Attributes
Part Number
MAX406BEPA
Spice Node 50
4 - V-
Manufacturer
Dallas Semiconductor
Spice Node 99
7 - V+
Description
OpAmp
Spice Node 2
2 - IN-
Prefix
U
Spice Node 1
3 - IN+
RoHS
Unknown
Spice Model
MAX406Ac
Package
Spice Library
* MAX406 FAMILY MACROMODELS
* -------------------------
** FEATURES:
* 1.2uA Max Quiescent Current per Amplifier
* Low Supply Voltage Operation ------ +2.5V to +10V
* Low Input Current -------- 0.1pA typ.
* Input Voltage Range Includes Negative Rail
* Output Swings Rail-to-Rail
* Available in 8-Pin DIP/SO
* Choice of: 8kHz GBW unity-gain stable
* 40kHz GBW (Av=2 min.)
* 150kHz GBW (Av=10 min.)
*
* SUBCIRCUIT PART NUMBER DESCRIPTION
* __________ ___________ ___________________________________
* MAX406Ac MAX406A comp.(AV=1) 8kHz GBW, 0.25mV VOS
* MAX406Ad MAX406A decomp.(AV=2 min) 40kHz, 0.25mV VOS
* MAX406Bc MAX406B comp.(AV=1) 8kHz GBW, 0.75mV VOS
* MAX406Bd MAX406B decomp.(AV=2 min) 40kHz GBW, 0.75mV
* MAX407 MAX407 DUAL, UNITY-GAIN STABLE, 1mV VOS
* MAX409A MAX409A AV=10 min., 0.5mV VOS
* MAX409B MAX409B AV=10 min., 2.0mV VOS
* MAX417 MAX417 DUAL, AV=10 min., 3.0mV VOS
* MAX418 MAX418 QUAD, UNITY-GAIN STABLE, 4.0mV VOS
* MAX419 MAX419 QUAD, AV=10 min., 4.0mV VOS
*
* Note: MAX406 can operate in COMPENSATED mode (unity gain stable)
* or DECOMPENSATED mode (stable for Av=>2). Pin 'BW' is tied
* to V+, V-, or left open to set mode on actual part.
* For simulations, use subcircuit MAX406Xc for COMPENSATED
* mode and subcircuit MAX406Xd for DECOMPENSATED mode.
*
*
* ////////////// MAX406Ac MACROMODEL //////////////////
*
* ====> "c" DENOTES COMPENSATED MODE <====
* ====> REFER TO MAX406/MAX407/MAX409 DATA SHEET <====
*
*
* connections: non-inverting input
* | inverting input
* | | positive power-supply
* | | | negative power-supply
* | | | | output
* | | | | |
* NODE CONNECTIONS: 1 2 99 50 97
*
.SUBCKT MAX406Ac 1 2 99 50 97
****************INPUT STAGE**********************
I1 99 4 20U
M1 5 2 4 99 MOSFET
R3 5 50 5.2696K
M2 6 7 4 99 MOSFET
R4 6 50 5.2696K
CI1 1 0 2P
CI2 2 0 2P
DP1 1 99 DA
DP2 50 1 DA
DP3 2 99 DB
DP4 50 2 DB
************************
GSUP 0 106 POLY(1) 99 50 320 -41 1.2
*THIS POLY VCCS MODELS THE OPEN LOOP GAIN AS
*A FUNCTION OF THE POWER SUPPLY, WHICH WILL BE MULT. NODE 5,6 VOLT.
RVSUP 0 106 1E4
************ GAIN, 1ST POLE, SLEW STAGE************
EH 99 98 99 50 0.5
G0 98 9 POLY(2) 5 6 106 0 0 0 0 0 1E-6
*GO MULTIPLIES NODE 106, AVOL VS SUPPLY, AND NODES 5,6 FROM INPUT STAGE.
VS 9 10 0V
R0 98 9 1E6
C3 10 98 19UF
D1 9 111 DX
D2 112 9 DX
V11 99 111 .5V
V12 112 50 .5V
I2 99 50 -19U
EOS 7 1 POLY(1) 16 98 .25E-3 1
*CHANGE OFFSET VOLTAGE TO 0V FOR OPEN-LOOP, OTHERWISE VOS
*********COMMON-MODE ZERO STAGE********
G4 98 16 POLY(2) 1 98 2 98 0 1E-7 1E-7
R13 98 16 500
******* POLE STAGE **********
G3 98 15 10 98 1E-3
R12 98 15 1E3
C5 98 15 14.5N
*
CCOMP 97 100 20000nf
RCOMP 100 9 100000
*************OUTPUT STAGE****************
F5 99 38 VA8 1
D9 40 38 DX
D10 38 99 DX
VA7 99 40 0
G12 98 32 15 98 1E-6
* ^ INSERT NODE FROM LAST STAGE HERE
R15 98 32 1E6
D3 32 36 DX
D4 37 32 DX
V5 35 37 .2V
V4 36 35 -.2V
*V5,V4 SET ISC
R16 34 97 1K
E1 99 33 99 32 1
VA8 33 34 0V
RCON 35 97 15K
******************************************
.MODEL DA D(IS=100E-14 RS=.5K)
.MODEL DB D(IS=100E-14 RS=.5K)
.MODEL DX D(IS=100E-14)
.MODEL MOSFET PMOS(VTO=-1.7 KP=1.8E-3)
*VTO ESTABLISHES INPUT VOLT. RANGE
.ENDS
*
* ////////////// MAX406Bc MACROMODEL //////////////////
*
* ====> "c" DENOTES COMPENSATED MODE <====
* ====> REFER TO MAX406/MAX407/MAX409 DATA SHEET <====
*
* connections: non-inverting input
* | inverting input
* | | positive power-supply
* | | | negative power-supply
* | | | | output
* | | | | |
* OUTPUT CONNECTS: 1 2 99 50 97
*
.SUBCKT MAX406Bc 1 2 99 50 97
****************INPUT STAGE**********************
I1 99 4 20U
M1 5 2 4 99 MOSFET
R3 5 50 5.2696K
M2 6 7 4 99 MOSFET
R4 6 50 5.2696K
CI1 1 0 2P
CI2 2 0 2P
DP1 1 99 DA
DP2 50 1 DA
DP3 2 99 DB
DP4 50 2 DB
************ GSUP CREATES AVOL VS VSUPPLY ********
GSUP 0 106 POLY(1) 99 50 320 -41 1.2
*THIS POLY VCCS MODELS THE OPEN LOOP GAIN AS
*A FUNCTION OF THE POWER SUPPLY, WHICH WILL BE MULT. NODE 5,6 VOLT.
RVSUP 0 106 1E4
************ GAIN, 1ST POLE, SLEW STAGE************
G0 98 9 POLY(2) 5 6 106 0 0 0 0 0 1E-6
*GO MULTIPLIES NODE 106, AVOL VS SUPPLY, AND NODES 5,6 FROM INPUT STAGE.
EH 99 98 99 50 0.5
VS 9 10 0V
R0 98 9 1E6
C3 10 98 19UF
D1 9 111 DX
D2 112 9 DX
V11 99 111 .5V
V12 112 50 .5V
I2 99 50 -19U
EOS 7 1 POLY(1) 16 98 0.75E-3 1
*CHANGE OFFSET VOLTAGE TO 0V FOR OPEN-LOOP, OTHERWISE VOS
*********COMMON-MODE ZERO STAGE********
G4 98 16 POLY(2) 1 98 2 98 0 1E-7 1E-7
R13 98 16 500
******* POLE STAGE **********
G3 98 15 10 98 1E-3
R12 98 15 1E3
C5 98 15 14.5N
*
CCOMP 97 100 20000nf
RCOMP 100 9 100000
*************OUTPUT STAGE****************
F5 99 38 VA8 1
D9 40 38 DX
D10 38 99 DX
VA7 99 40 0
G12 98 32 15 98 1E-6
* ^ INSERT NODE FROM LAST STAGE HERE
R15 98 32 1E6
D3 32 36 DX
D4 37 32 DX
V5 35 37 .2V
V4 36 35 -.2V
*V5,V4 SET ISC
R16 34 97 1K
E1 99 33 99 32 1
VA8 33 34 0V
RCON 35 97 15K
******************************************
.MODEL DA D(IS=100E-14 RS=.5K)
.MODEL DB D(IS=100E-14 RS=.5K)
.MODEL DX D(IS=100E-14)
.MODEL MOSFET PMOS(VTO=-1.7 KP=1.8E-3)
*VTO ESTABLISHES INPUT VOLT. RANGE
.ENDS
*
* ////////////// MAX406Ad MACROMODEL //////////////////
*
* ====> "d" DENOTES DECOMPENSATED MODE <====
* ====> REFER TO MAX406/MAX407/MAX409 DATA SHEET <====
*
* connections: non-inverting input
* | inverting input
* | | positive power-supply
* | | | negative power-supply
* | | | | output
* | | | | |
* OUTPUT CONNECTS: 1 2 99 50 97
*
.SUBCKT MAX406Ad 1 2 99 50 97
****************INPUT STAGE**********************
I1 99 4 20U
M1 5 2 4 99 MOSFET
R3 5 50 5.2696K
M2 6 7 4 99 MOSFET
R4 6 50 5.2696K
CI1 1 0 2P
CI2 2 0 2P
DP1 1 99 DA
DP2 50 1 DX
DP3 2 99 DX
DP4 50 2 DB
C4 5 6 .6N
*POLE AT 25KHZ
************ GSUP CREATES AVOL VS VSUPPLY ********
EH 99 98 99 50 0.5
GSUP 0 106 POLY(1) 99 50 320 -41 1.2
*THIS POLY VCCS MODELS THE OPEN LOOP GAIN AS
*A FUNCTION OF THE POWER SUPPLY, WHICH WILL BE MULT. NODE 5,6 VOLT.
RVSUP 0 106 1E4
************ GAIN, 1ST POLE, SLEW STAGE************
G0 98 9 POLY(2) 5 6 106 0 0 0 0 0 1E-6
*GO MULTIPLIES NODE 106, AVOL VS SUPPLY, AND NODES 5,6 FROM INPUT STAGE.
VS 9 10 0V
R0 98 9 1E6
C3 10 98 3.9UF
D1 9 111 DX
D2 112 9 DX
V11 99 111 .5V
V12 112 50 .5V
I2 99 50 -19U
EOS 7 1 POLY(1) 16 98 .25M 1
*********COMMON-MODE ZERO STAGE********
G4 98 16 POLY(2) 1 98 2 98 0 1E-7 1E-7
R13 98 16 500
******* POLE AND STAGE **********
G3 98 15 10 98 1E-3
R12 98 15 1E3
C5 98 15 5.3N
* POLE AT 30KH
******** POLE / ZERO STAGE ******
G5 98 18 15 98 1E-3
R14 98 18 1K
C6 18 19 2.6UF
R19 19 98 5K
*************OUTPUT STAGE****************
F5 99 38 VA8 1
D9 40 38 DX
D10 38 99 DX
VA7 99 40 0
G12 98 32 18 98 1E-6
* ^ INSERT NODE FROM LAST STAGE HERE
R15 98 32 1E6
D3 32 36 DX
D4 37 32 DX
V5 35 37 .2V
V4 36 35 -.2V
*V5,V4 SET ISC
R16 34 35 1K
E1 99 33 99 32 1
VA8 33 34 0V
L 35 97 0.2
RCON 35 97 15K
*RCON ALSO ENHANCES CONVERGENCE FEATURES
******************************************
.MODEL DA D(IS=100E-14 RS=.5K)
.MODEL DB D(IS=100E-14 RS=.5K)
.MODEL DX D(IS=100E-14)
.MODEL MOSFET PMOS(VTO=-1.7 KP=1.8E-3)
*VTO ESTABLISHES INPUT VOLT. RANGE
.ENDS
*
* ////////////// MAX406Bd MACROMODEL //////////////////
*
* ====> "d" DENOTES DECOMPENSATED MODE <====
* ====> REFER TO MAX406/MAX407/MAX409 DATA SHEET <====
*
* connections: non-inverting input
* | inverting input
* | | positive power-supply
* | | | negative power-supply
* | | | | output
* | | | | |
* OUTPUT CONNECTS: 1 2 99 50 97
*
.SUBCKT MAX406Bd 1 2 99 50 97
****************INPUT STAGE**********************
I1 99 4 20U
M1 5 2 4 99 MOSFET
R3 5 50 5.2696K
M2 6 7 4 99 MOSFET
R4 6 50 5.2696K
CI1 1 0 2P
CI2 2 0 2P
DP1 1 99 DA
DP2 50 1 DX
DP3 2 99 DX
DP4 50 2 DB
C4 5 6 .6N
*POLE AT 25KHZ
************ GSUP CREATES AVOL VS VSUPPLY ********
EH 99 98 99 50 0.5
GSUP 0 106 POLY(1) 99 50 320 -41 1.2
*THIS POLY VCCS MODELS THE OPEN LOOP GAIN AS
*A FUNCTION OF THE POWER SUPPLY, WHICH WILL BE MULT. NODE 5,6 VOLT.
RVSUP 0 106 1E4
************ GAIN, 1ST POLE, SLEW STAGE************
G0 98 9 POLY(2) 5 6 106 0 0 0 0 0 1E-6
*GO MULTIPLIES NODE 106, AVOL VS SUPPLY, AND NODES 5,6 FROM INPUT STAGE.
VS 9 10 0V
R0 98 9 1E6
C3 10 98 3.9UF
D1 9 111 DX
D2 112 9 DX
V11 99 111 .5V
V12 112 50 .5V
I2 99 50 -19U
EOS 7 1 POLY(1) 16 98 0.75M 1
*********COMMON-MODE ZERO STAGE********
G4 98 16 POLY(2) 1 98 2 98 0 1E-7 1E-7
R13 98 16 500
******* POLE AND STAGE **********
G3 98 15 10 98 1E-3
R12 98 15 1E3
C5 98 15 5.3N
* POLE AT 30KH
******** POLE / ZERO STAGE ******
G5 98 18 15 98 1E-3
R14 98 18 1K
C6 18 19 2.6UF
R19 19 98 5K
*************OUTPUT STAGE****************
F5 99 38 VA8 1
D9 40 38 DX
D10 38 99 DX
VA7 99 40 0
G12 98 32 18 98 1E-6
* ^ INSERT NODE FROM LAST STAGE HERE
R15 98 32 1E6
D3 32 36 DX
D4 37 32 DX
V5 35 37 .2V
V4 36 35 -.2V
*V5,V4 SET ISC
R16 34 35 1K
E1 99 33 99 32 1
VA8 33 34 0V
L 35 97 0.2
RCON 35 97 15K
*RCON ALSO ENHANCES CONVERGENCE FEATURES
******************************************
.MODEL DA D(IS=100E-14 RS=0.5K)
.MODEL DB D(IS=100E-14 RS=0.5K)
.MODEL DX D(IS=100E-14)
.MODEL MOSFET PMOS(VTO=-1.7 KP=1.8E-3)
*VTO ESTABLISHES INPUT VOLT. RANGE
.ENDS
*
* ////////////// MAX407 MACROMODEL //////////////////
*
* connections: non-inverting input
* | inverting input
* | | positive power-supply
* | | | negative power-supply
* | | | | output
* | | | | |
* OUTPUT CONNECTS: 1 2 99 50 97
*
.SUBCKT MAX407 1 2 99 50 97
****************INPUT STAGE**********************
I1 99 4 20U
M1 5 2 4 99 MOSFET
R3 5 50 5.2696K
M2 6 7 4 99 MOSFET
R4 6 50 5.2696K
CI1 1 0 2P
CI2 2 0 2P
DP1 1 99 DA
DP2 50 1 DX
DP3 2 99 DX
DP4 50 2 DB
************ GSUP CREATES AVOL VS VSUPPLY ********
EH 99 98 99 50 0.5
GSUP 0 106 POLY(1) 99 50 320 -41 1.2
*THIS POLY VCCS MODELS THE OPEN LOOP GAIN AS
*A FUNCTION OF THE POWER SUPPLY, WHICH WILL BE MULT. NODE 5,6 VOLT.
RVSUP 0 106 1E4
************ GAIN, 1ST POLE, SLEW STAGE************
G0 98 9 POLY(2) 5 6 106 0 0 0 0 0 1E-6
*GO MULTIPLIES NODE 106, AVOL VS SUPPLY, AND NODES 5,6 FROM INPUT STAGE.
VS 9 10 0V
R0 98 9 1E6
C3 10 98 19UF
D1 9 111 DX
D2 112 9 DX
V11 99 111 .5V
V12 112 50 .5V
I2 99 50 -18U
* TYPICAL SUPPLY CURRENT 2UA
EOS 7 1 POLY(1) 16 98 1M 1
*********COMMON-MODE ZERO STAGE********
G4 98 16 POLY(2) 1 98 2 98 0 1E-7 1E-7
R13 98 16 500
******* POLE AND STAGE **********
G3 98 15 10 98 1E-3
R12 98 15 1E3
C5 98 15 14.5N
*
*************OUTPUT STAGE****************
F5 99 38 VA8 1
D9 40 38 DX
D10 38 99 DX
VA7 99 40 0
G12 98 32 15 98 1E-6
* ^ INSERT NODE FROM LAST STAGE HERE
R15 98 32 1E6
D3 32 36 DX
D4 37 32 DX
V5 35 37 .2V
V4 36 35 -.2V
*V5,V4 SET ISC
R16 34 35 1K
E1 99 33 99 32 1
VA8 33 34 0V
L 35 97 0.2
RCON 35 97 15K
*RCON ALSO ENHANCES CONVERGENCE FEATURES
******************************************
.MODEL DA D(IS=100E-14 RS=0.5K)
.MODEL DB D(IS=100E-14 RS=0.5K)
.MODEL DX D(IS=100E-14)
.MODEL MOSFET PMOS(VTO=-1.7 KP=1.8E-3)
*VTO ESTABLISHES INPUT VOLT. RANGE
.ENDS
*
* ////////////// MAX409A MACROMODEL //////////////////
*
* ===> MAX409A MUST BE OPERATED WITH CLOSED-LOOP
* GAIN OF 10V/V OR GREATER TO INSURE STABILITY <====
*
* connections: non-inverting input
* | inverting input
* | | positive power-supply
* | | | negative power-supply
* | | | | output
* | | | | |
* OUTPUT CONNECTS: 1 2 99 50 97
*
.SUBCKT MAX409A 1 2 99 50 97
****************INPUT STAGE**********************
I1 99 4 20U
M1 5 2 4 99 MOSFET
R3 5 50 5.2696K
M2 6 7 4 99 MOSFET
R4 6 50 5.2696K
CI1 1 0 2P
CI2 2 0 2P
DP1 1 99 DA
DP2 50 1 DA
DP3 2 99 DB
DP4 50 2 DB
C4 5 6 .07N
*POLE AT 25KHZ
************ GSUP CREATES AVOL VS VSUPPLY ********
GSUP 0 106 POLY(1) 99 50 320 -41 1.2
*THIS POLY VCCS MODELS THE OPEN LOOP GAIN AS
*A FUNCTION OF THE POWER SUPPLY, WHICH WILL BE MULT. NODE 5,6 VOLT.
RVSUP 0 106 1E4
************ GAIN, 1ST POLE, SLEW STAGE************
EH 99 98 99 50 0.5
G0 98 9 POLY(2) 5 6 106 0 0 0 0 0 1E-6
*GO MULTIPLIES NODE 106, AVOL VS SUPPLY, AND NODES 5,6 FROM INPUT STAGE.
VS 9 10 0V
R0 98 9 1E6
C3 10 98 1.3UF
D1 9 111 DX
D2 112 9 DX
V11 99 111 .5V
V12 112 50 .5V
I2 99 50 -19U
EOS 7 1 POLY(1) 16 98 .25M 1
*********COMMON-MODE ZERO STAGE********
G4 98 16 POLY(2) 1 98 2 98 0 1E-7 1E-7
R13 98 16 500
******* POLE AND STAGE **********
G3 98 15 10 98 1E-3
R12 98 15 1E3
C5 98 15 1.77N
* POLE AT 30KH
******** POLE / ZERO STAGE ******
G5 98 18 15 98 1E-3
R14 98 18 1K
C6 18 19 4.42NF
R19 19 98 800
*************OUTPUT STAGE****************
F5 99 38 VA8 1
D9 40 38 DX
D10 38 99 DX
VA7 99 40 0
G12 98 32 18 98 1E-6
* ^ INSERT NODE FROM LAST STAGE HERE
R15 98 32 1E6
D3 32 36 DX
D4 37 32 DX
V5 35 37 .2
V4 36 35 -.2
*V5,V4 SET ISC
R16 34 35 1K
E1 99 33 99 32 1
VA8 33 34 0V
L 35 97 0.5
RCON 35 97 30K
*RCON ALSO ENHANCES CONVERGENCE FEATURES
******************************************
.MODEL DA D(IS=100E-14 RS=.5K)
.MODEL DB D(IS=100E-14 RS=.5K)
*RS=0.5K SOFTENS KNEE CURVE SO THAT CONVERGENCE IS IMPROVED.
.MODEL DX D(IS=100E-14)
.MODEL MOSFET PMOS(VTO=-1.7 KP=1.8E-3)
*VTO ESTABLISHES INPUT VOLT. RANGE
.ENDS
*
* ////////////// MAX409B MACROMODEL //////////////////
*
* ===> MAX409B MUST BE OPERATED WITH CLOSED-LOOP
* GAIN OF 10V/V OR GREATER TO INSURE STABILITY <====
*
* connections: non-inverting input
* | inverting input
* | | positive power-supply
* | | | negative power-supply
* | | | | output
* | | | | |
* OUTPUT CONNECTS: 1 2 99 50 97
*
.SUBCKT MAX409B 1 2 99 50 97
****************INPUT STAGE**********************
I1 99 4 20U
M1 5 2 4 99 MOSFET
R3 5 50 5.2696K
M2 6 7 4 99 MOSFET
R4 6 50 5.2696K
CI1 1 0 2P
CI2 2 0 2P
DP1 1 99 DA
DP2 50 1 DX
DP3 2 99 DX
DP4 50 2 DB
C4 5 6 .07N
*POLE AT 25KHZ
************ GSUP CREATES AVOL VS VSUPPLY ********
EH 99 98 99 50 0.5
GSUP 0 106 POLY(1) 99 50 320 -41 1.2
*THIS POLY VCCS MODELS THE OPEN LOOP GAIN AS
*A FUNCTION OF THE POWER SUPPLY, WHICH WILL BE MULT. NODE 5,6 VOLT.
RVSUP 0 106 1E4
************ GAIN, 1ST POLE, SLEW STAGE************
G0 98 9 POLY(2) 5 6 106 0 0 0 0 0 1E-6
*GO MULTIPLIES NODE 106, AVOL VS SUPPLY, AND NODES 5,6 FROM INPUT STAGE.
VS 9 10 0V
R0 98 9 1E6
C3 10 98 1.3UF
D1 9 111 DX
D2 112 9 DX
V11 99 111 .5V
V12 112 50 .5V
I2 99 50 -19U
EOS 7 1 POLY(1) 16 98 .75E-3 1
*********COMMON-MODE ZERO STAGE********
G4 98 16 POLY(2) 1 98 2 98 0 1E-7 1E-7
R13 98 16 500
******* POLE AND STAGE **********
G3 98 15 10 98 1E-3
R12 98 15 1E3
C5 98 15 1.77N
* POLE AT 30KH
******** POLE / ZERO STAGE ******
G5 98 18 15 98 1E-3
R14 98 18 1K
C6 18 19 4.42NF
R19 19 98 800
*************OUTPUT STAGE****************
F5 99 38 VA8 1
D9 40 38 DX
D10 38 99 DX
VA7 99 40 0
G12 98 32 18 98 1E-6
* ^ INSERT NODE FROM LAST STAGE HERE
R15 98 32 1E6
D3 32 36 DX
D4 37 32 DX
V5 35 37 .2V
V4 36 35 -.2V
*V5,V4 SET ISC
R16 34 35 1K
E1 99 33 99 32 1
VA8 33 34 0V
L 35 97 0.5
RCON 35 97 30K
*RCON ALSO ENHANCES CONVERGENCE FEATURES
******************************************
.MODEL DA D(IS=100E-14 RS=0.5K)
.MODEL DB D(IS=100E-14 RS=0.5K)
.MODEL DX D(IS=100E-14)
.MODEL MOSFET PMOS(VTO=-1.7 KP=1.8E-3)
*VTO ESTABLISHES INPUT VOLT. RANGE
.ENDS
*
* ////////////// MAX417 MACROMODEL //////////////////
*
* ===> MAX417 MUST BE OPERATED WITH CLOSED-LOOP
* GAIN OF 10V/V OR GREATER TO INSURE STABILITY <====
*
* connections: non-inverting input
* | inverting input
* | | positive power-supply
* | | | negative power-supply
* | | | | output
* | | | | |
* OUTPUT CONNECTS: 1 2 99 50 97
*
.SUBCKT MAX417 1 2 99 50 97
****************INPUT STAGE**********************
I1 99 4 20U
M1 5 2 4 99 MOSFET
R3 5 50 5.2696K
M2 6 7 4 99 MOSFET
R4 6 50 5.2696K
CI1 1 0 2P
CI2 2 0 2P
DP1 1 99 DA
DP2 50 1 DX
DP3 2 99 DX
DP4 50 2 DB
C4 5 6 .07N
*POLE AT 25KHZ
************ GSUP CREATES AVOL VS VSUPPLY ********
EH 99 98 99 50 0.5
GSUP 0 106 POLY(1) 99 50 320 -41 1.2
*THIS POLY VCCS MODELS THE OPEN LOOP GAIN AS
*A FUNCTION OF THE POWER SUPPLY, WHICH WILL BE MULT. NODE 5,6 VOLT.
RVSUP 0 106 1E4
************ GAIN, 1ST POLE, SLEW STAGE************
G0 98 9 POLY(2) 5 6 106 0 0 0 0 0 1E-6
*GO MULTIPLIES NODE 106, AVOL VS SUPPLY, AND NODES 5,6 FROM INPUT STAGE.
VS 9 10 0V
R0 98 9 1E6
C3 10 98 1.3UF
D1 9 111 DX
D2 112 9 DX
V11 99 111 .5V
V12 112 50 .5V
I2 99 50 -19U
EOS 7 1 POLY(1) 16 98 1.0E-3 1
*********COMMON-MODE ZERO STAGE********
G4 98 16 POLY(2) 1 98 2 98 0 1E-7 1E-7
R13 98 16 500
******* POLE AND STAGE **********
G3 98 15 10 98 1E-3
R12 98 15 1E3
C5 98 15 1.77N
* POLE AT 30KH
******** POLE / ZERO STAGE ******
G5 98 18 15 98 1E-3
R14 98 18 1K
C6 18 19 4.42NF
R19 19 98 800
*************OUTPUT STAGE****************
F5 99 38 VA8 1
D9 40 38 DX
D10 38 99 DX
VA7 99 40 0
G12 98 32 18 98 1E-6
* ^ INSERT NODE FROM LAST STAGE HERE
R15 98 32 1E6
D3 32 36 DX
D4 37 32 DX
V5 35 37 .2V
V4 36 35 -.2V
*V5,V4 SET ISC
R16 34 35 1K
E1 99 33 99 32 1
VA8 33 34 0V
L 35 97 0.5
RCON 35 97 30K
*RCON ALSO ENHANCES CONVERGENCE FEATURES
******************************************
.MODEL DA D(IS=100E-14 RS=0.5K)
.MODEL DB D(IS=100E-14 RS=0.5K)
.MODEL DX D(IS=100E-14)
.MODEL MOSFET PMOS(VTO=-1.7 KP=1.8E-3)
*VTO ESTABLISHES INPUT VOLT. RANGE
.ENDS
*
* ////////////// MAX418 MACROMODEL //////////////////
*
* connections: non-inverting input
* | inverting input
* | | positive power-supply
* | | | negative power-supply
* | | | | output
* | | | | |
* OUTPUT CONNECTS: 1 2 99 50 97
*
.SUBCKT MAX418 1 2 99 50 97
****************INPUT STAGE**********************
I1 99 4 20U
M1 5 2 4 99 MOSFET
R3 5 50 5.2696K
M2 6 7 4 99 MOSFET
R4 6 50 5.2696K
CI1 1 0 2P
CI2 2 0 2P
DP1 1 99 DA
DP2 50 1 DX
DP3 2 99 DX
DP4 50 2 DB
************ GSUP CREATES AVOL VS VSUPPLY ********
EH 99 98 99 50 0.5
GSUP 0 106 POLY(1) 99 50 320 -41 1.2
*THIS POLY VCCS MODELS THE OPEN LOOP GAIN AS
*A FUNCTION OF THE POWER SUPPLY, WHICH WILL BE MULT. NODE 5,6 VOLT.
RVSUP 0 106 1E4
************ GAIN, 1ST POLE, SLEW STAGE************
G0 98 9 POLY(2) 5 6 106 0 0 0 0 0 1E-6
*GO MULTIPLIES NODE 106, AVOL VS SUPPLY, AND NODES 5,6 FROM INPUT STAGE.
VS 9 10 0V
R0 98 9 1E6
C3 10 98 19UF
D1 9 111 DX
D2 112 9 DX
V11 99 111 .5V
V12 112 50 .5V
I2 99 50 -18U
* TYPICAL SUPPLY CURRENT 2UA
EOS 7 1 POLY(1) 16 98 1M 1
*********COMMON-MODE ZERO STAGE********
G4 98 16 POLY(2) 1 98 2 98 0 1E-7 1E-7
R13 98 16 500
******* POLE AND STAGE **********
G3 98 15 10 98 1E-3
R12 98 15 1E3
C5 98 15 14.5N
*
*************OUTPUT STAGE****************
F5 99 38 VA8 1
D9 40 38 DX
D10 38 99 DX
VA7 99 40 0
G12 98 32 15 98 1E-6
* ^ INSERT NODE FROM LAST STAGE HERE
R15 98 32 1E6
D3 32 36 DX
D4 37 32 DX
V5 35 37 .2V
V4 36 35 -.2V
*V5,V4 SET ISC
R16 34 35 1K
E1 99 33 99 32 1
VA8 33 34 0V
L 35 97 0.2
RCON 35 97 15K
*RCON ALSO ENHANCES CONVERGENCE FEATURES
******************************************
.MODEL DA D(IS=100E-14 RS=0.5K)
.MODEL DB D(IS=100E-14 RS=0.5K)
.MODEL DX D(IS=100E-14)
.MODEL MOSFET PMOS(VTO=-1.7 KP=1.8E-3)
*VTO ESTABLISHES INPUT VOLT. RANGE
.ENDS
*
* ////////////// MAX419 MACROMODEL //////////////////
*
* ===> MAX419 MUST BE OPERATED WITH CLOSED-LOOP
* GAIN OF 10V/V OR GREATER TO INSURE STABILITY <====
*
* connections: non-inverting input
* | inverting input
* | | positive power-supply
* | | | negative power-supply
* | | | | output
* | | | | |
* OUTPUT CONNECTS: 1 2 99 50 97
*
.SUBCKT MAX419 1 2 99 50 97
****************INPUT STAGE**********************
I1 99 4 20U
M1 5 2 4 99 MOSFET
R3 5 50 5.2696K
M2 6 7 4 99 MOSFET
R4 6 50 5.2696K
CI1 1 0 2P
CI2 2 0 2P
DP1 1 99 DA
DP2 50 1 DX
DP3 2 99 DX
DP4 50 2 DB
C4 5 6 .07N
*POLE AT 25KHZ
************ GSUP CREATES AVOL VS VSUPPLY ********
EH 99 98 99 50 0.5
GSUP 0 106 POLY(1) 99 50 320 -41 1.2
*THIS POLY VCCS MODELS THE OPEN LOOP GAIN AS
*A FUNCTION OF THE POWER SUPPLY, WHICH WILL BE MULT. NODE 5,6 VOLT.
RVSUP 0 106 1E4
************ GAIN, 1ST POLE, SLEW STAGE************
G0 98 9 POLY(2) 5 6 106 0 0 0 0 0 1E-6
*GO MULTIPLIES NODE 106, AVOL VS SUPPLY, AND NODES 5,6 FROM INPUT STAGE.
VS 9 10 0V
R0 98 9 1E6
C3 10 98 1.3UF
D1 9 111 DX
D2 112 9 DX
V11 99 111 .5V
V12 112 50 .5V
I2 99 50 -19U
EOS 7 1 POLY(1) 16 98 1.0E-3 1
*********COMMON-MODE ZERO STAGE********
G4 98 16 POLY(2) 1 98 2 98 0 1E-7 1E-7
R13 98 16 500
******* POLE AND STAGE **********
G3 98 15 10 98 1E-3
R12 98 15 1E3
C5 98 15 1.77N
* POLE AT 30KH
******** POLE / ZERO STAGE ******
G5 98 18 15 98 1E-3
R14 98 18 1K
C6 18 19 4.42NF
R19 19 98 800
*************OUTPUT STAGE****************
F5 99 38 VA8 1
D9 40 38 DX
D10 38 99 DX
VA7 99 40 0
G12 98 32 18 98 1E-6
* ^ INSERT NODE FROM LAST STAGE HERE
R15 98 32 1E6
D3 32 36 DX
D4 37 32 DX
V5 35 37 .2V
V4 36 35 -.2V
*V5,V4 SET ISC
R16 34 35 1K
E1 99 33 99 32 1
VA8 33 34 0V
L 35 97 0.5
RCON 35 97 30K
*RCON ALSO ENHANCES CONVERGENCE FEATURES
******************************************
.MODEL DA D(IS=100E-14 RS=0.5K)
.MODEL DB D(IS=100E-14 RS=0.5K)
.MODEL DX D(IS=100E-14)
.MODEL MOSFET PMOS(VTO=-1.7 KP=1.8E-3)
*VTO ESTABLISHES INPUT VOLT. RANGE
.ENDS
* Copyright (c) 2003-2012 Maxim Integrated Products. All Rights Reserved.
Lead Free
Unknown
Spice Device Type
subcircuit
Spice Node 97
6 - OUT