Control 1) INTCON2 (Interrupt Control 2) INTTREG Interrupt Control 2) INTTREG Interrupt Priority Control 0) IPC1 (Interrupt Priority Control 1) IPC11 (Interrupt Priority Control 1) IPC15 (Interrupt Priority Control 15) IPC16 (Interrupt Priority Control 16) IPC17 (Interrupt Priority Control 17) IPC2 (Interrupt Priority Control 3) IPC4 (Interrupt Priority Control 3) IPC5 (Interrupt Priority Control 5) IPC6 (Interrupt Priority Control 6) 	179 177 . 70, 77 . 72, 79 . 74, 81 . 75, 82 . 76, 83 68 68 98 98 98 94 95 96 96 97 86 96 96 97 96 90 90 91
 I2CxSTAT (I2Cx Status) IFS0 (Interrupt Flag Status 0) IFS1 (Interrupt Flag Status 1) IFS2 (Interrupt Flag Status 2) IFS3 (Interrupt Flag Status 3) IFS4 (Interrupt Flag Status 4) INTCON1 (Interrupt Control 1) INTCON2 (Interrupt Control 2) INTTREG Interrupt Control 2) INTTREG Interrupt Priority Control 0) IPC1 (Interrupt Priority Control 1) IPC11 (Interrupt Priority Control 1) IPC15 (Interrupt Priority Control 15) IPC16 (Interrupt Priority Control 16) IPC17 (Interrupt Priority Control 17) IPC2 (Interrupt Priority Control 3) IPC4 (Interrupt Priority Control 3) IPC4 (Interrupt Priority Control 4) IPC5 (Interrupt Priority Control 5) IPC6 (Interrupt Priority Control 6) IPC7 (Interrupt Priority Control 7) IPC8 (Interrupt Priority Control 7) 	179 177 . 70, 77 . 72, 79 . 74, 81 . 75, 82 . 76, 83 68 68 98 98 98 94 95 96 96 97 86 97 96 96 97 96 90 91 90 91 90 91 92 91 92 92
 I2CxSTAT (I2Cx Status) IFS0 (Interrupt Flag Status 0) IFS1 (Interrupt Flag Status 1) IFS2 (Interrupt Flag Status 2) IFS3 (Interrupt Flag Status 3) IFS4 (Interrupt Flag Status 4) INTCON1 (Interrupt Control 1) INTCON2 (Interrupt Control 2) INTTREG Interrupt Control 2) INTTREG Interrupt Priority Control 0) IPC1 (Interrupt Priority Control 1) IPC11 (Interrupt Priority Control 1) IPC15 (Interrupt Priority Control 15) IPC16 (Interrupt Priority Control 16) IPC17 (Interrupt Priority Control 2) IPC3 (Interrupt Priority Control 3) IPC4 (Interrupt Priority Control 3) IPC4 (Interrupt Priority Control 4) IPC5 (Interrupt Priority Control 5) IPC6 (Interrupt Priority Control 5) IPC6 (Interrupt Priority Control 7) IPC8 (Interrupt Priority Control 7) IPC9 (Interrupt Priority Control 8) IPC9 (Interrupt Priority Control 9) 	179 177 . 70, 77 . 72, 79 . 74, 81 . 75, 82 . 76, 83 68 68 98 98 98 94 95 96 96 97 86 97 96 97 96 97 96 97 96 97 98 90 91 90 91 92 91 92 92 92 93 93
 I2CxSTAT (I2Cx Status) IFS0 (Interrupt Flag Status 0) IFS1 (Interrupt Flag Status 1) IFS2 (Interrupt Flag Status 2) IFS3 (Interrupt Flag Status 3) IFS4 (Interrupt Flag Status 4) INTCON1 (Interrupt Control 1) INTCON2 (Interrupt Control 2) INTTREG Interrupt Control 2) INTTREG Interrupt Control 0) IPC0 (Interrupt Priority Control 0) IPC1 (Interrupt Priority Control 11) IPC15 (Interrupt Priority Control 15) IPC16 (Interrupt Priority Control 16) IPC17 (Interrupt Priority Control 17) IPC2 (Interrupt Priority Control 3) IPC4 (Interrupt Priority Control 3) IPC4 (Interrupt Priority Control 5) IPC6 (Interrupt Priority Control 5) IPC6 (Interrupt Priority Control 6) IPC7 (Interrupt Priority Control 7) IPC8 (Interrupt Priority Control 7) IPC8 (Interrupt Priority Control 7) IPC8 (Interrupt Priority Control 7) IPC9 (Interrupt Priority Control 8) IPC9 (Interrupt Priority Control 9) NVMCON (Flash Memory Control) 	179 177 . 70, 77 . 72, 79 . 74, 81 . 75, 82 . 76, 83 68 68 69 98 98 94 95 96 97 87 88 89 90 91 92 93 93 94
 I2CxSTAT (I2Cx Status) IFS0 (Interrupt Flag Status 0) IFS1 (Interrupt Flag Status 1) IFS2 (Interrupt Flag Status 2) IFS3 (Interrupt Flag Status 3) IFS4 (Interrupt Flag Status 4) INTCON1 (Interrupt Control 1) INTCON2 (Interrupt Control 2) INTTREG Interrupt Control 2) INTTREG Interrupt Priority Control 0) IPC1 (Interrupt Priority Control 1) IPC10 (Interrupt Priority Control 1) IPC11 (Interrupt Priority Control 1) IPC15 (Interrupt Priority Control 15) IPC16 (Interrupt Priority Control 16) IPC17 (Interrupt Priority Control 17) IPC2 (Interrupt Priority Control 17) IPC3 (Interrupt Priority Control 3) IPC4 (Interrupt Priority Control 3) IPC4 (Interrupt Priority Control 5) IPC5 (Interrupt Priority Control 5) IPC6 (Interrupt Priority Control 6) IPC7 (Interrupt Priority Control 6) IPC7 (Interrupt Priority Control 6) IPC7 (Interrupt Priority Control 7) IPC8 (Interrupt Priority Control 8) IPC9 (Interrupt Priority Control 9) NVMCON (Flash Memory Control) NVMKEY (Nonvolatile Memory Key) 	179 177 . 70, 77 . 72, 79 . 74, 81 . 75, 82 . 76, 83 68 68 69 98 85 94 95 96 97 88 89 90 91 92 91 92 93 93 92 93 93 90 91 92 93 95 90 91 92 93 90 91 92 93 92 93 92 93 92 93 93 94 95 90 91 92 93 92 93 90 90 91 92 93 92 93 94 95 94
 I2CxSTAT (I2Cx Status) IFS0 (Interrupt Flag Status 0) IFS1 (Interrupt Flag Status 1) IFS2 (Interrupt Flag Status 2) IFS3 (Interrupt Flag Status 3) IFS4 (Interrupt Flag Status 4) INTCON1 (Interrupt Control 1) INTCON2 (Interrupt Control 2) INTTREG Interrupt Control 2) INTTREG Interrupt Priority Control 0) IPC1 (Interrupt Priority Control 1) IPC10 (Interrupt Priority Control 1) IPC11 (Interrupt Priority Control 1) IPC15 (Interrupt Priority Control 15) IPC16 (Interrupt Priority Control 16) IPC17 (Interrupt Priority Control 17) IPC2 (Interrupt Priority Control 3) IPC4 (Interrupt Priority Control 3) IPC4 (Interrupt Priority Control 5) IPC5 (Interrupt Priority Control 5) IPC6 (Interrupt Priority Control 6) IPC7 (Interrupt Priority Control 6) IPC6 (Interrupt Priority Control 9) NVMCON (Flash Memory Control 9) NVMKEY (Nonvolatile Memory Key) OCxCON (Output Compare x Control) 	179 177 . 70, 77 . 72, 79 . 74, 81 . 75, 82 . 76, 83 68 68 69 98 85 94 95 96 97 86 97 86 94 95 96 90 91 90 91 90 91 90 91 90 91 90 91
 I2CxSTAT (I2Cx Status) IFS0 (Interrupt Flag Status 0) IFS1 (Interrupt Flag Status 1) IFS2 (Interrupt Flag Status 2) IFS3 (Interrupt Flag Status 3) IFS4 (Interrupt Flag Status 4) INTCON1 (Interrupt Control 1) INTCON2 (Interrupt Control 2) INTTREG Interrupt Control 2) INTTREG Interrupt Priority Control 0) IPC1 (Interrupt Priority Control 1) IPC10 (Interrupt Priority Control 1) IPC11 (Interrupt Priority Control 1) IPC15 (Interrupt Priority Control 15) IPC16 (Interrupt Priority Control 16) IPC17 (Interrupt Priority Control 17) IPC2 (Interrupt Priority Control 3) IPC4 (Interrupt Priority Control 3) IPC4 (Interrupt Priority Control 3) IPC4 (Interrupt Priority Control 5) IPC6 (Interrupt Priority Control 6) IPC7 (Interrupt Priority Control 7) IPC8 (Interrupt Priority Control 8) IPC9 (Interrupt Priority Control 8) IPC9 (Interrupt Priority Control 8) IPC9 (Interrupt Priority Control 9) NVMCON (Flash Memory Control) NVMKEY (Nonvolatile Memory Key) OCXCON (Oscillator Control) 	179 177 . 70, 77 . 72, 79 . 74, 81 . 75, 82 . 76, 83 68 69 98 85 94 95 96 97 88 96 97 88 90 91 92 91 92 91 92 91 92 91 92 91 92 91 92
 I2CxSTAT (I2Cx Status) IFS0 (Interrupt Flag Status 0) IFS1 (Interrupt Flag Status 1) IFS2 (Interrupt Flag Status 2) IFS3 (Interrupt Flag Status 3) IFS4 (Interrupt Flag Status 4) INTCON1 (Interrupt Control 1) INTCON2 (Interrupt Control 2) INTTREG Interrupt Control 2) INTTREG Interrupt Priority Control 0) IPC1 (Interrupt Priority Control 0) IPC1 (Interrupt Priority Control 1) IPC15 (Interrupt Priority Control 15) IPC16 (Interrupt Priority Control 16) IPC17 (Interrupt Priority Control 17) IPC2 (Interrupt Priority Control 17) IPC3 (Interrupt Priority Control 17) IPC4 (Interrupt Priority Control 3) IPC4 (Interrupt Priority Control 3) IPC4 (Interrupt Priority Control 5) IPC5 (Interrupt Priority Control 6) IPC7 (Interrupt Priority Control 6) IPC7 (Interrupt Priority Control 6) IPC6 (Interrupt Priority Control 7) IPC8 (Interrupt Priority Control 6) IPC7 (Interrupt Priority Control 6) IPC9 (Interrupt Priority Control 9) NVMCON (Flash Memory Control 9) NVMKEY (Nonvolatile Memory Key) OCxCON (Output Compare x Control) OSCTUN (FRC Oscillator Tuning) 	179 177 . 70, 77 . 72, 79 . 74, 81 . 75, 82 . 76, 83 68 69 98 85 94 95 96 97 86 97 86 94 95 96 91 90 91 90 91 90 91 90 91
 I2CxSTAT (I2Cx Status) IFS0 (Interrupt Flag Status 0) IFS1 (Interrupt Flag Status 1) IFS2 (Interrupt Flag Status 2) IFS3 (Interrupt Flag Status 3) IFS4 (Interrupt Flag Status 4) INTCON1 (Interrupt Control 1) INTCON2 (Interrupt Control 2) INTTREG Interrupt Control 2) INTTREG Interrupt Priority Control 0) IPC1 (Interrupt Priority Control 1) IPC11 (Interrupt Priority Control 15) IPC16 (Interrupt Priority Control 16) IPC17 (Interrupt Priority Control 17) IPC2 (Interrupt Priority Control 17) IPC3 (Interrupt Priority Control 17) IPC3 (Interrupt Priority Control 17) IPC4 (Interrupt Priority Control 3) IPC4 (Interrupt Priority Control 5) IPC6 (Interrupt Priority Control 5) IPC6 (Interrupt Priority Control 6) IPC7 (Interrupt Priority Control 6) IPC7 (Interrupt Priority Control 7) IPC8 (Interrupt Priority Control 8) IPC9 (Interrupt Priority Control 8) IPC9 (Interrupt Priority Control 9) NVMCON (Flash Memory Control) NVMKEY (Nonvolatile Memory Key) OCxCON (Oscillator Control) OSCTUN (FRC Oscillator Tuning) PLLFBD (PLL Feedback Divisor) 	179 177 . 70, 77 . 72, 79 . 74, 81 . 75, 82 . 76, 83 68 69 98 88 94 95 96 97 86 97 86 97 86 91 92 92
 I2CxSTAT (I2Cx Status) IFS0 (Interrupt Flag Status 0) IFS1 (Interrupt Flag Status 1) IFS2 (Interrupt Flag Status 2) IFS3 (Interrupt Flag Status 3) IFS4 (Interrupt Flag Status 4) INTCON1 (Interrupt Control 1) INTCON2 (Interrupt Control 2) INTTREG Interrupt Control 2) INTTREG Interrupt Priority Control 0) IPC1 (Interrupt Priority Control 0) IPC1 (Interrupt Priority Control 1) IPC15 (Interrupt Priority Control 15) IPC16 (Interrupt Priority Control 16) IPC17 (Interrupt Priority Control 17) IPC2 (Interrupt Priority Control 17) IPC3 (Interrupt Priority Control 17) IPC4 (Interrupt Priority Control 3) IPC4 (Interrupt Priority Control 3) IPC4 (Interrupt Priority Control 5) IPC5 (Interrupt Priority Control 6) IPC7 (Interrupt Priority Control 6) IPC7 (Interrupt Priority Control 6) IPC6 (Interrupt Priority Control 7) IPC8 (Interrupt Priority Control 6) IPC7 (Interrupt Priority Control 6) IPC9 (Interrupt Priority Control 9) NVMCON (Flash Memory Control 9) NVMKEY (Nonvolatile Memory Key) OCxCON (Output Compare x Control) OSCTUN (FRC Oscillator Tuning) 	179 177 . 70, 77 . 72, 79 . 74, 81 . 75, 82 . 76, 83 68 69 98 88 94 95 96 97 86 97 86 97 86 91 92 96 91 91 92 91 92 91 92 91 92

PIC24HJ32GP302/304, PIC24HJ64GPX02/X04, AND PIC24HJ128GPX02/X04

SPIxSTAT (SPIx Status and Control)	
SR (CPU Status)	
T1CON (Timer1 Control)	
TCxCON (Input Capture x Control)	
TxCON (Type B Time Base Control)	
TyCON (Type C Time Base Control)	
UxMODE (UARTx Mode)	
UxSTA (UARTx Status and Control)	
Reset	
Illegal Opcode	
Trap Conflict	
Uninitialized W Register	
Reset Sequence	
Resets	53
s	
•	
Serial Peripheral Interface (SPI)	
Software Reset Instruction (SWR)	
Software Simulator (MPLAB SIM)	

Software Stack Pointer, Frame Pointer	
CALLL Stack Frame	41
Special Features of the CPU	
SPI Module	
SPI1 Register Map	
Symbols Used in Opcode Descriptions	
System Control	
Register Map	

т

Temperature and Voltage Specifications	
AC	
Timer1	153
Timer2/3	155
Timing Characteristics	
CLKO and I/O	
Timing Diagrams	
10-bit A/D Conversion (CHPS = 01,	
SIMSAM = 0, ASAM = 0,	
SSRC = 000)	310
12-bit A/D Conversion (ASAM = 0,	
SSRC = 000)	308
Brown-out Situations	
ECAN I/O	304
External Clock	
I2Cx Bus Data (Master Mode)	300
I2Cx Bus Data (Slave Mode)	302
I2Cx Bus Start/Stop Bits (Master Mode)	300
I2Cx Bus Start/Stop Bits (Slave Mode)	302
Input Capture (CAPx)	

OC/PWM	294
Output Compare (OCx)	293
Reset, Watchdog Timer, Oscillator	
Start-up Timer and Power-up Timer	289
SPIx Master Mode (CKE = 0)	295
SPIx Master Mode (CKE = 1)	296
SPIx Slave Mode (CKE = 0)	297
SPIx Slave Mode (CKE = 1)	298
Timer1, 2 and 3 External Clock	291
Timing Requirements	
CLKO and I/O	288
External Clock	286
Input Capture	293
Timing Specifications	
10-bit A/D Conversion Requirements	311
12-bit A/D Conversion Requirements	309
CAN I/O Requirements	304
I2Cx Bus Data Requirements (Master Mode)	301
I2Cx Bus Data Requirements (Slave Mode)	303
Output Compare Requirements	293
PLL Clock	287
Reset, Watchdog Timer, Oscillator Start-up	
Timer, Power-up Timer and Brown-out	
Reset Requirements	290
Simple OC/PWM Mode Requirements	294
SPIx Master Mode (CKE = 0) Requirements	
SPIx Master Mode (CKE = 1) Requirements	
SPIx Slave Mode (CKE = 0) Requirements	
SPIx Slave Mode (CKE = 1) Requirements	299
Timer1 External Clock Requirements	
Timer2 External Clock Requirements	
Timer3 External Clock Requirements	292

U

UART Module	
UART1 Register Map	
Universal Asynchronous Receiver	
Transmitter (UART)	181
Using the RCON Status Bits	60
v	
Voltage Regulator (On-Chip)	257

w

Watchdog Time-out Reset (WDTR)	
Watchdog Timer (WDT)	253, 258
Programming Considerations	258
WWW Address	335
WWW, On-Line Support	8

NOTES:

NOTES:

THE MICROCHIP WEB SITE

Microchip provides online support via our WWW site at www.microchip.com. This website is used as a means to make files and information easily available to customers. Accessible by using your favorite Internet browser, the website contains the following information:

- **Product Support** Data sheets and errata, application notes and sample programs, design resources, user's guides and hardware support documents, latest software releases and archived software
- General Technical Support Frequently Asked Questions (FAQ), technical support requests, online discussion groups, Microchip consultant program member listing
- Business of Microchip Product selector and ordering guides, latest Microchip press releases, listing of seminars and events, listings of Microchip sales offices, distributors and factory representatives

CUSTOMER CHANGE NOTIFICATION SERVICE

Microchip's customer notification service helps keep customers current on Microchip products. Subscribers receives e-mail notification whenever there are changes, updates, revisions or errata related to a specified product family or development tool of interest.

To register, access the Microchip website at www.microchip.com, click on Customer Change Notification and follow the registration instructions.

CUSTOMER SUPPORT

Users of Microchip products can receive assistance through several channels:

- Distributor or Representative
- Local Sales Office
- Field Application Engineer (FAE)
- Technical Support

Customers should contact their distributor, representative or field application engineer (FAE) for support. Local sales offices are also available to help customers. A listing of sales offices and locations is included in the back of this document.

Technical support is available through the website at: http://support.microchip.com

READER RESPONSE

It is our intention to provide you with the best documentation possible to ensure successful use of your Microchip product. If you wish to provide your comments on organization, clarity, subject matter, and ways in which our documentation can better serve you, please FAX your comments to the Technical Publications Manager at (480) 792-4150.

Please list the following information, and use this outline to provide us with your comments about this document.

To:	Technical Publications Manager	Total Pages Sent		
RE:	Reader Response			
From:	Name			
	Company			
	Address			
	City / State / ZIP / Country			
	Telephone: ()	FAX: ()		
Applic	cation (optional):			
Would	d you like a reply?YN			
Devic	e: PIC24HJ32GP302/304, PIC24HJ64GPX02/X04, and PIC24HJ128GPX02/X04	Literature Number: DS70293B		
Quest	tions:			
1. W	/hat are the best features of this document?			
_				
2. H	. How does this document meet your hardware and software development needs?			
3. D	o you find the organization of this document easy to follow	v? If not, why?		
		-		
4. W	/hat additions to the document do you think would enhand	ce the structure and subject?		
5. W	What deletions from the document could be made without affecting the overall usefulness?			
6. Is	there any incorrect or misleading information (what and w	where)?		
_				
7. H	ow would you improve this document?			

PRODUCT IDENTIFICATION SYSTEM

To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.

Tape and Reel Fla Temperature Ran	nmily — v Size (Kl ag (if app oge ——	memory, 28-pin, Extended temperature, SPDIP package.
Architecture:	24 =	16-bit Microcontroller
Flash Memory Family:	HJ =	Flash program memory, 3.3V
Product Group:	GP3 =	General Purpose family General Purpose family General Purpose family
Pin Count:		28-pin 44-pin
Temperature Range:	I = E =	-40°C to+85°C (Industrial) -40°C to+125°C (Extended)
Package:	SO = ML =	Skinny Plastic Dual In-Line - 300 mil body (SPDIP) Plastic Small Outline - Wide - 300 mil body (SOIC) Plastic Quad, No Lead Package - 8x8 mm body (QFN) Plastic Quad, No Lead Package - 6x6x0.9 mm body (QFN-S) Plastic Thin Quad Flatpack - 10x10x1 mm body (TQFP)

Worldwide Sales and Service

AMERICAS

Corporate Office 2355 West Chandler Blvd. Chandler, AZ 85224-6199 Tel: 480-792-7200 Fax: 480-792-7277 Technical Support: http://support.microchip.com Web Address: www.microchip.com

Atlanta Duluth, GA Tel: 678-957-9614 Fax: 678-957-1455

Boston Westborough, MA Tel: 774-760-0087 Fax: 774-760-0088

Chicago Itasca, IL Tel: 630-285-0071 Fax: 630-285-0075

Dallas Addison, TX Tel: 972-818-7423 Fax: 972-818-2924

Detroit Farmington Hills, MI Tel: 248-538-2250 Fax: 248-538-2260

Kokomo Kokomo, IN Tel: 765-864-8360 Fax: 765-864-8387

Los Angeles Mission Viejo, CA Tel: 949-462-9523 Fax: 949-462-9608

Santa Clara, CA Santa Clara, CA Tel: 408-961-6444 Fax: 408-961-6445

Toronto Mississauga, Ontario, Canada Tel: 905-673-0699 Fax: 905-673-6509

ASIA/PACIFIC

Asia Pacific Office Suites 3707-14, 37th Floor Tower 6, The Gateway Harbour City, Kowloon Hong Kong Tel: 852-2401-1200 Fax: 852-2401-3431

Australia - Sydney Tel: 61-2-9868-6733 Fax: 61-2-9868-6755

China - Beijing Tel: 86-10-8528-2100 Fax: 86-10-8528-2104

China - Chengdu Tel: 86-28-8665-5511 Fax: 86-28-8665-7889

China - Hong Kong SAR Tel: 852-2401-1200 Fax: 852-2401-3431

China - Nanjing

Tel: 86-25-8473-2460 Fax: 86-25-8473-2470 China - Qingdao

Tel: 86-532-8502-7355 Fax: 86-532-8502-7205

China - Shanghai Tel: 86-21-5407-5533 Fax: 86-21-5407-5066

China - Shenyang Tel: 86-24-2334-2829 Fax: 86-24-2334-2393

China - Shenzhen Tel: 86-755-8203-2660 Fax: 86-755-8203-1760

China - Wuhan Tel: 86-27-5980-5300 Fax: 86-27-5980-5118

China - Xiamen Tel: 86-592-2388138 Fax: 86-592-2388130

China - Xian Tel: 86-29-8833-7252 Fax: 86-29-8833-7256

China - Zhuhai Tel: 86-756-3210040 Fax: 86-756-3210049

ASIA/PACIFIC

India - Bangalore Tel: 91-80-4182-8400 Fax: 91-80-4182-8422

India - New Delhi Tel: 91-11-4160-8631 Fax: 91-11-4160-8632

India - Pune Tel: 91-20-2566-1512 Fax: 91-20-2566-1513

Japan - Yokohama Tel: 81-45-471- 6166 Fax: 81-45-471-6122

Korea - Daegu Tel: 82-53-744-4301 Fax: 82-53-744-4302

Korea - Seoul Tel: 82-2-554-7200 Fax: 82-2-558-5932 or 82-2-558-5934

Malaysia - Kuala Lumpur Tel: 60-3-6201-9857 Fax: 60-3-6201-9859

Malaysia - Penang Tel: 60-4-227-8870 Fax: 60-4-227-4068

Philippines - Manila Tel: 63-2-634-9065 Fax: 63-2-634-9069

Singapore Tel: 65-6334-8870 Fax: 65-6334-8850

Taiwan - Hsin Chu Tel: 886-3-572-9526 Fax: 886-3-572-6459

Taiwan - Kaohsiung Tel: 886-7-536-4818 Fax: 886-7-536-4803

Taiwan - Taipei Tel: 886-2-2500-6610 Fax: 886-2-2508-0102

Thailand - Bangkok Tel: 66-2-694-1351 Fax: 66-2-694-1350

EUROPE

Austria - Wels Tel: 43-7242-2244-39 Fax: 43-7242-2244-393 Denmark - Copenhagen Tel: 45-4450-2828 Fax: 45-4485-2829

France - Paris Tel: 33-1-69-53-63-20 Fax: 33-1-69-30-90-79

Germany - Munich Tel: 49-89-627-144-0 Fax: 49-89-627-144-44

Italy - Milan Tel: 39-0331-742611 Fax: 39-0331-466781

Netherlands - Drunen Tel: 31-416-690399 Fax: 31-416-690340

Spain - Madrid Tel: 34-91-708-08-90 Fax: 34-91-708-08-91

UK - Wokingham Tel: 44-118-921-5869 Fax: 44-118-921-5820

01/02/08